RESEARCH

Real Analysis Exchange Vol. 35(2), 2009/2010, pp. 463–478

Aparna Vyas, Department of Mathematics, University of Allahabad, Allahabad - 211 002, India. email: aparna.vyaas@gmail.com, dpub@pphmj.com

Rajeshwari Dubey, Department of Mathematics, University of Allahabad, Allahabad - 211 002, India. email: rajeshwari_uni@yahoo.com, dpub@pphmj.com

WAVELET SETS ACCUMULATING AT THE ORIGIN

Abstract

For a natural number n, selecting a 2n-interval symmetric wavelet set by making use of a result of Arcozzi, Behera and Madan [J. Geom. Anal. **13** (2003), 557-579], we construct a family of symmetric wavelet sets accumulating at the origin. Such a family of wavelet sets is also obtained from a family of symmetric six-interval wavelet sets provided by them in the same paper. Three-interval wavelet sets are employed in having a family of wavelet sets accumulating at the origin which are non-symmetric. Further, we obtain a larger class of H^2 -wavelet sets accumulating at the origin, which include the one given by Behera in [Bull. Polish Acad. Sci. Math. **52** (2004), 169-178]. Finally, non-MSF non-MRA wavelets are obtained through the selected family of 2n-interval symmetric wavelet sets.

1 Introduction.

Since a wavelet set does not contain a nondegenerate interval containing the origin, a natural question asking for the existence of a wavelet set W with the origin as an accumulation point of W, arises. This question is equivalent to the existence of a wavelet set W such that the characteristic function with support

Mathematical Reviews subject classification: Primary: 42C15, 42C40

Key words: wavelets, MSF wavelets, wavelet set, dilation equivalence, translation equivalence, dimension function

Received by the editors September 19, 2009 Communicated by: Alexander Olevskii

W does not vanish in any neighbourhood of the origin. It got affirmatively settled by various workers. Madych [13] gave an example of an MSF wavelet ψ whose Fourier transform does not vanish in any neighbourhood of the origin. Garrigós [9] also constructed a wavelet set with this property. Studying the behaviour of a class of band limited wavelets at the origin, Brandolini, Garrigós, Rzeszotnik and Weiss [6] constructed such wavelet sets K_{ϵ} , where $\epsilon \in (0, \frac{1}{3}]$. Garrigós [9] in his Ph. D. thesis asked for the existence or otherwise of a wavelet whose Fourier transform is even, discontinuous at the origin and has compact support. A positive answer to this question has been provided by Arcozzi, Behera and Madan [1] and Behera [3], who constructed a family of bounded symmetric wavelet sets $\left\{K_{r,\epsilon} : r \in \mathbb{N} \text{ and } \epsilon \in \left(0, \frac{2^r-1}{4(2^{r+1}-1)}\right)\right\}$, with the origin as an accumulation point. They did this by selecting for r, a symmetric four interval wavelet set $K_r \equiv K_r^- \cup K_r^+$, where $K_r^- = -K_r^+$, and

$$K_r^+ = \left[\frac{2^{r-1}}{2^{r+1}-1}, \ \frac{1}{2}\right] \cup \left[2^{r-1}, \ \frac{2^{2r}}{2^{r+1}-1}\right].$$
 (1)

In this paper, we obtain that such wavelet sets are plentiful. Our construction proceeds as follows:

- (i) For an $n \in \mathbb{N}$, we select a 2*n*-interval symmetric wavelet set by making use of Theorem 3 of [1], in Section 3. For even *n*, the wavelet set obtained is denoted by $W_{n,E}$ while for odd *n*, by $W_{n,O}$.
- (ii) We choose a positive number δ_n such that an $\epsilon \in (0, \delta_n)$ provides a symmetric wavelet set $W_{n,E,\epsilon}$ (or $W_{n,O,\epsilon}$) according as n is even (or odd), the characteristic function on which has compact support not vanishing around any neighbourhood of the origin. This is achieved by invoking the technique employed in [9] for obtaining wavelet sets having the origin as its accumulation point, in Section 4.

For n = 2, the family $W_{2,E,\epsilon}$ is one amongst the families constructed in [1].

Additionally, we construct such a family of wavelet sets from a given member of the following family of symmetric six interval wavelet sets $K \equiv K(s,t,v) = K^- \cup K^+$, where $K^- = -K^+$,

$$K^{+} = \left[\frac{2^{s}(2t+1)}{2^{v}-1}, \frac{2^{s+2}t}{2^{v}-2^{s+2}}\right] \cup \left[\frac{2^{v}t}{2^{v}-2^{s+2}}, \frac{2t+1}{2}\right] \qquad (2)$$
$$\cup \left[2^{s}(2t+1), \frac{2^{s+v}(2t+1)}{2^{v}-1}\right],$$

and s, t, v are non-negative integers such that $t \ge 1$ and $2^v > (2t+1)2^{s+2}$ provided in [1].

Based on the similar technique, we construct a family of wavelet sets in Section 5, which is non-symmetric having the origin as its accumulation point by making use of three-interval wavelet sets, precisely given by

$$W_{j,p} \equiv \left[-\left(1 - \frac{2p+1}{2^{j+1}-1}\right), -\frac{1}{2}\left(1 - \frac{2p+1}{2^{j+1}-1}\right) \right] \cup \left[\frac{p+1}{2^{j+1}-1}, \frac{2p+1}{2^{j+1}-1}\right] \\ \cup \left[\frac{2^{j}(2p+1)}{2^{j+1}-1}, \frac{2^{j+1}(p+1)}{2^{j+1}-1}\right],$$
(3)

where $j \ge 2$ and an integer p satisfying $1 \le p \le 2^j - 2$ [11].

