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WEAK TYPE INEQUALITY FOR
LOGARITHMIC MEANS OF

WALSH-KACZMARZ-FOURIER SERIES

Abstract

The main aim of this paper is to prove that the Nörlund logarithmic
means tκnf of one-dimensional Walsh-Kaczmarz-Fourier series is weak
type (1,1), and this fact implies that tκnf converges in measure on I for
every function f ∈ L(I) and tκn,mf converges in measure on I2 for every
function f ∈ L ln+ L(I2).

Moreover, the maximal Orlich space such that Nörlund logarithmic
means of two-dimensional Walsh-Kaczmarz-Fourier series for the func-
tions from this space converge in two-dimensional measure is found.

1 Introduction.

In 1948 S̆neider [18] showed that the inequality

lim sup
n→∞

Dκ
n(x)

log n
≥ C > 0

holds a.e. for the Walsh-Kaczmarz Dirichlet kernel. This inequality shows
that the behavior of the Walsh-Kaczmarz system is worse than the behavior
of the Walsh system in the Paley enumeration. This “spreadness” property of
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the kernel makes it easier to construct examples of divergent Fourier series [1].
On the other hand, Schipp [13] and Young [20] in 1974 proved that the Walsh-
Kaczmarz system is a convergence system. Skvortsov in 1981 [17] showed
that the Fejér means with respect to the Walsh-Kaczmarz system converge
uniformly to f for any continuous function f . For any integrable function
Gát [2] proved that the Fejér means with respect to the Walsh-Kaczmarz
system converge almost everywhere to the function. Recently, Gát’s result
was generalized by Simon [15, 16].

The partial sums Swn (f) of the Walsh-Fourier series of a function f ∈
L(I), I = [0, 1) converge in measure on I [5]. The condition f ∈ L ln+ L(I2)
provides convergence in measure on I2 of the rectangular partial sums Swn,m(f)
of double Walsh-Fourier series [21]. The first example of a function from classes
wider than L ln+ L(I2) with Swn,n(f) divergent in measure on I2 was obtained
in [4, 10]. Moreover, in [19] Tkebuchava proved that in each Orlicz space
wider than L ln+ L(I2) the set of functions which quadratic Walsh-Fourier
sums converge in measure on I2 is of first Baire category (see Goginava [8] for
Walsh-Kaczmarz series).

The main aim of this paper is to prove that the Nörlund logarithmic means
tκnf of one-dimensional Walsh-Kaczmarz-Fourier series is weak type (1,1), and
this fact implies that tκnf converges in measure on I for every function f ∈ L(I)
and tκn,mf converges in measure on I2 for every function f ∈ L ln+ L(I2).
On the other hand, the logarithmic means tκn,mf of the double Fourier series
with respect to Walsh-Kaczmarz system does not improve the convergence
in measure. In particular, we prove that for any Orlicz space, which is not
a subspace of L ln+ L(I2), the set of the functions that quadratic logarithmic
means of the double Fourier series with respect to the Walsh-Kaczmarz system
converge in measure is of first Baire category.

At last, we note that the Walsh-Nörlund logarithmic means are closer to
the partial sums than to the classical logarithmic means or the Fejér means.
Namely, it was proved that there exists a function in a certain class of functions
and a set with positive measure, such that the Walsh-Nörlund logarithmic
means of the function diverge on the set [3].

2 Definitions and Notations.

We denote the set of non-negative integers by N.
By a dyadic interval in I := [0, 1) we mean one of the form

[
p

2n ,
p+1
2n

)
for

some p ∈ N, 0 ≤ p < 2n. Given n ∈ N and x ∈ [0, 1), let In(x) denote the
dyadic interval of length 2−n which contains the point x.
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Every point x ∈ I can be written in the following way:

x =
∞∑
k=0

xk
2k+1

:= (x0, x1, ..., xn, ...) , xk ∈ {0, 1}.

