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WAVELET SETS ACCUMULATING AT THE
ORIGIN

Abstract

For a natural number n, selecting a 2n-interval symmetric wavelet
set by making use of a result of Arcozzi, Behera and Madan [J. Geom.
Anal. 13 (2003), 557-579], we construct a family of symmetric wavelet
sets accumulating at the origin. Such a family of wavelet sets is also
obtained from a family of symmetric six-interval wavelet sets provided
by them in the same paper. Three-interval wavelet sets are employed
in having a family of wavelet sets accumulating at the origin which are
non-symmetric. Further, we obtain a larger class of H2-wavelet sets
accumulating at the origin, which include the one given by Behera in
[Bull. Polish Acad. Sci. Math. 52 (2004), 169-178]. Finally, non-
MSF non-MRA wavelets are obtained through the selected family of
2n-interval symmetric wavelet sets.

1 Introduction.

Since a wavelet set does not contain a nondegenerate interval containing the
origin, a natural question asking for the existence of a wavelet set W with the
origin as an accumulation point of W , arises. This question is equivalent to the
existence of a wavelet set W such that the characteristic function with support
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W does not vanish in any neighbourhood of the origin. It got affirmatively
settled by various workers. Madych [13] gave an example of an MSF wavelet
ψ whose Fourier transform does not vanish in any neighbourhood of the ori-
gin. Garrigós [9] also constructed a wavelet set with this property. Studying
the behaviour of a class of band limited wavelets at the origin, Brandolini,
Garrigós, Rzeszotnik and Weiss [6] constructed such wavelet sets Kε, where
ε ∈

(
0, 1

3

]
. Garrigós [9] in his Ph. D. thesis asked for the existence or otherwise

of a wavelet whose Fourier transform is even, discontinuous at the origin and
has compact support. A positive answer to this question has been provided
by Arcozzi, Behera and Madan [1] and Behera [3], who constructed a family
of bounded symmetric wavelet sets

{
Kr,ε : r ∈ N and ε ∈

(
0, 2r−1

4(2r+1−1)

)}
,

with the origin as an accumulation point. They did this by selecting for r, a
symmetric four interval wavelet set Kr ≡ K−r ∪K+

r , where K−r = −K+
r , and

K+
r =

[
2r−1

2r+1 − 1
,

1
2

]
∪
[
2r−1,

22r

2r+1 − 1

]
. (1)

In this paper, we obtain that such wavelet sets are plentiful. Our construc-
tion proceeds as follows:

(i) For an n ∈ N, we select a 2n-interval symmetric wavelet set by making
use of Theorem 3 of [1], in Section 3. For even n, the wavelet set obtained
is denoted by Wn,E while for odd n, by Wn,O.

(ii) We choose a positive number δn such that an ε ∈ (0, δn) provides a
symmetric wavelet set Wn,E,ε (or Wn,O,ε) according as n is even (or odd),
the characteristic function on which has compact support not vanishing
around any neighbourhood of the origin. This is achieved by invoking
the technique employed in [9] for obtaining wavelet sets having the origin
as its accumulation point, in Section 4.

For n = 2, the family W2,E,ε is one amongst the families constructed in [1].

Additionally, we construct such a family of wavelet sets from a given
member of the following family of symmetric six interval wavelet sets K ≡
K(s, t, v) = K− ∪K+, where K− = −K+,

K+ =
[

2s(2t+ 1)
2v − 1

,
2s+2t

2v − 2s+2

]
∪
[

2vt
2v − 2s+2

,
2t+ 1

2

]
(2)

∪
[
2s(2t+ 1),

2s+v(2t+ 1)
2v − 1

]
,
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and s, t, v are non-negative integers such that t ≥ 1 and 2v > (2t + 1)2s+2

provided in [1].
Based on the similar technique, we construct a family of wavelet sets in

Section 5, which is non-symmetric having the origin as its accumulation point
by making use of three-interval wavelet sets, precisely given by

Wj,p ≡
[
−
(

1− 2p+ 1
2j+1 − 1

)
, −1

2

(
1− 2p+ 1

2j+1 − 1

)]
∪
[

p+ 1
2j+1 − 1

,
2p+ 1

2j+1 − 1

]

∪
[

2j(2p+ 1)
2j+1 − 1

,
2j+1(p+ 1)

2j+1 − 1

]
, (3)

where j ≥ 2 and an integer p satisfying 1 ≤ p ≤ 2j − 2 [11].
In Section 6, we obtain a larger class of H2-wavelet sets having the origin

as an accumulation point via two interval H2-wavelet sets which contains the
one given by Behera in [2].