In Section 6, we obtain a larger class of H^2 -wavelet sets having the origin as an accumulation point via two interval H^2 -wavelet sets which contains the one given by Behera in [2].

Section 2, provides necessary pre-requisites. The last Section 7, is devoted to obtain non-MSF non-MRA wavelets from 2*n*-interval wavelet sets $W_{n,E}$ and $W_{n,O}$ as selected in Section 3. The construction of families of non-MSF wavelets have been considered earlier by several workers including Bownik [5], Behera [2], Gu and Han [10] and Vyas [14, 15]. The interest in finding out non-MSF wavelets arose due to a result obtained by Chui and Shi in [4] according to which for the dilation *a* which satisfies $a^j \notin \mathbb{Q}$, for all positive integers *j*, there exist only MSF-wavelets.

2 Pre-requisites.

The collection of all Lebesgue integrable functions on \mathbb{R} is denoted by $L^1(\mathbb{R})$ and $L^2(\mathbb{R})$ denotes that of all Lebesgue square integrable functions on \mathbb{R} . Functions which are equal almost everywhere are identified. With the usual addition and scalar multiplication of functions together with the inner-product $\langle f, g \rangle$ of $f, g \in L^2(\mathbb{R})$ defined by

$$\langle f,g\rangle = \int_{\mathbb{R}} f(t)\overline{g(t)} \, dt,$$

 $L^2(\mathbb{R})$ becomes a Hilbert space. The Fourier transform is defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(t) e^{-2\pi i \xi t} \, dt,$$

where $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. This extends uniquely to an operator on $L^2(\mathbb{R})$.

The classical Hardy space $H^2(\mathbb{R})$ is the collection of all Lebesgue square integrable functions whose Fourier transform is supported in \mathbb{R}^+ :

$$H^2(\mathbb{R}) := \left\{ f \in L^2(R) : \ \hat{f}(\xi) = 0 \ for \ a.e. \ \xi \le 0 \right\}.$$

A function $\psi \in L^2(\mathbb{R})$ (resp. $\psi \in H^2(\mathbb{R})$) is called an *orthonormal wavelet* (resp. H^2 -wavelet) of $L^2(\mathbb{R})$ (resp. $H^2(\mathbb{R})$) if the system

$$\left\{2^{j/2}\psi(2^jt-k):\,j,k\in\mathbb{Z}\right\}$$

forms an orthonormal basis for $L^2(\mathbb{R})$ (resp. $H^2(\mathbb{R})$).

We use the following characterization of an orthonormal wavelet for $L^2(\mathbb{R})$ and $H^2(\mathbb{R})$ available in [12].

Result 2.1. A function $\psi \in L^2(\mathbb{R})$ (resp. $\psi \in H^2(\mathbb{R})$) is an orthonormal wavelet (resp. H^2 -wavelet) iff

- (i) $||\psi||_2 = 1$,
- (ii) $\rho(\xi) = \sum_{j \in \mathbb{Z}} |\widehat{\psi}(2^j \xi)|^2 = \chi_{\mathbb{R}}(\xi)$ (resp. $\chi_{\mathbb{R}^+}(\xi)$), for a.e. $\xi \in \mathbb{R}$,
- (iii) $t_q(\xi) = \sum_{j \ge 0} \widehat{\psi}(2^j \xi) \ \overline{\widehat{\psi}(2^j (\xi + q))} = 0$, for a.e. $\xi \in \mathbb{R}$ and for $q \in 2\mathbb{Z} + 1$.

A wavelet set [7] (resp. H^2 -wavelet set) is a measurable set W of the real line \mathbb{R} (resp. \mathbb{R}^+) such that the characteristic function χ_W on W is equal to the Fourier transform $\hat{\psi}$ for some orthonormal wavelet (resp. H^2 -wavelet) ψ in $L^2(\mathbb{R})$ (resp. $H^2(\mathbb{R})$). An MSF wavelet (resp. H^2 -MSF wavelet) ψ is a wavelet (resp. H^2 -wavelet) which is associated with a wavelet set (resp. H^2 wavelet set) W in the sense that the support of $\hat{\psi}$ is W [7, 8]. We use the following characterization of a wavelet set (resp. H^2 -wavelet set) [7, 12].

Result 2.2. A measurable set $W \subset \mathbb{R}$ (resp. $W \subset \mathbb{R}^+$) is a wavelet set (resp. H^2 -wavelet set) if and only if

- (i) $\dot{\bigcup}_{n\in\mathbb{Z}}(W+n)=\mathbb{R}$ a.e.,
- (ii) $\dot{\bigcup}_{n \in \mathbb{Z}} (2^n W) = \mathbb{R}$ (resp. \mathbb{R}^+) a.e.,

where [] denotes the disjoint union.

From the above characterization of a wavelet set, we obtain:

Lemma 2.3 ([14]). Define $\tau : \mathbb{R} \to [0, 1)$ by $\tau(x) = x + p$, where p is an integer depending on x. Then

- (a) $\tau(E) = \tau(E+k)$, for $k \in \mathbb{Z}$ and E is a measurable set in \mathbb{R} ,
- (b) for any disjoint measurable sets E and F of \mathbb{R} contained in a wavelet set W, $\tau(E) \cap \tau(F) = \phi$.