In the case when there are two different forms we choose the one for which
lim
k→∞

xk = 0.

Denote
ej :=

1
2j+1

= (0, ..., 0, xj = 1, 0, ...) .

It is well-know that [5]

In (x0, ..., xn−1) := In (x) =
[
p

2n
,
p+ 1

2n

)
,

where

p =
n−1∑
j=0

xj2n−1−j .

We denote by L0 = L0(I2) the Lebesgue space of functions that are mea-
surable and finite almost everywhere on I2 = [0, 1) × [0, 1). µ (A) is the
Lebesgue measure of the set A ⊂ I2. The constants appearing in this article
are denoted by c.

Let LΦ = LΦ(I2) be the Orlicz space [11] generated by Young function Φ;
i.e. Φ is a convex, continuous, even function such that Φ(0) = 0 and

lim
u→+∞

Φ (u)
u

= +∞, lim
u→0

Φ (u)
u

= 0.

This space is endowed with the norm

‖f‖LΦ(I2) = inf
{
k > 0 :

∫
I2

Φ(|f(x, y)| /k) dx dy ≤ 1
}
.

In particular, if Φ(u) = u ln(1 + u), u > 0, then the corresponding space
will be denoted by L lnL(I2).

Let r0 (x) be a function defined by

r0 (x) =
{

1, if x ∈ [0, 1/2),
−1, if x ∈ [1/2, 1), r0 (x+ 1) = r0 (x) .

The Rademacher system is defined by

rn (x) = r0 (2nx) , n ≥ 0 and x ∈ [0, 1).
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Let w0, w1, . . . represent the Walsh functions; i.e. w0 (x) = 1 and if k =
2n1 + · · ·+ 2ns is a positive integer with n1 > n2 > · · · > ns ≥ 0 then

wk (x) = rn1 (x) · · · rns
(x) .

The Walsh-Kaczmarz functions are defined by κ0 := 1 and for n ≥ 1

κn(x) := rn1(x)
n1−1∏
k=0

(rn1−1−k(x))nk .

For A ∈ N and x ∈ I define the transformation τA : I → I by

τA(x) :=
A−1∑
k=0

xA−k−12−(k+1) +
∞∑
j=A

xj2−(j+1).

By the definition of τA we have (see [17])

κn(x) = rn1(x)wn−2n1 (τn1(x)) (n ∈ N, x ∈ I).

The Dirichlet kernels are defined by

Dα
n(x) :=

n−1∑
k=0

αk(x),

where αk = wk or κk.
It is well-known that [5, 17]

Dκ
n (x) = D2n1 (x) + w2n1 (x)Dw

n−2n1 (τn1 (x)) , (1)

and
Dw
n (x) = D2n1 (x) + w2n1 (x)Dw

n−2n1 (x) . (2)

Recall that

D2n(x) := Dw
2n(x) = Dκ

2n(x) =
{

2n, if x ∈ [0, 1/2n) ,
0, if x ∈ [1/2n, 1) . (3)

The Fejér means of the Walsh-(Kaczmarz-)Fourier series of function f is
given by the equality

σαn (f, x) :=
1
n

n∑
j=0

Sαj (f, x) ,
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where

Sαj (f, x) =
n−1∑
k=0

f̂α(k)αk(x).

f̂α (n) :=
∫
I

fαn (n ∈ N) is said to be the nth Walsh-(Kaczmarz-)Fourier

coefficient of f.
The Nörlund logarithmic (simply we say logarithmic) means and kernels

of one dimensional Walsh-(Kaczmarz-)Fourier series are defined as follows

tαn (f, x) =
1
ln

n−1∑
k=1

Sαk (f, x)
n− k

, Fαn (t) =
1
ln

n−1∑
k=1

Dα
k (t)
n− k

,

where

ln =
n−1∑
k=1

1
k
.