Section 2, provides necessary pre-requisites. The last Section 7, is devoted
to obtain non-MSF non-MRA wavelets from 2n-interval wavelet sets Wn,E

and Wn,O as selected in Section 3. The construction of families of non-MSF
wavelets have been considered earlier by several workers including Bownik [5],
Behera [2], Gu and Han [10] and Vyas [14, 15]. The interest in finding out non-
MSF wavelets arose due to a result obtained by Chui and Shi in [4] according
to which for the dilation a which satisfies aj /∈ Q, for all positive integers j,
there exist only MSF-wavelets.

2 Pre-requisites.

The collection of all Lebesgue integrable functions on R is denoted by L1(R)
and L2(R) denotes that of all Lebesgue square integrable functions on R.
Functions which are equal almost everywhere are identified. With the usual
addition and scalar multiplication of functions together with the inner-product
〈f, g〉 of f, g ∈ L2(R) defined by

〈f, g〉 =
∫

R
f(t)g(t) dt,

L2(R) becomes a Hilbert space. The Fourier transform is defined by

f̂(ξ) =
∫

R
f(t)e−2πiξt dt,

where f ∈ L1(R) ∩ L2(R). This extends uniquely to an operator on L2(R).
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The classical Hardy space H2(R) is the collection of all Lebesgue square
integrable functions whose Fourier transform is supported in R+:

H2(R) :=
{
f ∈ L2(R) : f̂(ξ) = 0 for a.e. ξ ≤ 0

}
.

A function ψ ∈ L2(R) (resp. ψ ∈ H2(R)) is called an orthonormal wavelet
(resp. H2-wavelet) of L2(R) (resp. H2(R)) if the system{

2j/2ψ(2jt− k) : j, k ∈ Z
}

forms an orthonormal basis for L2(R) (resp. H2(R)).
We use the following characterization of an orthonormal wavelet for L2(R)

and H2(R) available in [12].

Result 2.1. A function ψ ∈ L2(R) (resp. ψ ∈ H2(R)) is an orthonormal
wavelet (resp. H2-wavelet) iff

(i) ||ψ||2 = 1,

(ii) ρ(ξ) =
∑
j∈Z |ψ̂(2jξ)|2 = χR(ξ) (resp. χR+(ξ)), for a.e. ξ ∈ R,

(iii) tq(ξ) =
∑
j≥0 ψ̂(2jξ) ψ̂(2j(ξ + q)) = 0, for a.e. ξ ∈ R and for q ∈ 2Z+1.

A wavelet set [7] (resp. H2-wavelet set) is a measurable set W of the real
line R (resp. R+) such that the characteristic function χW on W is equal to
the Fourier transform ψ̂ for some orthonormal wavelet (resp. H2-wavelet) ψ
in L2(R) (resp. H2(R)). An MSF wavelet (resp. H2-MSF wavelet) ψ is a
wavelet (resp. H2-wavelet) which is associated with a wavelet set (resp. H2-
wavelet set) W in the sense that the support of ψ̂ is W [7, 8]. We use the
following characterization of a wavelet set (resp. H2-wavelet set) [7, 12].

Result 2.2. A measurable set W ⊂ R (resp. W ⊂ R+) is a wavelet set
(resp. H2-wavelet set) if and only if

(i)
⋃̇
n∈Z(W + n) = R a.e.,

(ii)
⋃̇
n∈Z(2nW ) = R (resp. R+) a.e.,

where
⋃̇

denotes the disjoint union.