Definition 2.4. ([12]) A pair $(\{V_j\}_{j\in\mathbb{Z}}, \varphi)$ consisting of a family $\{V_j\}_{j\in\mathbb{Z}}$ of closed subspaces of $L^2(\mathbb{R})$ together with a function $\varphi \in V_0$ is called a *multiresolution analysis* (MRA) if it satisfies the following conditions:

- (a) $V_j \subset V_{j+1}$ for all $j \in \mathbb{Z}$,
- (b) $f \in V_j$ if and only if $f(2(\cdot)) \in V_{j+1}$ for all $j \in \mathbb{Z}$,
- (c) $\cap_{j\in\mathbb{Z}}V_j = \{0\},\$
- (d) $\overline{\bigcup_{j\in\mathbb{Z}}V_j} = L^2(\mathbb{R}),$
- (e) $\{\varphi(\cdot k) : k \in \mathbb{Z}\}$ is an orthonormal basis for V_0 .

The function φ is called a *scaling function* for the given MRA. An MRA determines a function ψ lying in the orthogonal complement of V_0 in V_1 which is an orthonormal wavelet for $L^2(\mathbb{R})$. Such a ψ is called an MRA *wavelet* arising through the MRA $(\{V_j\}_{j\in\mathbb{Z}}, \varphi)$.

A multiresolution analysis for $H^2(\mathbb{R})$ and H^2 -MRA wavelet can be described similarly.

For an orthonormal wavelet ψ ,

$$D_{\psi}(\xi) = \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}} \left| \hat{\psi}(2^{j}(\xi+k)) \right|^{2}$$

describes the dimension function D_{ψ} for ψ . We use the following characterization which works for both an MRA wavelet and an H^2 -MRA wavelet.

Result 2.5. ([12]) A wavelet $\psi \in L^2(\mathbb{R})$ (resp. $\psi \in H^2(\mathbb{R})$) is an MRA (resp. H^2 -MRA) wavelet iff $D_{\psi}(\xi) = 1$, for almost every $\xi \in \mathbb{R}$.

Definition 2.6. ([7]) A measurable set A is said to be

(a) translation equivalent to a measurable set B if there exists a measurable partition $\{A_n\}$ of A and $k_n \in \mathbb{Z}$ such that $\{A_n + k_n\}$ is a partition of B.

(b) dilation equivalent to a measurable set B if there exists a measurable partition $\{A'_n\}$ of A and $j_n \in \mathbb{Z}$ such that $\{2^{j_n}A'_n\}$ is a partition of B.

As a consequence of Result 2.2, we have the following:

Corollary 2.7. Let K and W be subsets of \mathbb{R} (resp. \mathbb{R}^+), and W be both translation and dilation equivalent to K. Then W is a wavelet set (resp. H^2 -wavelet set) if and only if K is a wavelet set (resp. H^2 -wavelet set).

3 Symmetric Wavelet Sets $W_{n,E}$ and $W_{n,O}$ with 2n-components.

In this section, we obtain wavelet sets $W_{n,E}$ for even positive integer n and $W_{n,O}$ for odd positive integer n consisting of 2n-components, based on a result of Arcozzi, Behera and Madan [1, Theorem 3], which we briefly describe below.

Choosing a set \mathcal{P} containing *n*-elements $P_j \equiv P[\lambda_j, m_j] = (2^{-\lambda_j}, 2^{-\lambda_j}m_j)$, $j = 1, 2, \ldots, n$, in the Euclidean plane such that $\lambda_j \in \mathbb{Z}$ and $m_j \in \mathbb{N} \cup \{0\}$ satisfying the following:

$$\lambda_1 = 0, \ 4m_1 = 2^{-\lambda_n} (2m_n + 1)$$

and

$$0 = a_0 < a_1 < a_2 < \ldots < a_{n-1} < a_n = \frac{1}{2},$$

where

$$a_j = -\frac{m_j 2^{-\lambda_j} - m_{j+1} 2^{-\lambda_{j+1}}}{2^{-\lambda_j} - 2^{-\lambda_{j+1}}},$$

Arcozzi, Behera and Madan [1, Theorem 3] obtain the following Theorem.

Theorem 3.1. For $W_n^+ = I_1^+ \cup I_2^+ \cup ... \cup I_n^+$, where

$$I_j^+ = [a_{j-1}, a_j] + m_j, \ j = 1, \ 2, \dots, n,$$

 $W_n = W_n^- \cup W_n^+$ is a symmetric wavelet set for $L^2(\mathbb{R})$ having 2n-intervals.

Now, we provide two specific kinds of symmetric wavelet sets, the first has 4m-intervals while the second has (4m + 2)-intervals, where $m \in \mathbb{N}$. The first is obtained by choosing an even positive integer, and the second by choosing an odd positive integer.

Example 3.2. Let $n \in 2\mathbb{N}$. Define λ_j 's and m_j 's, where j = 1, 2, ..., n, as follows:

$$\lambda_j = \begin{cases} -\frac{j-1}{2} & \text{for } 1 \le j \le n \text{ and } j \text{ odd} \\ \frac{j}{2} - n - 2 & \text{for } 1 < j \le n \text{ and } j \text{ even} \end{cases}$$
$$m_j = \begin{cases} 2^{(n-j+1)/2} & \text{for } 1 \le j \le n \text{ and } j \text{ odd} \\ 0 & \text{for } 1 < j \le n \text{ and } j \text{ even} \end{cases}$$

With the help of these m_j 's and λ_j 's, we obtain P_j , where j = 1, 2, ..., n, as follows:

$$P_j = \begin{cases} P\left[\frac{1-j}{2}, \frac{n-j+1}{2}\right] = \left(2^{\frac{j-1}{2}}, 2^{\frac{n}{2}}\right) & \text{for } 1 \le j \le n \text{ and } j \text{ odd} \\ P\left[-n + \frac{j}{2} - 2, 0\right] = \left(2^{n-\frac{j}{2}+2}, 0\right) & \text{for } 1 < j \le n \text{ and } j \text{ even} \end{cases}$$