The Kronecker product (αm,n : n,m ∈ N) of two Walsh(-Kaczmarz) sys-
tems is said to be the two-dimensional Walsh(-Kaczmarz) system. Thus,

αm,n (x, y) = αm (x)αn (y) .

If f ∈ L
(
I2
)
, then the number f̂α (m,n) :=

∫
I2

fαm,n (n,m ∈ N) is said

to be the (m,n)th Walsh-(Kaczmarz-)Fourier coefficient of f.
The rectangular partial sums of double Fourier series with respect to the

Walsh(-Kaczmarz) system are defined by

Sαm,n (f, x, y) =
m−1∑
i=0

n−1∑
j=0

f̂α (i, j)αi(x)αj(y).

The logarithmic means of double Walsh-(Kaczmarz-)Fourier series is de-
fined as follows

tαn,m (f, x, y) =
1

lnlm

n−1∑
i=1

m−1∑
j=1

Sαi,j (f, x, y)
(n− i) (m− j)

.

It is evident that

tαn,m (f, x, y)− f (x, y) =

1∫
0

[f (x⊕ t, y ⊕ s)− f (x, y)]Fαn (t)Fαm (s) dt ds,

where ⊕ denotes the dyadic addition [14].
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3 Main Results.

The main results of this paper are presented in the following propositions.

Theorem 1. Let λ > 0 and f ∈ L (I). Then

λµ {x ∈ I : |tκn (f, x)| > λ} ≤ c ‖f‖1 ,

and c is an absolute constant independent of n and f.

Corollary 1. Let 0 < p < 1. Then for f ∈ L ln+ L(I2)

a) ∫
I2

∣∣tκn,m (f, x, y)
∣∣p dxdy

1/p

≤ cp
∫
I2

|f (x, y)| ln+ |f (x, y) |dxdy + cp

b) ∫
I2

∣∣tκn,m (f, x, y)− f (x, y)
∣∣p dxdy → 0 as n,m→∞.

Corollary 2. Let f ∈ L ln+ L(I2). Then

a)

µ
{

(x, y) ∈ I2 :
∣∣tκn,m (f, x, y)

∣∣ > λ
}
≤ c

λ

∫
I2

|f (x, y)| ln+ |f (x, y) |dxdy+c

b) ∣∣tκn,m (f, x, y)− f (x, y)
∣∣→ 0 in measure on I2, as n,m→∞.

Classical regular summation methods often improve the convergence of
Walsh-Fourier series. For instance, the Fejér means σwn,mf of the two-dimen-
sional Walsh-Fourier series of the function f ∈ L(I) converge in L(I) norm to
the function f , as n,m→∞. In [7] the method of Nörlund logarithmic means
twn,mf was investigated, which is weaker than the Cesàro method of any positive
order and it was proved that the class L ln+ L(I2) provides convergence in
measure of logarithmic means of two-dimensional Walsh-Fourier series. It was
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also proved ([6]) that in each Orlicz space wider than L ln+ L(I2) the set of
functions which quadratic Walsh-Fourier sums converge in measure on I2 is of
first Baire category.

Now, we show that the logarithmic means tκn,mf of the double Fourier series
with respect to the Walsh-Kaczmarz system does not improve the convergence
in measure. In particular, we prove the following theorem

Theorem 2. Let LΦ(I2) be an Orlicz space, such that

LΦ(I2) * L lnL+(I2).

Then the set of the functions from the Orlicz space LΦ(I2) with quadratic
logarithmic means of the Fourier series with respect to the Walsh-Kaczmarz
system converge in measure on I2 is of first Baire category in LΦ(I2).

Corollary 3. Let ϕ : [0,∞[→ [0,∞[ be a nondecreasing function satisfying
the condition

ϕ(x) = o(x log x)

for x→ +∞. Then there exists a function f ∈ L(I2) such that

a) ∫
I2
ϕ(|f(x, y)|) dx dy <∞;

b) the quadratic logarithmic means of the Walsh-Kaczmarz-Fourier series
of f diverges in measure on I2.

