Ushangi Goginava, Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia. email: z_goginava@hotmail.com
Károly Nagy, Institute of Mathematics and Computer Sciences, College of Nyíregyháza, P.O. Box 166, Nyíregyháza, H-4400 Hungary. email: nkaroly@nyf.hu

WEAK TYPE INEQUALITY FOR LOGARITHMIC MEANS OF WALSH-KACZMARZ-FOURIER SERIES

Abstract

The main aim of this paper is to prove that the Nörlund logarithmic means $t_{n}^{\kappa} f$ of one-dimensional Walsh-Kaczmarz-Fourier series is weak type (1,1), and this fact implies that $t_{n}^{\kappa} f$ converges in measure on I for every function $f \in L(I)$ and $t_{n, m}^{\kappa} f$ converges in measure on I^{2} for every function $f \in L \ln ^{+} L\left(I^{2}\right)$.

Moreover, the maximal Orlich space such that Nörlund logarithmic means of two-dimensional Walsh-Kaczmarz-Fourier series for the functions from this space converge in two-dimensional measure is found.

1 Introduction.

In 1948 S̆neider [18] showed that the inequality

$$
\limsup _{n \rightarrow \infty} \frac{D_{n}^{\kappa}(x)}{\log n} \geq C>0
$$

holds a.e. for the Walsh-Kaczmarz Dirichlet kernel. This inequality shows that the behavior of the Walsh-Kaczmarz system is worse than the behavior of the Walsh system in the Paley enumeration. This "spreadness" property of

[^0]the kernel makes it easier to construct examples of divergent Fourier series [1]. On the other hand, Schipp [13] and Young [20] in 1974 proved that the WalshKaczmarz system is a convergence system. Skvortsov in 1981 [17] showed that the Fejér means with respect to the Walsh-Kaczmarz system converge uniformly to f for any continuous function f. For any integrable function Gát [2] proved that the Fejér means with respect to the Walsh-Kaczmarz system converge almost everywhere to the function. Recently, Gát's result was generalized by Simon $[15,16]$.

The partial sums $S_{n}^{w}(f)$ of the Walsh-Fourier series of a function $f \in$ $L(I), I=[0,1)$ converge in measure on $I[5]$. The condition $f \in L \ln ^{+} L\left(I^{2}\right)$ provides convergence in measure on I^{2} of the rectangular partial sums $S_{n, m}^{w}(f)$ of double Walsh-Fourier series [21]. The first example of a function from classes wider than $L \ln ^{+} L\left(I^{2}\right)$ with $S_{n, n}^{w}(f)$ divergent in measure on I^{2} was obtained in [4, 10]. Moreover, in [19] Tkebuchava proved that in each Orlicz space wider than $L \ln ^{+} L\left(I^{2}\right)$ the set of functions which quadratic Walsh-Fourier sums converge in measure on I^{2} is of first Baire category (see Goginava [8] for Walsh-Kaczmarz series).

The main aim of this paper is to prove that the Nörlund logarithmic means $t_{n}^{\kappa} f$ of one-dimensional Walsh-Kaczmarz-Fourier series is weak type $(1,1)$, and this fact implies that $t_{n}^{\kappa} f$ converges in measure on I for every function $f \in L(I)$ and $t_{n, m}^{\kappa} f$ converges in measure on I^{2} for every function $f \in L \ln ^{+} L\left(I^{2}\right)$. On the other hand, the logarithmic means $t_{n, m}^{\kappa} f$ of the double Fourier series with respect to Walsh-Kaczmarz system does not improve the convergence in measure. In particular, we prove that for any Orlicz space, which is not a subspace of $L \ln ^{+} L\left(I^{2}\right)$, the set of the functions that quadratic logarithmic means of the double Fourier series with respect to the Walsh-Kaczmarz system converge in measure is of first Baire category.

At last, we note that the Walsh-Nörlund logarithmic means are closer to the partial sums than to the classical logarithmic means or the Fejér means. Namely, it was proved that there exists a function in a certain class of functions and a set with positive measure, such that the Walsh-Nörlund logarithmic means of the function diverge on the set [3].

2 Definitions and Notations.

We denote the set of non-negative integers by \mathbf{N}.
By a dyadic interval in $I:=[0,1)$ we mean one of the form $\left[\frac{p}{2^{n}}, \frac{p+1}{2^{n}}\right)$ for some $p \in \mathbf{N}, 0 \leq p<2^{n}$. Given $n \in \mathbf{N}$ and $x \in[0,1)$, let $I_{n}(x)$ denote the dyadic interval of length 2^{-n} which contains the point x.