Thus, a_j for $j = 1, 2, \ldots, n-1$, comes out to be

$$a_j = \begin{cases} \frac{2^{\frac{n}{2}}}{2^{\frac{2n-j+3}{2}} - 2^{\frac{j-1}{2}}} & \text{for } 1 \le j \le n \text{ and } j \text{ odd} \\ \frac{2^{\frac{n}{2}}}{2^{\frac{2n-j+4}{2}} - 2^{\frac{j}{2}}} & \text{for } 1 < j \le n \text{ and } j \text{ even} \end{cases}$$

Therefore, the positive side $W_{n,E}^+$ of the wavelet set, denoted by $W_{n,E}$, is of the form:

$$W_{n,E}^{+} = \left[2^{n/2}, \ 2^{n/2} + \frac{2^{n/2}}{2^{n+1}-1}\right] \cup \left[\frac{2^{n/2}}{2^{n+1}-1}, \ \frac{2^{n/2}}{2^{n+1}-2}\right] \cup \ldots \cup \left[\frac{2}{7}, \ \frac{1}{2}\right].$$

Example 3.3. Let $n \in 2\mathbb{N} + 1$. Define λ_j 's and m_j 's, where $j = 1, 2, \ldots, n$, as follows:

$$\lambda_{j} = \begin{cases} 0 & \text{for } j = 1\\ \frac{n-j-6}{2} & \text{for } 1 < j \le n \text{ and } j \text{ odd}\\ \frac{j-n-9}{2} & \text{for } 1 < j \le n-1 \text{ and } j \text{ even} \end{cases}$$
$$m_{j} = \begin{cases} 6 & \text{for } j = 1\\ 2^{(n-j)/2} & \text{for } 1 < j \le n \text{ and } j \text{ odd}\\ 0 & \text{for } 1 < j \le n-1 \text{ and } j \text{ even} \end{cases}$$

With the help of these m_j 's and λ_j 's, we obtain P_j , where j = 1, 2, ..., n, as follows:

$$P_{j} = \begin{cases} P\left[0, 6\right] = (1, 6) & \text{for } j = 1\\ P\left[\frac{n-j-6}{2}, 2^{\frac{n-j}{2}}\right] = \left(2^{\frac{6+j-n}{2}}, 8\right) & \text{for } 1 < j \le n \text{ and } j \text{ odd} \\ P\left[\frac{j-9-n}{2}, 0\right] = \left(2^{\frac{9+n-j}{2}}, 0\right) & \text{for } 1 < j \le n-1 \text{ and } j \text{ even} \end{cases}$$

Thus a_j , for $j = 1, 2, \ldots, n-1$, comes out to be

$$a_j = \begin{cases} \frac{6}{2^{\frac{n+7}{2}} - 1} & \text{for } j = 1\\ \frac{8 \cdot 2^{\frac{n-6-j}{2}}}{2^{n-j+1} - 1} & \text{for } 1 \le j \le n \text{ and } j \text{ odd} \\ \frac{8 \cdot 2^{\frac{n-7-j}{2}}}{2^{n-j+1} - 1} & \text{for } 1 < j \le n-1 \text{ and } j \text{ even} \end{cases}$$

Therefore, the positive side $W_{n,O}^+$ of the wavelet set, denoted by $W_{n,O}$, is of the form:

$$W_{n,O}^{+} = \left[6, \ 6 + \frac{6}{2^{\frac{n+7}{2}} - 1}\right] \cup \left[\frac{6}{2^{\frac{n+7}{2}} - 1}, \ \frac{8 \cdot 2^{\frac{n-9}{2}}}{2^{n-1} - 1}\right] \cup \ldots \cup \left[\frac{4}{3}, \ \frac{3}{2}\right].$$

4 Symmetric Wavelet Sets Accumulating at the Origin.

With the help of wavelet sets $W_{n,E}$ and $W_{n,O}$ obtained in the last section, we provide families of bounded symmetric wavelet sets having the origin as their accumulation point. Also, we obtain such a family of wavelet sets considering six-interval wavelet sets as described by (2) in the introduction.

Since the technique employed in these constructions are the same, we provide details in the following theorem only.

Theorem 4.1. For $n \in 2\mathbb{N}$ and $\epsilon \in (0, \delta_n)$, where $\delta_n = \frac{2^{n/2}}{2(2^{n+1}-2)(2^{n+1}-1)}$, there exists a bounded symmetric wavelet set $W_{n,E,\epsilon}$ having the origin as an accumulation point.

PROOF. Selecting $b_n = \frac{2^{n/2}}{2^{n+1}-1}$, we consider the intervals $S_1 = \left[\frac{b_n}{2} + \frac{\epsilon}{2^{n+1}}, \frac{b_n}{2} + \epsilon\right]$, $S_2 = \left[b_n + 2\epsilon, \frac{2^{n/2}}{2^{n+1}-2}\right]$, and $S_3 = \left[2^{n+1}b_n, 2^{n+1}b_n + 2\epsilon\right]$. Since $\epsilon \in (0, \delta_n)$, S_2 is a non-empty set. Setting

$$E_0 = S_1 + 2^{n/2}, \ F_0 = \frac{1}{2^{n+2}}E_0,$$

and for $r \geq 1$,

$$E_r = F_{r-1} + 2^{n/2}, \ F_r = \frac{1}{2^{r+n+2}}E_r,$$

we denote

$$\left(I_1^+ - \bigcup_{r=0}^{\infty} E_r\right) \cup \left(\bigcup_{r=0}^{\infty} F_r\right) \cup (S_1 \cup S_2 \cup S_3) \cup I_3^+ \cup I_4^+ \cup \ldots \cup I_n^+$$

by $W_{n,E,\epsilon}^+$, and define $W_{n,E,\epsilon} = W_{n,E,\epsilon}^- \cup W_{n,E,\epsilon}^+$, where $W_{n,E,\epsilon}^- = -W_{n,E,\epsilon}^+$. To prove that $W_{n,E,\epsilon}$ is a wavelet set, we make use of Corollary 2.7, accord-