From the above characterization of a wavelet set, we obtain:
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Lemma 2.3 ([14]). Define τ : R → [0, 1) by τ(x) = x + p, where p is an
integer depending on x. Then

(a) τ(E) = τ(E + k), for k ∈ Z and E is a measurable set in R,

(b) for any disjoint measurable sets E and F of R contained in a wavelet
set W , τ(E) ∩ τ(F ) = φ.

Definition 2.4. ([12]) A pair ({Vj}j∈Z , ϕ) consisting of a family {Vj}j∈Z
of closed subspaces of L2(R) together with a function ϕ ∈ V0 is called a
multiresolution analysis (MRA) if it satisfies the following conditions:

(a) Vj ⊂ Vj+1 for all j ∈ Z,

(b) f ∈ Vj if and only if f(2(·)) ∈ Vj+1 for all j ∈ Z,

(c) ∩j∈ZVj = {0},

(d) ∪j∈ZVj = L2(R),

(e) {ϕ(· − k) : k ∈ Z} is an orthonormal basis for V0.

The function ϕ is called a scaling function for the given MRA. An MRA
determines a function ψ lying in the orthogonal complement of V0 in V1 which
is an orthonormal wavelet for L2(R). Such a ψ is called an MRA wavelet
arising through the MRA ({Vj}j∈Z , ϕ).

A multiresolution analysis for H2(R) and H2-MRA wavelet can be de-
scribed similarly.

For an orthonormal wavelet ψ,

Dψ(ξ) =
∞∑
j=1

∑
k∈Z

∣∣∣ψ̂(2j(ξ + k))
∣∣∣2

describes the dimension function Dψ for ψ. We use the following character-
ization which works for both an MRA wavelet and an H2-MRA wavelet.

Result 2.5. ([12]) A wavelet ψ ∈ L2(R) (resp. ψ ∈ H2(R)) is an MRA
(resp. H2-MRA) wavelet iff Dψ(ξ) = 1, for almost every ξ ∈ R.

Definition 2.6. ([7]) A measurable set A is said to be

(a) translation equivalent to a measurable set B if there exists a measurable
partition {An} of A and kn ∈ Z such that {An + kn} is a partition of B.
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(b) dilation equivalent to a measurable set B if there exists a measurable
partition {A′n} of A and jn ∈ Z such that

{
2jnA′n

}
is a partition of B.

As a consequence of Result 2.2, we have the following:

Corollary 2.7. Let K and W be subsets of R (resp. R+), and W be both
translation and dilation equivalent to K. Then W is a wavelet set (resp. H2-
wavelet set) if and only if K is a wavelet set (resp. H2-wavelet set).

3 Symmetric Wavelet Sets Wn,E and Wn,O with
2n-components.

In this section, we obtain wavelet sets Wn,E for even positive integer n and
Wn,O for odd positive integer n consisting of 2n-components, based on a result
of Arcozzi, Behera and Madan [1, Theorem 3], which we briefly describe below.

Choosing a set P containing n-elements Pj ≡ P [λj , mj ] =
(
2−λj , 2−λjmj

)
,

j = 1, 2, . . . , n, in the Euclidean plane such that λj ∈ Z and mj ∈ N ∪ {0}
satisfying the following:

λ1 = 0, 4m1 = 2−λn (2mn + 1)

and

0 = a0 < a1 < a2 < . . . < an−1 < an =
1
2
,

where

aj = −mj2−λj −mj+12−λj+1

2−λj − 2−λj+1
,

Arcozzi, Behera and Madan [1, Theorem 3] obtain the following Theorem.

Theorem 3.1. For W+
n = I+

1 ∪ I
+
2 ∪ . . . ∪ I+

n , where

I+
j = [aj−1, aj ] +mj , j = 1, 2, . . . , n,

Wn = W−n ∪W+
n is a symmetric wavelet set for L2(R) having 2n-intervals.