Every point $x \in I$ can be written in the following way:

$$
x=\sum_{k=0}^{\infty} \frac{x_{k}}{2^{k+1}}:=\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right), \quad x_{k} \in\{0,1\} .
$$

In the case when there are two different forms we choose the one for which $\lim _{k \rightarrow \infty} x_{k}=0$.

Denote

$$
e_{j}:=\frac{1}{2^{j+1}}=\left(0, \ldots, 0, x_{j}=1,0, \ldots\right)
$$

It is well-know that [5]

$$
I_{n}\left(x_{0}, \ldots, x_{n-1}\right):=I_{n}(x)=\left[\frac{p}{2^{n}}, \frac{p+1}{2^{n}}\right)
$$

where

$$
p=\sum_{j=0}^{n-1} x_{j} 2^{n-1-j}
$$

We denote by $L^{0}=L^{0}\left(I^{2}\right)$ the Lebesgue space of functions that are measurable and finite almost everywhere on $I^{2}=[0,1) \times[0,1) . \mu(A)$ is the Lebesgue measure of the set $A \subset I^{2}$. The constants appearing in this article are denoted by c.

Let $L_{\Phi}=L_{\Phi}\left(I^{2}\right)$ be the Orlicz space [11] generated by Young function Φ; i.e. Φ is a convex, continuous, even function such that $\Phi(0)=0$ and

$$
\lim _{u \rightarrow+\infty} \frac{\Phi(u)}{u}=+\infty, \quad \lim _{u \rightarrow 0} \frac{\Phi(u)}{u}=0
$$

This space is endowed with the norm

$$
\|f\|_{L_{\Phi}\left(I^{2}\right)}=\inf \left\{k>0: \int_{I^{2}} \Phi(|f(x, y)| / k) d x d y \leq 1\right\}
$$

In particular, if $\Phi(u)=u \ln (1+u), u>0$, then the corresponding space will be denoted by $L \ln L\left(I^{2}\right)$.

Let $r_{0}(x)$ be a function defined by

$$
r_{0}(x)=\left\{\begin{array}{rl}
1, & \text { if } x \in[0,1 / 2), \\
-1, & \text { if } x \in[1 / 2,1),
\end{array} \quad r_{0}(x+1)=r_{0}(x)\right.
$$

The Rademacher system is defined by

$$
r_{n}(x)=r_{0}\left(2^{n} x\right), \quad n \geq 0 \text { and } x \in[0,1)
$$

Let w_{0}, w_{1}, \ldots represent the Walsh functions; i.e. $w_{0}(x)=1$ and if $k=$ $2^{n_{1}}+\cdots+2^{n_{s}}$ is a positive integer with $n_{1}>n_{2}>\cdots>n_{s} \geq 0$ then

$$
w_{k}(x)=r_{n_{1}}(x) \cdots r_{n_{s}}(x)
$$

The Walsh-Kaczmarz functions are defined by $\kappa_{0}:=1$ and for $n \geq 1$

$$
\kappa_{n}(x):=r_{n_{1}}(x) \prod_{k=0}^{n_{1}-1}\left(r_{n_{1}-1-k}(x)\right)^{n_{k}}
$$

For $A \in \mathbf{N}$ and $x \in I$ define the transformation $\tau_{A}: I \rightarrow I$ by

$$
\tau_{A}(x):=\sum_{k=0}^{A-1} x_{A-k-1} 2^{-(k+1)}+\sum_{j=A}^{\infty} x_{j} 2^{-(j+1)}
$$

By the definition of τ_{A} we have (see [17])

$$
\kappa_{n}(x)=r_{n_{1}}(x) w_{n-2^{n_{1}}}\left(\tau_{n_{1}}(x)\right) \quad(n \in \mathbf{N}, x \in I)
$$

The Dirichlet kernels are defined by

$$
D_{n}^{\alpha}(x):=\sum_{k=0}^{n-1} \alpha_{k}(x),
$$

where $\alpha_{k}=w_{k}$ or κ_{k}.
It is well-known that [5, 17]

$$
\begin{equation*}
D_{n}^{\kappa}(x)=D_{2^{n_{1}}}(x)+w_{2^{n_{1}}}(x) D_{n-2^{n_{1}}}^{w}\left(\tau_{n_{1}}(x)\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{n}^{w}(x)=D_{2^{n_{1}}}(x)+w_{2^{n_{1}}}(x) D_{n-2^{n_{1}}}^{w}(x) \tag{2}
\end{equation*}
$$