In prove that $W_{n,E,\epsilon}$ is a wavelet set, we make use of Coronary 2.7, according to which $W_{n,E,\epsilon}$ is to be shown translation as well as dilation equivalent to a wavelet set, in general, and hence to the wavelet set $W_{n,E}$, in particular. On account of the symmetry of wavelet sets, it suffices to show that $W_{n,E,\epsilon}^+$ is both translation and dilation equivalent to $W_{n,E}^+$.

First, by induction, we obtain that $E_r \,\subset \, I_1^+$, for all $r \geq 0$. Observing that $b_n + 2^{n/2} = 2^{n+1}b_n$, we have $[0, b_n] + 2^{n/2} = [2^{n/2}, 2^{n+1}b_n] = I_1^+$, and hence $E_0 = S_1 + 2^{n/2} \subset [0, b_n] + 2^{n/2} = I_1^+$. Now, assume that $E_m \subset I_1^+$. Then $F_m = 2^{-(m+n+2)}E_m \subset 2^{-(m+1)}[0, b_n] \subset [0, b_n]$, and hence $E_{m+1} = F_m + 2^{n/2} \subset [0, b_n] + 2^{n/2} = I_1^+$.

As intervals $E_r, r \ge 0$ lie inside the interval I_1^+ , and E_{r+1} lies to the left of E_r , for all $r \ge 0$, F_{r+1} lies to the left of F_r , for all $r \ge 0$.

Because the sets $I_3^+, I_4^+, \ldots, I_n^+$ appear in both the partitions of $W_{n,E,\epsilon}^+$ and also of $W_{n,E}^+$, that $W_{n,E,\epsilon}^+$ is dilation and also translation equivalent to $W_{n,E}^+$ follow from (A) and (B), respectively.

(ii)
$$(I_1^+ - \bigcup_{r=0}^{\infty} E_r) \cup (\bigcup_{r=0}^{\infty} (F_r + 2^{n/2})) \cup (S_1 + 2^{n/2}) = I_1^+.$$

Further, since a neighbourhood of the origin intersects $\bigcup_{r=0}^{\infty} F_r$, the origin is an accumulation point of the wavelet set $W_{n,E,\epsilon}$.

Theorem 4.2. For $n \in 2\mathbb{N} + 1$ and $\epsilon \in (0, \delta_n)$, where $\delta_n = \frac{2^{\frac{n-5}{2}}(2^{\frac{n+3}{2}}-1)+3}{(2^{n-1}-1)(2^{\frac{n+7}{2}}-1)}$, there exists a bounded symmetric wavelet set $W_{n,O,\epsilon}$ having the origin as an accumulation point.

PROOF. With $b_n = \frac{6}{2^{\frac{n+7}{2}}-1}$, we consider the following intervals:

$$S_{1} = \left[\frac{b_{n}}{2} + \frac{\epsilon}{2^{\frac{n+7}{2}}}, \frac{b_{n}}{2} + \epsilon\right], S_{2} = \left[b_{n} + 2\epsilon, \frac{8 \cdot 2^{\frac{n-9}{2}}}{2^{n-1}-1}\right], \text{ and}$$
$$S_{3} = \left[2^{\frac{n+7}{2}}b_{n}, 2^{\frac{n+7}{2}}b_{n} + 2\epsilon\right].$$

That S_2 is a non-empty set follows on account of the choice of ϵ . Setting

$$E_0 = S_1 + 6, \ F_0 = \frac{1}{2^{\frac{n+9}{2}}} E_0,$$

and for $r \geq 1$,

$$E_r = F_{r-1} + 6, \ F_r = \frac{1}{2^{r+\frac{n+9}{2}}} E_r,$$

we denote

$$\left(I_1^+ - \bigcup_{r=0}^{\infty} E_r\right) \cup \left(\bigcup_{r=0}^{\infty} F_r\right) \cup (S_1 \cup S_2 \cup S_3) \cup I_3^+ \cup I_4^+ \cup \ldots \cup I_n^+,$$

by $W_{n,O,\epsilon}^+$. Then

$$W_{n,O,\epsilon} = W_{n,O,\epsilon}^- \cup W_{n,O,\epsilon}^+$$
, where $W_{n,O,\epsilon}^- = -W_{n,O,\epsilon}^+$,

is the required wavelet set.

Recalling wavelet sets with dilation by 2 consisting of six intervals which are symmetric about the origin as provided by (2) in the introduction, we write

$$K^{+} = I^{+} \cup J^{+} \cup H^{+}, \text{ and } K^{-} = -K^{+},$$

where $I^{+} = \left[\frac{2^{s}(2t+1)}{2^{v}-1}, \frac{2^{s+2}t}{2^{v}-2^{s+2}}\right], J^{+} = \left[\frac{2^{v}t}{2^{v}-2^{s+2}}, \frac{2t+1}{2}\right], \text{ and } H^{+} = \left[\frac{2^{s}(2t+1)}{2^{v}-1}\right].$ Now, we have the following:

Theorem 4.3. For non-negative integers s, t, v such that $t \geq 1$, $2^v > (2t + 1)2^{s+2}$ and $\epsilon \in (0, \delta_{s,t,v})$, where $\delta_{s,t,v} = \frac{2^{s+v}(2t-1)+2^{s+2}t(2^{s+1}-1)+2^{2s+2}}{2(2^v-2^{s+2})(2^v-1)}$, there exists a bounded symmetric wavelet set $W_{s,t,v,\epsilon}$ having the origin as an accumulation point.