Now, we provide two specific kinds of symmetric wavelet sets, the first has
4m-intervals while the second has (4m+ 2)-intervals, where m ∈ N. The first
is obtained by choosing an even positive integer, and the second by choosing
an odd positive integer.
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Example 3.2. Let n ∈ 2N. Define λj ’s and mj ’s, where j = 1, 2, . . . , n, as
follows:

λj =

{
− j−1

2 for 1 ≤ j ≤ n and j odd
j
2 − n− 2 for 1 < j ≤ n and j even

mj =

{
2(n−j+1)/2 for 1 ≤ j ≤ n and j odd
0 for 1 < j ≤ n and j even

With the help of these mj ’s and λj ’s, we obtain Pj , where j = 1, 2, . . . , n,
as follows:

Pj =

P
[
1−j
2 , n−j+1

2

]
=
(

2
j−1
2 , 2

n
2

)
for 1 ≤ j ≤ n and j odd

P
[
−n+ j

2 − 2, 0
]

=
(

2n−
j
2+2, 0

)
for 1 < j ≤ n and j even

Thus, aj for j = 1, 2, . . . , n− 1, comes out to be

aj =


2

n
2

2
2n−j+3

2 −2
j−1
2

for 1 ≤ j ≤ n and j odd

2
n
2

2
2n−j+4

2 −2
j
2

for 1 < j ≤ n and j even

Therefore, the positive side W+
n,E of the wavelet set, denoted by Wn,E , is

of the form:

W+
n,E =

[
2n/2, 2n/2 +

2n/2

2n+1 − 1

]
∪
[

2n/2

2n+1 − 1
,

2n/2

2n+1 − 2

]
∪ . . . ∪

[
2
7
,

1
2

]
.

Example 3.3. Let n ∈ 2N + 1. Define λj ’s and mj ’s, where j = 1, 2, . . . , n,
as follows:

λj =


0 for j = 1
n−j−6

2 for 1 < j ≤ n and j odd
j−n−9

2 for 1 < j ≤ n− 1 and j even

mj =


6 for j = 1
2(n−j)/2 for 1 < j ≤ n and j odd
0 for 1 < j ≤ n− 1 and j even

With the help of these mj ’s and λj ’s, we obtain Pj , where j = 1, 2, . . . , n,
as follows:
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Pj =


P [0, 6] = (1, 6) for j = 1

P
[
n−j−6

2 , 2
n−j

2

]
=
(

2
6+j−n

2 , 8
)

for 1 < j ≤ n and j odd

P
[
j−9−n

2 , 0
]

=
(

2
9+n−j

2 , 0
)

for 1 < j ≤ n− 1 and j even

Thus aj , for j = 1, 2, . . . , n− 1, comes out to be

aj =


6

2
n+7

2 −1
for j = 1

8·2
n−6−j

2

2n−j+1−1 for 1 ≤ j ≤ n and j odd
8·2

n−7−j
2

2n−j+1−1 for 1 < j ≤ n− 1 and j even

Therefore, the positive side W+
n,O of the wavelet set, denoted by Wn,O, is

of the form:

W+
n,O =

[
6, 6 +

6

2
n+7

2 − 1

]
∪

[
6

2
n+7

2 − 1
,

8 · 2 n−9
2

2n−1 − 1

]
∪ . . . ∪

[
4
3
,

3
2

]
.

4 Symmetric Wavelet Sets Accumulating at the Origin.

With the help of wavelet sets Wn,E and Wn,O obtained in the last section, we
provide families of bounded symmetric wavelet sets having the origin as their
accumulation point. Also, we obtain such a family of wavelet sets considering
six-interval wavelet sets as described by (2) in the introduction.

Since the technique employed in these constructions are the same, we pro-
vide details in the following theorem only.

Theorem 4.1. For n ∈ 2N and ε ∈ (0, δn), where δn = 2n/2

2(2n+1−2)(2n+1−1) ,
there exists a bounded symmetric wavelet set Wn,E,ε having the origin as an
accumulation point.