4 Auxiliary Results.

It is well-known [5, 14] for the Dirichlet kernel function that

|Dw
n (x)| < 1

x

for any 0 < x < 1. Then for these x’s we also get

|Fwn (x)| < 1
x
,
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where n ∈ N is a nonnegative integer. The following lower bound is also well-
known for the Walsh-Paley-Dirichlet kernel functions. Let pA = 22A + · · · +
22 + 20 (A ∈ N). Then for any 2−2A−1 ≤ x < 1 and A ∈ N we have

|Dw
pA

(x)| ≥ 1
4x
.

This inequality plays a prominent role in the proofs of some divergence
results concerning the partial sums of the Fourier series. Then it seems that
it would be useful to get a similar inequality also for the logarithmic kernels.
In [6] the first author, Gát and Tkebuchava proved the inequality

|FwpA
(x)| ≥ c log(1/x)

x log pA

for all 1 ≤ A ∈ N, but not for every x in the interval (0, 1). We have an excep-
tional set, such that it is “rare around zero”. For t = t0, t0 + 1, . . . , 2A, t0 =
inf{t :

⌊
lp[t/2]−1

16 − 215
⌋
> 1} set t̃ :=

⌊
lp[t/2]−1

16 − 215
⌋

(where buc denotes
the lower integral part of u), and we take a “small part” of the interval
It \ It+1 = [2−t−1, 2−t). This way we define the intervals

Jt :=
[

1
2t+1

,
1

2t+1
+

1
2t+t̃

)
.

We define the exceptional set as:

J :=
∞⋃
t=t0

Jt.

The following are proved:

Lemma 1 (Gát, Goginava, Tkebuchava [6]). For x ∈
(
2−2A−1, 1

)
\J we have

|FwpA
(x)| ≥ c log(1/x)

x log pA
.

Corollary 4 (Gát, Goginava, Tkebuchava [6]). For x ∈
(
2−2A−1, 2−A

)
\J we

have the estimation |FwpA
(x)| ≥ c

x .

Lemma 2 (Gát, Goginava, Tkebuchava [6]). Let LΦ be an Orlicz space and let
ϕ : [0,∞) → [0,∞) be a measurable function with condition ϕ (x) = o (Φ (x))
as x → ∞. Then there exists an Orlicz space Lω, such that ω (x) = o (Φ (x))
as x→∞, and ω (x) ≥ ϕ (x) for x ≥ c ≥ 0.
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Now, for the Walsh-Kaczmarz logarithmic kernels we will prove the follow-
ing:

Lemma 3. Let x ∈ I2A (1, x1, . . . , xt−1, 1, 1, 0, . . . , 0) =: It2A, t = 2, 3, . . . , A.
Then ∣∣FκpA

(x)
∣∣ ≥ cA22A−t.

Proof. Set x ∈ It2A. Let

GαpA
(x) := lpA

FαpA
(x)

for α = w or κ. Thus, we have

GκpA
(x) =

22A∑
j=1

Dκ
j (x)

pA − j
+

pA−1∑
j=22A+1

Dκ
j (x)

pA − j
:= I + II. (4)

First, by the help of (1) we discuss II.

II =
pA−1−1∑
j=1

Dκ
j+22A (x)

pA−1 − j
= lpA−1D22A (x) + r2A (x)GwpA−1

(τ2A (x)) .

If x ∈ It2A, then (see (3))
D22A (x) = 0

and
τ2A (x) = (0, . . . , 0, 1, 1, xt−1, . . . , x1, x0 = 1, x2A, . . .) .