PROOF. The construction of $W_{s,t,v,\epsilon}$ is given below.

For $a_{s,t,v} = \frac{2^s(2t+1)}{2^v-1}$, we consider the intervals $S_1 = \left[\frac{a_{s,t,v}}{2} + \frac{\epsilon}{2^v}, \frac{a_{s,t,v}}{2} + \epsilon\right]$, $S_2 = \left[a_{s,t,v} + 2\epsilon, \frac{2^{s+2}t}{2^v-2^{s+2}}\right]$, and $S_3 = \left[2^v a_{s,t,v}, 2^v a_{s,t,v} + 2\epsilon\right]$.

The choice of ϵ ensures that S_2 is a non-empty set. Setting

$$E_0 = S_1 + 2^s (2t+1), \ F_0 = \frac{1}{2^{v+1}} E_0$$

and for $r \geq 1$,

$$E_r = F_{r-1} + 2^s (2t+1), \ F_r = \frac{1}{2^{r+v+1}} E_r,$$

we have

$$W_{s,t,v,\epsilon}^+ \equiv \left(H^+ - \bigcup_{r=0}^{\infty} E_r\right) \cup \left(\bigcup_{r=0}^{\infty} F_r\right) \cup \left(S_1 \cup S_2 \cup S_3\right) \cup J^+,$$

as the portion of $W_{s,t,v,\epsilon}$ on the positive side of the real line.

5 Wavelet Sets Accumulating at the Origin from Threeinterval Wavelet Sets.

In this section, we construct a family of wavelet sets accumulating at the origin from three-interval wavelet sets $W_{j,p}$, where $j \ge 2$ and $1 \le p \le 2^j - 2$, and

$$W_{j,p} \equiv I_{j,p} \cup J_{j,p} \cup H_{j,p}$$

with $I_{j,p} = \left[-\left(1 - \frac{2p+1}{2^{j+1}-1}\right), -\frac{1}{2}\left(1 - \frac{2p+1}{2^{j+1}-1}\right) \right], J_{j,p} = \left[\frac{p+1}{2^{j+1}-1}, \frac{2p+1}{2^{j+1}-1}\right],$ and $H_{j,p} = \left[\frac{2^{j}(2p+1)}{2^{j+1}-1}, \frac{2^{j+1}(p+1)}{2^{j+1}-1}\right].$ These wavelet sets are non-symmetric.

Theorem 5.1. For $j \geq 2$, an integer p satisfying $1 \leq p \leq 2^j - 2$ and $\epsilon \in (0, \delta_{j,p})$, where $\delta_{j,p} = \frac{p}{2(2^{j+1}-1)}$, there exists a bounded wavelet set $W_{j,p,\epsilon}$ having the origin as an accumulation point.

PROOF. Taking $a_{j,p} = \frac{(p+1)}{2^{j+1}-1}$, we consider the intervals $S_1 = \left[\frac{a_{j,p}}{2} + \frac{\epsilon}{2^{j+1}}, \frac{a_{j,p}}{2} + \epsilon\right]$, $S_2 = \left[a_{j,p} + 2\epsilon, \frac{2p+1}{2^{j+1}-1}\right]$, and $S_3 = \left[2^{j+1}a_{j,p}, 2^{j+1}a_{j,p} + 2\epsilon\right]$. The choice of ϵ ensures that S_2 is a non-empty set. Setting

$$E_0 = S_1 + (p+1), \ F_0 = \frac{1}{2^{j+2}}E_0,$$

and for $n \ge 1$,

$$E_n = F_{n-1} + (p+1), \ F_n = \frac{1}{2^{n+j+2}}E_n,$$

we obtain

$$W_{j,p,\epsilon} \equiv (H_{j,p} - \bigcup_{n=0}^{\infty} E_n) \cup (\bigcup_{n=0}^{\infty} F_n) \cup (S_1 \cup S_2 \cup S_3) \cup I_{j,p},$$

to be the required wavelet set.

6 H^2 -Wavelet Sets Accumulating at the Origin.

In this section, we construct a family of H^2 -wavelet sets accumulating at the origin by considering certain specific H^2 -wavelet sets consisting of two intervals, which are precisely given by

$$K_{r,k} = \left[\frac{k+1}{2^{r+1}-1}, \ \frac{k}{2^r-1}\right] \cup \left[\frac{2^r k}{2^r-1}, \ \frac{2^{r+1}(k+1)}{2^{r+1}-1}\right],$$

where $r \in \mathbb{N}$ and k is an integer satisfying $1 \leq k < 2(2^r - 1)$. In fact, we consider two interval H^2 -wavelet sets for $r \in \mathbb{N}$ and $k = 2^l - 1$, $1 \leq l \leq r$, denoted by K_r^l .

We write

$$K_r^l = I_r^l \cup J_r^l,$$

where
$$I_r^l = \left[\frac{2^l}{2^{r+1}-1}, \frac{2^l-1}{2^r-1}\right]$$
 and $J_r^l = \left[\frac{2^r(2^l-1)}{2^r-1}, \frac{2^{r+l+1}}{2^{r+1}-1}\right]$.

Theorem 6.1. For $r \in \mathbb{N}$, an integer l satisfying $1 \leq l \leq r$, and $\epsilon \in (0, \delta_r^l)$, where $\delta_r^l = \frac{2^r(2^l-2)+1}{2(2^r-1)(2^{r+1}-1)}$, there exists bounded H^2 -wavelet set $K_{r,\epsilon}^l$ having the origin as an accumulation point.