Recall that

$$
D_{2^{n}}(x):=D_{2^{n}}^{w}(x)=D_{2^{n}}^{\kappa}(x)=\left\{\begin{align*}
2^{n}, & \text { if } x \in\left[0,1 / 2^{n}\right) \tag{3}\\
0, & \text { if } x \in\left[1 / 2^{n}, 1\right)
\end{align*}\right.
$$

The Fejér means of the Walsh-(Kaczmarz-)Fourier series of function f is given by the equality

$$
\sigma_{n}^{\alpha}(f, x):=\frac{1}{n} \sum_{j=0}^{n} S_{j}^{\alpha}(f, x)
$$

where

$$
S_{j}^{\alpha}(f, x)=\sum_{k=0}^{n-1} \hat{f}^{\alpha}(k) \alpha_{k}(x) .
$$

$\hat{f}^{\alpha}(n):=\int_{I} f \alpha_{n}(n \in \mathbf{N})$ is said to be the nth Walsh-(Kaczmarz-)Fourier coefficient of f.

The Nörlund logarithmic (simply we say logarithmic) means and kernels of one dimensional Walsh-(Kaczmarz-)Fourier series are defined as follows

$$
t_{n}^{\alpha}(f, x)=\frac{1}{l_{n}} \sum_{k=1}^{n-1} \frac{S_{k}^{\alpha}(f, x)}{n-k}, \quad F_{n}^{\alpha}(t)=\frac{1}{l_{n}} \sum_{k=1}^{n-1} \frac{D_{k}^{\alpha}(t)}{n-k}
$$

where

$$
l_{n}=\sum_{k=1}^{n-1} \frac{1}{k}
$$

The Kronecker product ($\alpha_{m, n}: n, m \in \mathbf{N}$) of two Walsh(-Kaczmarz) systems is said to be the two-dimensional Walsh(-Kaczmarz) system. Thus,

$$
\alpha_{m, n}(x, y)=\alpha_{m}(x) \alpha_{n}(y)
$$

If $f \in L\left(I^{2}\right)$, then the number $\hat{f}^{\alpha}(m, n):=\int_{I^{2}} f \alpha_{m, n}(n, m \in \mathbf{N})$ is said to be the (m, n) th Walsh-(Kaczmarz-)Fourier coefficient of f.

The rectangular partial sums of double Fourier series with respect to the Walsh(-Kaczmarz) system are defined by

$$
S_{m, n}^{\alpha}(f, x, y)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \hat{f}^{\alpha}(i, j) \alpha_{i}(x) \alpha_{j}(y)
$$

The logarithmic means of double Walsh-(Kaczmarz-)Fourier series is defined as follows

$$
t_{n, m}^{\alpha}(f, x, y)=\frac{1}{l_{n} l_{m}} \sum_{i=1}^{n-1} \sum_{j=1}^{m-1} \frac{S_{i, j}^{\alpha}(f, x, y)}{(n-i)(m-j)}
$$

It is evident that

$$
t_{n, m}^{\alpha}(f, x, y)-f(x, y)=\int_{0}^{1}[f(x \oplus t, y \oplus s)-f(x, y)] F_{n}^{\alpha}(t) F_{m}^{\alpha}(s) d t d s
$$

where \oplus denotes the dyadic addition [14].

3 Main Results.

The main results of this paper are presented in the following propositions.
Theorem 1. Let $\lambda>0$ and $f \in L(I)$. Then

$$
\lambda \mu\left\{x \in I:\left|t_{n}^{\kappa}(f, x)\right|>\lambda\right\} \leq c\|f\|_{1}
$$

and c is an absolute constant independent of n and f.
Corollary 1. Let $0<p<1$. Then for $f \in L \ln ^{+} L\left(I^{2}\right)$
a)

$$
\left(\int_{I^{2}}\left|t_{n, m}^{\kappa}(f, x, y)\right|^{p} d x d y\right)^{1 / p} \leq c_{p} \int_{I^{2}}|f(x, y)| \ln ^{+}|f(x, y)| d x d y+c_{p}
$$

b)

$$
\int_{I^{2}}\left|t_{n, m}^{\kappa}(f, x, y)-f(x, y)\right|^{p} d x d y \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

Corollary 2. Let $f \in L \ln ^{+} L\left(I^{2}\right)$. Then
a)

$$
\mu\left\{(x, y) \in I^{2}:\left|t_{n, m}^{\kappa}(f, x, y)\right|>\lambda\right\} \leq \frac{c}{\lambda} \int_{I^{2}}|f(x, y)| \ln ^{+}|f(x, y)| d x d y+c
$$

b)

$$
\left|t_{n, m}^{\kappa}(f, x, y)-f(x, y)\right| \rightarrow 0 \text { in measure on } I^{2}, \text { as } n, m \rightarrow \infty
$$