Proof. Selecting bn = 2n/2

2n+1−1 , we consider the intervals S1 =
[
bn

2 + ε
2n+1 ,

bn

2 + ε
]
, S2 =

[
bn + 2ε, 2n/2

2n+1−2

]
, and S3 =

[
2n+1bn, 2n+1bn + 2ε

]
. Since

ε ∈ (0, δn), S2 is a non-empty set. Setting

E0 = S1 + 2n/2, F0 =
1

2n+2
E0,
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and for r ≥ 1,

Er = Fr−1 + 2n/2, Fr =
1

2r+n+2
Er,

we denote(
I+
1 −

∞⋃
r=0

Er

)
∪

( ∞⋃
r=0

Fr

)
∪ (S1 ∪ S2 ∪ S3) ∪ I+

3 ∪ I
+
4 ∪ . . . ∪ I+

n

by W+
n,E,ε, and define Wn,E,ε = W−n,E,ε ∪W

+
n,E,ε, where W−n,E,ε = −W+

n,E,ε.
To prove that Wn,E,ε is a wavelet set, we make use of Corollary 2.7, accord-

ing to which Wn,E,ε is to be shown translation as well as dilation equivalent
to a wavelet set, in general, and hence to the wavelet set Wn,E , in particular.
On account of the symmetry of wavelet sets, it suffices to show that W+

n,E,ε is
both translation and dilation equivalent to W+

n,E .
First, by induction, we obtain that Er ⊂ I+

1 , for all r ≥ 0. Observing
that bn + 2n/2 = 2n+1bn, we have [0, bn] + 2n/2 =

[
2n/2, 2n+1bn

]
= I+

1 , and
hence E0 = S1 + 2n/2 ⊂ [0, bn] + 2n/2 = I+

1 . Now, assume that Em ⊂ I+
1 .

Then Fm = 2−(m+n+2)Em ⊂ 2−(m+1) [0, bn] ⊂ [0, bn] , and hence Em+1 =
Fm + 2n/2 ⊂ [0, bn] + 2n/2 = I+

1 .
As intervals Er, r ≥ 0 lie inside the interval I+

1 , and Er+1 lies to the left
of Er, for all r ≥ 0, Fr+1 lies to the left of Fr, for all r ≥ 0.

Because the sets I+
3 , I

+
4 , . . . , I

+
n appear in both the partitions of W+

n,E,ε

and also of W+
n,E , that W+

n,E,ε is dilation and also translation equivalent to
W+
n,E follow from (A) and (B), respectively.

(A) (i) 1
2n+1S3 ∪ 2S1 ∪ S2

=
[
bn, bn + 2ε

2n+1

]
∪
[
bn + 2ε

2n+1 , bn + 2ε
]
∪
[
bn + 2ε, 2n/2

2n+1−2

]
=
[
bn,

2n/2

2n+1−2

]
= I+

2 .

(ii)
(
I+
1 −

⋃∞
r=0Er

)
∪
(⋃∞

r=0 2r+n+2Fr
)

=
(
I+
1 −

⋃∞
r=0Er

)
∪ (
⋃∞
r=0Er) = I+

1 .

(B) (i) (S3 − 2n/2) ∪ S2

= [bn, bn + 2ε] ∪
[
bn + 2ε, 2n/2

2n+1−2

]
=
[
bn,

2n/2

2n+1−2

]
= I+

2 .

(ii)
(
I+
1 −

⋃∞
r=0Er

)
∪
(⋃∞

r=0

(
Fr + 2n/2

))
∪
(
S1 + 2n/2

)
= I+

1 .
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Further, since a neighbourhood of the origin intersects ∪∞r=0Fr, the origin
is an accumulation point of the wavelet set Wn,E,ε.

Theorem 4.2. For n ∈ 2N + 1 and ε ∈ (0, δn), where δn = 2
n−5

2 (2
n+3

2 −1)+3

(2n−1−1)(2
n+7

2 −1)
,

there exists a bounded symmetric wavelet set Wn,O,ε having the origin as an
accumulation point.

Proof. With bn = 6

2
n+7

2 −1
, we consider the following intervals:

S1 =
[
bn

2 + ε

2
n+7

2
, bn

2 + ε
]
, S2 =

[
bn + 2ε, 8 · 2

n−9
2

2n−1−1

]
, and

S3 =
[
2

n+7
2 bn, 2

n+7
2 bn + 2ε

]
.