Moreover, by Lemma 1 we have

|II| =
∣∣∣GwpA−1

(τ2A (x))
∣∣∣ ≥ c (2A− t) 22A−t. (5)

Now, we discuss I. We use the equation (1)

I =
2A−1∑
l=0

2l+1−1∑
j=2l

Dκ
j (x)

pA − j
+
D22A (x)
pA−1

=
2A−1∑
l=0

2l−1∑
j=0

Dκ
j+2l (x)

pA − j − 2l
+
D22A (x)
pA−1

=
2A−1∑
l=0

2l−1∑
j=0

D2l (x) + rl (x)Dw
j (τl(x))

pA − j − 2l
.
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Since, x0 = 1, D2l (x) = 0 for all l ≥ 1. Thus,

I =
1

pA − 1
+

2A−1∑
l=1

2l−1∑
j=0

rl (x)Dw
j (τl(x))

pA − j − 2l
(6)

=:
1

pA − 1
+

2A−1∑
l=1

Il.

We use Abel’s transformation for Il (l ≥ 1)

Il = rl (x)
2l−2∑
j=1

(
1

pA − j − 2l
− 1
pA − j − 2l − 1

)
jKw

j (τl(x))

+
rl (x)

(
2l − 1

)
Kw

2l−1 (τl(x))
pA − 2l+1 + 1

=: I1
l + I2

l ,

∣∣I1
l

∣∣ ≤ c

24A

2l−1∑
j=1

j
∣∣Kw

j (τl(x))
∣∣ .

Since, ([14])

n |Kw
n (x)| ≤ 2

m−1∑
j=0

2j
m−1∑
i=j

D2i (x+ ej) for 2m−1 ≤ n < 2m, (7)

and for I1
l we can write

∣∣I1
l

∣∣ ≤ c

24A

l∑
m=1

2m−1∑
j=2m−1

j
∣∣Kw

j (τl(x))
∣∣

≤ c

24A

l∑
m=1

2m
(
m−1∑
s=0

2s
m−1∑
q=s

D2q (τl(x) + es)

)

≤ c2l

24A

l−1∑
s=0

2s
l−1∑
q=s

D2q (τl(x) + es) .

Since, D2n ≤ 2n and t ≤ A we obtain that

t+2∑
l=0

∣∣I1
l

∣∣ ≤ c

24A

t+2∑
l=0

23l ≤ c23t

24A
< c. (8)
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By the inequality (7) we obtain again

|I2
l | ≤

c

22A

l−1∑
s=0

2s
l−1∑
q=s

D2q (τl(x) + es)

and
t+2∑
l=0

|I2
l | ≤

c

22A

t+2∑
l=0

22l ≤ c22t

22A
≤ c. (9)

Let t+ 2 < l < 2A. Then we have

τl(x) = (0, . . . , 0, 1, 1, xt−1, . . . , x1, 1, 0, . . . , 0, x2A, . . .) .

Hence,

D2q (τl(x) + es) =
{

0, if s ≥ l − t or 0 ≤ s ≤ l − t− 1, q > s,
2s, if 0 ≤ s ≤ l − t− 1, q = s,

so we can write

2A−1∑
l=t+3

∣∣I1
l

∣∣ ≤ c

24A

2A−1∑
l=t+3

2l
l−t−1∑
s=0

22s

≤ c

24A

2A−1∑
l=t+3

23l−2t ≤ c

24A
26A−2t < c22A−t, (10)

2A−1∑
l=t+3

∣∣I2
l

∣∣ ≤ c

22A

2A−1∑
l=t+3

l−t−1∑
s=0

22s ≤ c22A−2t < c22A−t. (11)

Combining (4)-(11) we complete the proof of Lemma 3.

During the proof of Theorem 1 we will use the following Lemma:

Lemma 4 (Gát, Goginava, Tkebuchava [7]). Let λ > 0 and f ∈ L1(I). Then

λµ{x ∈ I : |twn (f, x)| > λ} ≤ c‖f‖1,

where c is an absolute constant independent of n and f .
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5 Proofs of the Theorems.

Proof of Theorem 1. Define the maximal function f∗ by

f∗ := sup
n∈P
|S2nf |.