PROOF. For $a_r^l = \frac{2^l}{2^{r+1}-1}$, we consider the intervals $S_1 = \left[\frac{a_r^l}{2} + \frac{\epsilon}{2^{r+1}}, \frac{a_r^l}{2} + \epsilon\right]$, $S_2 = \left[a_r^l + 2\epsilon, \frac{2^l-1}{2^{r-1}}\right]$, and $S_3 = \left[2^{r+1}a_r^l, 2^{r+1}a_r^l + 2\epsilon\right]$. The choice of ϵ ensures that S_2 is a non-empty set. Setting $E_0 = S_1 + 2^l$, $F_0 = \frac{1}{2^{r+2}}E_0$, and for $n \ge 1$, $E_n = F_{n-1} + 2^l$, $F_n = \frac{1}{2^{n+r+2}}E_n$, we obtain

$$K_{r,\epsilon}^{l} \equiv \left(J_{r}^{l} - \bigcup_{n=0}^{\infty} E_{n}\right) \cup \left(\bigcup_{n=0}^{\infty} F_{n}\right) \cup \left(S_{1} \cup S_{2} \cup S_{3}\right),$$

to be the required H^2 -wavelet set.

7 Non-MSF, Non-MRA Wavelets for $L^2(\mathbb{R})$ from $W_{n,E}$ and $W_{n,O}$.

Employing Examples 3.2 and 3.3, we provide non-MSF, non-MRA wavelets in this section. The technique of constructing such wavelets is similar to the one utilized in [14, 15].

7.1 Non-MSF non-MRA wavelets from $W_{n,E}$.

Lemma 7.1. Under the notation already described, for $(m, n) \in \mathbb{N} \times 2\mathbb{N}$, the following hold:

 $\begin{array}{l} (a) \ 2^{-m}I_2^+ + 2^{n/2} \subset I_1^+, \\ (b) \ 2^{-m}I_2^- - 2^{n/2} \subset I_1^-, \\ (c) \ I_2^+ + 2^{m+\frac{n}{2}} \subset 2^mI_1^+, \\ (d) \ I_2^- - 2^{m+\frac{n}{2}} \subset 2^mI_1^-. \end{array}$

PROOF. This is straightforward.

Theorem 7.2. For $(m, n) \in \mathbb{N} \times 2\mathbb{N}$, the function $\psi_{m,n}$ defined by

$$\widehat{\psi}_{m,n}(\xi) = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } \xi \in I_2^+ \cup 2^{-m}I_2^+ \cup (2^{-m}I_2^+ + 2^{n/2}) \cup I_2^- \\ & \cup 2^{-m}I_2^- \cup (2^{-m}I_2^- - 2^{n/2}), \\ \frac{-1}{\sqrt{2}} & \text{if } \xi \in (I_2^+ + 2^{m+\frac{n}{2}}) \cup (I_2^- - 2^{m+\frac{n}{2}}), \\ 1 & \text{if } \xi \in (I_1^+ - (2^{-m}I_2^+ + 2^{n/2})) \cup I_3^+ \cup \ldots \cup I_n^+ \cup \\ & (I_1^- - (2^{-m}I_2^- - 2^{n/2})) \cup I_3^- \cup \ldots \cup I_n^-, \\ 0 & \text{otherwise}, \end{cases}$$

is a non-MSF wavelet for $L^2(\mathbb{R})$.

PROOF. It is similar to the proof of Theorem 3.4 in [14], by making use of Results 2.1 and 2.2 together with Lemmas 2.3 and 7.1. $\hfill \Box$

Theorem 7.3. The wavelet $\psi_{m,n}$, where $(m,n) \in \mathbb{N} \times 2\mathbb{N}$, defined as in Theorem 7.2, is a non-MRA wavelet.

PROOF. To show that $\psi_{m,n}$ is a non-MRA wavelet for $L^2(\mathbb{R})$, we use Result 2.5. For $(m,n) \in \mathbb{N} \times 2\mathbb{N}$, $D_{\psi_{m,n}} \geq 2$, on the interval $2^{-(m+1)}I_2^+$. Indeed,

$$D_{\psi_{m,n}}(\xi) \ge \left| \hat{\psi}_{m,n}(2\xi) \right|^2 + \left| \hat{\psi}_{m,n}(2\xi + 2^{\frac{n}{2}}) \right|^2 + \left| \hat{\psi}_{m,n}(2^{m+1}\xi) \right|^2 + \left| \hat{\psi}_{m,n}(2^{m+1}\xi + 2^{m+\frac{n}{2}}) \right|^2,$$

and hence, the assertion follows by noting that $2\xi \in 2^{-m}I_2^+$, $2(\xi + 2^{\frac{n-2}{2}}) \in (2^{-m}I_2^+ + 2^{\frac{n}{2}}), 2^{m+1}\xi \in I_2^+$ and $2^{m+1}(\xi + 2^{\frac{n-2}{2}}) \in I_2^+ + 2^{m+\frac{n}{2}}$, where $\xi \in 2^{-(m+1)}I_2^+$.

7.2 Non-MSF non-MRA wavelets from $W_{n,O}$.

Lemma 7.4. Under the notation already described, for $(m, n) \in \mathbb{N} \times 2\mathbb{N} + 1$, the following hold:

 $\begin{array}{ll} (a) \ 2^{-m}I_2^+ + 6 \subset I_1^+, \\ (b) \ 2^{-m}I_2^- - 6 \subset I_1^-, \\ (c) \ I_2^+ + 6 \cdot 2^m \subset 2^mI_1^+, \end{array}$

(d)
$$I_2^- - 6 \cdot 2^m \subset 2^m I_1^-$$
.