That S2 is a non-empty set follows on account of the choice of ε. Setting

E0 = S1 + 6, F0 =
1

2
n+9

2

E0,

and for r ≥ 1,

Er = Fr−1 + 6, Fr =
1

2r+
n+9

2

Er,

we denote(
I+
1 −

∞⋃
r=0

Er

)
∪

( ∞⋃
r=0

Fr

)
∪ (S1 ∪ S2 ∪ S3) ∪ I+

3 ∪ I
+
4 ∪ . . . ∪ I+

n ,

by W+
n,O,ε. Then

Wn,O,ε = W−n,O,ε ∪W
+
n,O,ε, where W−n,O,ε = −W+

n,O,ε,

is the required wavelet set.

Recalling wavelet sets with dilation by 2 consisting of six intervals which
are symmetric about the origin as provided by (2) in the introduction, we
write

K+ = I+ ∪ J+ ∪H+, and K− = −K+,

where I+ =
[

2s(2t+1)
2v−1 , 2s+2t

2v−2s+2

]
, J+ =

[
2vt

2v−2s+2 ,
2t+1

2

]
, and H+ =[

2s(2t+ 1), 2s+v(2t+1)
2v−1

]
. Now, we have the following:
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Theorem 4.3. For non-negative integers s, t, v such that t ≥ 1, 2v > (2t +
1)2s+2 and ε ∈ (0, δs,t,v), where δs,t,v = 2s+v(2t−1)+2s+2t(2s+1−1)+22s+2

2(2v−2s+2)(2v−1) , there
exists a bounded symmetric wavelet set Ws,t,v,ε having the origin as an accu-
mulation point.

Proof. The construction of Ws,t,v,ε is given below.

For as,t,v = 2s(2t+1)
2v−1 , we consider the intervals S1 =

[as,t,v

2 + ε
2v ,

as,t,v

2 + ε
]
,

S2 =
[
as,t,v + 2ε, 2s+2t

2v−2s+2

]
, and S3 = [2vas,t,v, 2vas,t,v + 2ε].

The choice of ε ensures that S2 is a non-empty set. Setting

E0 = S1 + 2s(2t+ 1), F0 =
1

2v+1
E0,

and for r ≥ 1,

Er = Fr−1 + 2s(2t+ 1), Fr =
1

2r+v+1
Er,

we have

W+
s,t,v,ε ≡

(
H+ −

∞⋃
r=0

Er

)
∪

( ∞⋃
r=0

Fr

)
∪ (S1 ∪ S2 ∪ S3) ∪ J+,

as the portion of Ws,t,v,ε on the positive side of the real line.

5 Wavelet Sets Accumulating at the Origin from Three-
interval Wavelet Sets.

In this section, we construct a family of wavelet sets accumulating at the origin
from three-interval wavelet sets Wj,p, where j ≥ 2 and 1 ≤ p ≤ 2j − 2, and

Wj,p ≡ Ij,p ∪ Jj,p ∪Hj,p,

with Ij,p =
[
−
(

1− 2p+1
2j+1−1

)
, − 1

2

(
1− 2p+1

2j+1−1

)]
, Jj,p =

[
p+1

2j+1−1 ,
2p+1

2j+1−1

]
,

and Hj,p =
[

2j(2p+1)
2j+1−1 ,

2j+1(p+1)
2j+1−1

]
. These wavelet sets are non-symmetric.

Theorem 5.1. For j ≥ 2, an integer p satisfying 1 ≤ p ≤ 2j − 2 and
ε ∈ (0, δj,p), where δj,p = p

2(2j+1−1) , there exists a bounded wavelet set Wj,p,ε

having the origin as an accumulation point.
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Proof. Taking aj,p = (p+1)
2j+1−1 , we consider the intervals S1 =

[aj,p

2 + ε
2j+1 ,

aj,p

2 + ε
]
, S2 =

[
aj,p + 2ε, 2p+1

2j+1−1

]
, and S3 =

[
2j+1aj,p, 2j+1aj,p + 2ε

]
. The

choice of ε ensures that S2 is a non-empty set. Setting

E0 = S1 + (p+ 1), F0 =
1

2j+2
E0,

and for n ≥ 1,

En = Fn−1 + (p+ 1), Fn =
1

2n+j+2
En,

we obtain

Wj,p,ε ≡ (Hj,p −
⋃∞
n=0En) ∪ (

⋃∞
n=0 Fn) ∪ (S1 ∪ S2 ∪ S3) ∪ Ij,p,

to be the required wavelet set.