It is well-known that f∗ is of weak type (1,1). During the proof of Theorem 1
we will use the equation (1) and

Dκ
2A−j(x) = D2A(x)− ω2A−1(x)Dω

j (τA−1(x)), j = 0, 1, ..., 2A−1 (12)

(see [12]).
For n ∈ P set n1 := A ∈ N (that is, 2A ≤ n < 2A+1). To prove Theorem

1 we decompose the kernel Fκn in the following way:

lnF
κ
n =

n−1∑
k=1

Dκ
k

n− k
=

2A−1−1∑
k=1

Dκ
k

n− k
+

2A−1∑
k=2A−1

Dκ
k

n− k
+

n−1∑
k=2A

Dκ
k

n− k

=: ln(Fκ,1n + Fκ,2n + Fκ,3n ).

First, we discuss f ∗ Fκ,1n . The equation (1) and Abel’s transformation imme-
diately give

lnF
κ,1
n =

A−2∑
k=0

2k+1−1∑
l=2k

Dκ
l

n− l
=
A−2∑
k=0

2k−1∑
l=0

Dκ
2k+l

n− 2k − l

=
A−2∑
k=0

D2k

2k−1∑
l=0

1
n− 2k − l

+
A−2∑
k=0

2k−1∑
l=0

rkD
w
l ◦ τk

n− 2k − l

=
A−2∑
k=0

D2k(ln−2k+1 − ln−2k+1+1)

+
A−2∑
k=0

2k−2∑
l=0

(
1

n− 2k − l
− 1
n− 2k − l − 1

)
rklK

w
l ◦ τk

+
A−2∑
k=0

2k − 1
n− 2k+1 + 1

rkK
w
2k−1 ◦ τk

=: ln(Fκ,1,1n + Fκ,1,2n + Fκ,1,3n ).

This means that
|f ∗ Fκ,1,1n | ≤ cf∗. (13)
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The equation (see [5])

‖f ∗ (rkKw
l ◦ τk)‖1 ≤ ‖f‖1‖rkKw

l ◦ τk‖1 ≤ ‖f‖1‖Kw
l ‖1 ≤ c‖f‖1

immediately gives

‖f ∗ Fκ,1,2n ‖1 ≤
c‖f‖1
ln

A−2∑
k=0

2k−2∑
l=0

1
n− 2k − l

 ≤ c‖f‖1 (14)

and

‖f ∗ Fκ,1,3n ‖1 ≤
c‖f‖1
ln

A−2∑
k=0

2k − 1
n− 2k+1 + 1

≤ c‖f‖1. (15)

Second, to discuss f ∗ Fκ,2n we use equation (12).

lnF
κ,2
n =

2A−1∑
l=1

Dκ
2A−l

n− 2A + l

=
2A−1∑
l=1

D2A

n− 2A + l
−

2A−1∑
l=1

w2A−1D
w
l ◦ τA−1

n− 2A + l

=: ln(Fκ,2,1n − Fκ,2,2n ).

This means that
|f ∗ Fκ,2,1n | ≤ cf∗. (16)

Abel’s transformation yields

lnF
κ,2,2
n = w2A−1

2A−1−1∑
l=1

(
1

n− 2A + l
− 1
n− 2A + l + 1

)
lKw

l ◦ τA−1

+
w2A−12A−1

n− 2A−1
Kw

2A−1 ◦ τA−1.