PROOF. This is straightforward.

Theorem 7.5. For $(m, n) \in \mathbb{N} \times 2\mathbb{N} + 1$, the function $\psi_{m,n}$ defined by

$$\widehat{\psi}_{m,n}(\xi) = \begin{cases} 1/\sqrt{2} & \text{if } \xi \in I_2^+ \cup 2^{-m}I_2^+ \cup (2^{-m}I_2^+ + 6) \cup I_2^- \\ & \cup 2^{-m}I_2^- \cup (2^{-m}I_2^- - 6), \\ -1/\sqrt{2} & \text{if } \xi \in (I_2^+ + 6 \cdot 2^m) \cup (I_2^- - 6 \cdot 2^m), \\ 1 & \text{if } \xi \in (I_1^+ - (2^{-m}I_2^+ + 6)) \cup I_3^+ \cup \ldots \cup I_n^+ \cup \\ & (I_1^- - (2^{-m}I_2^- - 6)) \cup I_3^- \cup \ldots \cup I_n^-, \\ 0 & \text{otherwise,} \end{cases}$$

is a non-MSF wavelet for $L^2(\mathbb{R})$.

PROOF. It is similar to that of Theorem 7.2. We have to simply use Results 2.1 and 2.2 together with Lemmas 2.3 and 7.4. $\hfill \Box$

Theorem 7.6. The function $\psi_{m,n}$, where $(m,n) \in \mathbb{N} \times 2\mathbb{N} + 1$, defined as in Theorem 7.5, is a non-MRA wavelet.

PROOF. To show that $\psi_{m,n}$ is a non-MRA wavelet for $L^2(\mathbb{R})$, we use Result 2.5. For $(m,n) \in \mathbb{N} \times 2\mathbb{N} + 1$, $D_{\psi_{m,n}} \geq 2$, on the interval $2^{-(m+1)}I_2^+$. Indeed,

$$D_{\psi_{m,n}}(\xi) \ge \left| \hat{\psi}_{m,n}(2\xi) \right|^2 + \left| \hat{\psi}_{m,n}(2\xi+6) \right|^2 + \left| \hat{\psi}_{m,n}(2^{m+1}\xi) \right|^2 + \left| \hat{\psi}_{m,n}(2^{m+1}\xi+6\cdot 2^m) \right|^2,$$

and hence, the assertion follows by noting that $2\xi \in 2^{-m}I_2^+$, $2(\xi + 3) \in (2^{-m}I_2^+ + 6)$, $2^{m+1}\xi \in I_2^+$ and $2^{m+1}(\xi + 3) \in I_2^+ + 6 \cdot 2^m$, where $\xi \in 2^{-(m+1)}I_2^+$.

Acknowledgment. The authors thank the anonymous referee for reading the manuscript carefully and to their supervisor Professor K. K. Azad for his valuable help and guidance.

References

- N. Arcozzi, B. Behera and S. Madan, Large classes of minimally supported frequency wavelets of L² (ℝ) and H² (ℝ), J. Geom. Anal., **13** (2003), 557– 579.
- [2] B. Behera, Non-MSF wavelets for the Hardy space H²(ℝ), Bull. Polish Acad. Sci. Math., 52 (2004), 169–178.
- B. Behera, Wavelets with Fourier transform discontinuous at the origin, Int. J. Wavelets Multiresolut. Inf. Process., 5 (2007), 679–683.
- [4] C. K. Chui and X. Shi, Orthonormal wavelets and tight frames with arbitrary real dilations, Appl. Comput. Harmon. Anal., 9 (2000), 243–264.
- M. Bownik and D. Speegle, The wavelet dimension function for real dilations and dilations admitting non-MSF wavelets, Approximation Theory, X (St. Louis, MO, 2001), 63–85, Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002.

- [6] L. Brandolini, G. Garrigós, Z. Rzeszotnik and G. Weiss, The behaviour at the origin of a class of band-limited wavelets, Contemp. Math., 247 (1999), 75–91.
- [7] X. Dai and D. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc., 134(640) (1998).
- [8] X. Fang and X. Wang, Construction of minimally-supported-frequency wavelets, J. Fourier Anal. Appl., 2 (1996), 315–327.
- [9] G. Garrigós, The characterization of wavelets and related functions and the connectivity of α-localized wavelets on ℝ, Ph. D. Thesis, Washington University, St. Louis (1998).
- [10] Q. Gu and D. Han, Phases for dyadic orthonormal wavelets, J. Math. Phys., 43 (2002), 2690–2706.
- [11] Y.-H. Ha, H. Kang, J. Lee and J. K. Seo, Unimodular wavelets for L² and the Hardy space H², Michigan Math. J., 41 (1994), 345–361.
- [12] E. Hernández and G. Weiss, A First Course on Wavelets, With a foreword by Yves Meyer, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996.
- [13] W. R. Madych, Some elementary properties of multiresolution analyses of $L^2(\mathbb{R}^n)$ Wavelets, 259–294, Wavelet Anal. Appl., **2**, Academic Press, Boston, MA, 1992.
- [14] A. Vyas, Construction of non-MSF non-MRA wavelets for $L^2(\mathbb{R})$ and $H^2(\mathbb{R})$ from MSF wavelets, Bull. Polish Acad. Sci. Math., 57 (2009), 33–40.
- [15] A. Vyas and R. Dubey, Non-MSF wavelets from six interval MSF wavelets, Int. J. Wavelets Multiresolut. Inf. Process., (to appear).