6 H2-Wavelet Sets Accumulating at the Origin.

In this section, we construct a family of H2-wavelet sets accumulating at
the origin by considering certain specific H2-wavelet sets consisting of two
intervals, which are precisely given by

Kr,k =
[

k + 1
2r+1 − 1

,
k

2r − 1

]
∪
[

2rk
2r − 1

,
2r+1(k + 1)

2r+1 − 1

]
,

where r ∈ N and k is an integer satisfying 1 ≤ k < 2(2r − 1). In fact, we
consider two interval H2-wavelet sets for r ∈ N and k = 2l − 1, 1 ≤ l ≤ r,
denoted by Kl

r.
We write

Kl
r = I lr ∪ J lr,

where I lr =
[

2l

2r+1−1 ,
2l−1
2r−1

]
and J lr =

[
2r(2l−1)

2r−1 , 2r+l+1

2r+1−1

]
.

Theorem 6.1. For r ∈ N, an integer l satisfying 1 ≤ l ≤ r, and ε ∈
(
0, δlr

)
,

where δlr = 2r(2l−2)+1
2(2r−1)(2r+1−1) , there exists bounded H2-wavelet set Kl

r,ε having
the origin as an accumulation point.
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Proof. For alr = 2l

2r+1−1 , we consider the intervals S1 =
[
al

r

2 + ε
2r+1 ,

al
r

2 + ε
]
,

S2 =
[
alr + 2ε, 2l−1

2r−1

]
, and S3 =

[
2r+1alr, 2r+1alr + 2ε

]
. The choice of ε en-

sures that S2 is a non-empty set. Setting E0 = S1 + 2l, F0 = 1
2r+2E0, and for

n ≥ 1, En = Fn−1 + 2l, Fn = 1
2n+r+2En, we obtain

Kl
r,ε ≡

(
J lr −

∞⋃
n=0

En

)
∪

( ∞⋃
n=0

Fn

)
∪ (S1 ∪ S2 ∪ S3) ,

to be the required H2-wavelet set.

7 Non-MSF, Non-MRA Wavelets for L2(R) from Wn,E

and Wn,O.

Employing Examples 3.2 and 3.3, we provide non-MSF, non-MRA wavelets in
this section. The technique of constructing such wavelets is similar to the one
utilized in [14, 15].

7.1 Non-MSF non-MRA wavelets from Wn,E.

Lemma 7.1. Under the notation already described, for (m,n) ∈ N× 2N, the
following hold:

(a) 2−mI+
2 + 2n/2 ⊂ I+

1 ,
(b) 2−mI−2 − 2n/2 ⊂ I−1 ,
(c) I+

2 + 2m+ n
2 ⊂ 2mI+

1 ,
(d) I−2 − 2m+ n

2 ⊂ 2mI−1 .

Proof. This is straightforward.

Theorem 7.2. For (m,n) ∈ N× 2N, the function ψm,n defined by

ψ̂m,n(ξ) =



1√
2

if ξ ∈ I+
2 ∪ 2−mI+

2 ∪ (2−mI+
2 + 2n/2) ∪ I−2

∪ 2−mI−2 ∪ (2−mI−2 − 2n/2),
−1√

2
if ξ ∈ (I+

2 + 2m+ n
2 ) ∪ (I−2 − 2m+ n

2 ),

1 if ξ ∈ (I+
1 − (2−mI+

2 + 2n/2)) ∪ I+
3 ∪ . . . ∪ I+

n ∪
(I−1 − (2−mI−2 − 2n/2)) ∪ I−3 ∪ . . . ∪ I−n ,

0 otherwise,

is a non-MSF wavelet for L2(R).
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Proof. It is similar to the proof of Theorem 3.4 in [14], by making use of
Results 2.1 and 2.2 together with Lemmas 2.3 and 7.1.