The equation (see [5])

‖f ∗ (w2A−1K
w
l ◦ τA−1)‖1 ≤ ‖f‖1‖w2A−1K

w
l ◦ τA−1‖1 ≤ ‖f‖1‖Kw

l ‖1 ≤ c‖f‖1

gives again

‖f ∗ Fκ,2,2n ‖1 ≤
c‖f‖1
ln

2A−1∑
l=1

1
n− 2A + l

+ 1

 ≤ c‖f‖1. (17)



458 Ushangi Goginava and Károly Nagy

At last, we discuss f ∗ Fκ,3n . The equation (1) implies

lnF
κ,3
n =

n−2A−1∑
k=0

Dκ
2A+k

n− 2A − k
= ln−2AD2A + rAln−2AFwn−2A ◦ τA.

|f ∗ ln−2A

ln
D2A | ≤ cf∗ (18)

means that we have to discuss t′n−2A(f, x) := (f ∗ (rAFwn−2A ◦ τA))(x). The
transformation τA : I → I is measure-preserving and such that τA(τA(x)) = x
(that is, τ−1

A = τA) for all x ∈ I [17]. Thus, Theorem 39.C in [9] allows us to
write

t′n−2A(f, x) =
∫
I

f(x⊕ y)rA(y)Fwn−2A(τA(y))dy

=
∫
I

f(x⊕ τA(y))rA(τA(y))Fwn−2A(y)dτA(y)

=
∫
I

f(x⊕ τA(y))rA(τA(y))Fwn−2A(y)
dτA(y)
dy

dy.

Theorem 32.B in [9] and the fact that the transformation τA : I → I is
measure-preserving give for the Radon-Nikodym derivative dτA(y)

dy that dτA(y)
dy =

1 almost everywhere. Thus,

t′n−2A(f, x) =
∫
I

f(x⊕ τA(y))rA(y)Fwn−2A(y)dy

and

t′n−2A(f, τA(x)) = rA(x)
∫
I

f(τA(x⊕ y))rA(x⊕ y)Fwn−2A(y)dy

= rA(x)((rAf ◦ τA) ∗ Fwn−2A)(x) = rA(x)tn−2A(rAf ◦ τA, x).

Now, by the help of Lemma 4 we show that the operator t′n−2A is of weak type
(1,1).

λµ{x ∈ I : |t′n−2A(f, x)| > λ} = λµ{x ∈ I : |t′n−2A(f, τA(x))| > λ}
= λµ{x ∈ I : |rA(x)tn−2A(rA(f ◦ τA), x)| > λ}
≤ c‖rA(f ◦ τA)‖1 ≤ c‖f‖1. (19)

Summarising our results on (13)-(19) we could complete the proof of Theorem
1.
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The proof of Corollary 1 and 2 follow from Theorem 1 in the same way as
it was done in [7].

Now, we will prove Theorem 2.

Proof of Theorem 2. The proof of Theorem 2 will be complete if we show
that there exists c > 0 such that (for more details see the proof of Theorem 1
from [6])

µ{(x, y) ∈ I2 :
∣∣tκpA,pA

(D22A+1 ⊗D22A+1 , x, y)
∣∣ > 23A} > c

A

23A
. (20)

Denote

ΩA :=
2A−2⋃
l=A+2

2A−2⋃
s=A+2

I2A−l
2A × I2A−s

2A .

Since,
tκpA

(D22A+1 , x) = S22A+1

(
FκpA

, x
)

= FκpA
(x)

for (x, y) ∈ I2A−l
2A × I2A−s

2A we have the following estimation from Lemma 3 for
quadratic logarithmic means of the function D22A+1 (x)D22A+1 (y)∣∣FκpA

(x)FκpA
(y)
∣∣ =

∣∣tκpA,pA
(D22A+1 ⊗D22A+1 , x, y)

∣∣ ≥ c2l+s.
Consequently,

µ
{

(x, y) ∈ I2 :
∣∣tκpA,pA

(D22A+1 ⊗D22A+1 , x, y)
∣∣ ≥ c23A

}
≥ c

2A−2∑
l=A+2

2A−2∑
s=3A−l

22A−l22A−s

24A
≥ cA

23A
.

Hence, (20) is proved and the proof of Theorem 2 is complete.

The validity of Corollary 3 follows immediately from Theorem 2 and Lemma
2.
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