Theorem 7.3. The wavelet ψm,n, where (m,n) ∈ N× 2N, defined as in The-
orem 7.2, is a non-MRA wavelet.

Proof. To show that ψm,n is a non-MRA wavelet for L2(R), we use Result
2.5. For (m,n) ∈ N× 2N, Dψm,n

≥ 2, on the interval 2−(m+1)I+
2 . Indeed,

Dψm,n
(ξ) ≥

∣∣∣ψ̂m,n(2ξ)
∣∣∣2 +

∣∣∣ψ̂m,n(2ξ + 2
n
2 )
∣∣∣2 +

∣∣∣ψ̂m,n(2m+1ξ)
∣∣∣2

+
∣∣∣ψ̂m,n(2m+1ξ + 2m+ n

2 )
∣∣∣2 ,

and hence, the assertion follows by noting that 2ξ ∈ 2−mI+
2 , 2(ξ + 2

n−2
2 ) ∈

(2−mI+
2 + 2

n
2 ), 2m+1ξ ∈ I+

2 and 2m+1(ξ + 2
n−2

2 ) ∈ I+
2 + 2m+ n

2 , where ξ ∈
2−(m+1)I+

2 .

7.2 Non-MSF non-MRA wavelets from Wn,O.

Lemma 7.4. Under the notation already described, for (m,n) ∈ N× 2N + 1,
the following hold:

(a) 2−mI+
2 + 6 ⊂ I+

1 ,

(b) 2−mI−2 − 6 ⊂ I−1 ,

(c) I+
2 + 6 · 2m ⊂ 2mI+

1 ,

(d) I−2 − 6 · 2m ⊂ 2mI−1 .

Proof. This is straightforward.

Theorem 7.5. For (m,n) ∈ N× 2N + 1, the function ψm,n defined by

ψ̂m,n(ξ) =



1/
√

2 if ξ ∈ I+
2 ∪ 2−mI+

2 ∪ (2−mI+
2 + 6) ∪ I−2

∪ 2−mI−2 ∪ (2−mI−2 − 6),
−1/
√

2 if ξ ∈ (I+
2 + 6 · 2m) ∪ (I−2 − 6 · 2m),

1 if ξ ∈ (I+
1 − (2−mI+

2 + 6)) ∪ I+
3 ∪ . . . ∪ I+

n ∪
(I−1 − (2−mI−2 − 6)) ∪ I−3 ∪ . . . ∪ I−n ,

0 otherwise,

is a non-MSF wavelet for L2(R).
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Proof. It is similar to that of Theorem 7.2. We have to simply use Results
2.1 and 2.2 together with Lemmas 2.3 and 7.4.

Theorem 7.6. The function ψm,n, where (m,n) ∈ N× 2N + 1, defined as in
Theorem 7.5, is a non-MRA wavelet.

Proof. To show that ψm,n is a non-MRA wavelet for L2(R), we use Result
2.5. For (m,n) ∈ N× 2N + 1, Dψm,n

≥ 2, on the interval 2−(m+1)I+
2 . Indeed,

Dψm,n
(ξ) ≥

∣∣∣ψ̂m,n(2ξ)
∣∣∣2 +

∣∣∣ψ̂m,n(2ξ + 6)
∣∣∣2 +

∣∣∣ψ̂m,n(2m+1ξ)
∣∣∣2

+
∣∣∣ψ̂m,n(2m+1ξ + 6 · 2m)

∣∣∣2 ,
and hence, the assertion follows by noting that 2ξ ∈ 2−mI+

2 , 2(ξ + 3) ∈
(2−mI+

2 + 6), 2m+1ξ ∈ I+
2 and 2m+1(ξ + 3) ∈ I+

2 + 6 · 2m, where ξ ∈
2−(m+1)I+

2 .
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