Classical regular summation methods often improve the convergence of Walsh-Fourier series. For instance, the Fejér means $\sigma_{n, m}^{w} f$ of the two-dimensional Walsh-Fourier series of the function $f \in L(I)$ converge in $L(I)$ norm to the function f, as $n, m \rightarrow \infty$. In [7] the method of Nörlund logarithmic means $t_{n, m}^{w} f$ was investigated, which is weaker than the Cesàro method of any positive order and it was proved that the class $L \ln ^{+} L\left(I^{2}\right)$ provides convergence in measure of logarithmic means of two-dimensional Walsh-Fourier series. It was
also proved ([6]) that in each Orlicz space wider than $L \ln ^{+} L\left(I^{2}\right)$ the set of functions which quadratic Walsh-Fourier sums converge in measure on I^{2} is of first Baire category.

Now, we show that the logarithmic means $t_{n, m}^{\kappa} f$ of the double Fourier series with respect to the Walsh-Kaczmarz system does not improve the convergence in measure. In particular, we prove the following theorem

Theorem 2. Let $L_{\Phi}\left(I^{2}\right)$ be an Orlicz space, such that

$$
L_{\Phi}\left(I^{2}\right) \nsubseteq L \ln L^{+}\left(I^{2}\right)
$$

Then the set of the functions from the Orlicz space $L_{\Phi}\left(I^{2}\right)$ with quadratic logarithmic means of the Fourier series with respect to the Walsh-Kaczmarz system converge in measure on I^{2} is of first Baire category in $L_{\Phi}\left(I^{2}\right)$.

Corollary 3. Let $\varphi:[0, \infty[\rightarrow[0, \infty[$ be a nondecreasing function satisfying the condition

$$
\varphi(x)=o(x \log x)
$$

for $x \rightarrow+\infty$. Then there exists a function $f \in L\left(I^{2}\right)$ such that
a)

$$
\int_{I^{2}} \varphi(|f(x, y)|) d x d y<\infty
$$

b) the quadratic logarithmic means of the Walsh-Kaczmarz-Fourier series of f diverges in measure on I^{2}.

4 Auxiliary Results.

It is well-known $[5,14]$ for the Dirichlet kernel function that

$$
\left|D_{n}^{w}(x)\right|<\frac{1}{x}
$$

for any $0<x<1$. Then for these x 's we also get

$$
\left|F_{n}^{w}(x)\right|<\frac{1}{x}
$$

where $n \in \mathbf{N}$ is a nonnegative integer. The following lower bound is also wellknown for the Walsh-Paley-Dirichlet kernel functions. Let $p_{A}=2^{2 A}+\cdots+$ $2^{2}+2^{0}(A \in \mathbf{N})$. Then for any $2^{-2 A-1} \leq x<1$ and $A \in \mathbf{N}$ we have

$$
\left|D_{p_{A}}^{w}(x)\right| \geq \frac{1}{4 x}
$$

This inequality plays a prominent role in the proofs of some divergence results concerning the partial sums of the Fourier series. Then it seems that it would be useful to get a similar inequality also for the logarithmic kernels. In [6] the first author, Gát and Tkebuchava proved the inequality

$$
\left|F_{p_{A}}^{w}(x)\right| \geq c \frac{\log (1 / x)}{x \log p_{A}}
$$

for all $1 \leq A \in \mathbf{N}$, but not for every x in the interval $(0,1)$. We have an exceptional set, such that it is "rare around zero". For $t=t_{0}, t_{0}+1, \ldots, 2 A, t_{0}=$ $\inf \left\{t:\left\lfloor\frac{l_{p_{[t / 2]-1}}}{16}-2^{15}\right\rfloor>1\right\}$ set $\tilde{t}:=\left\lfloor\frac{l_{p_{[t / 2]-1}}}{16}-2^{15}\right\rfloor$ (where $\lfloor u\rfloor$ denotes the lower integral part of u), and we take a "small part" of the interval $I_{t} \backslash I_{t+1}=\left[2^{-t-1}, 2^{-t}\right)$. This way we define the intervals

$$
J_{t}:=\left[\frac{1}{2^{t+1}}, \frac{1}{2^{t+1}}+\frac{1}{2^{t+\tilde{t}}}\right) .
$$

We define the exceptional set as:

$$
J:=\bigcup_{t=t_{0}}^{\infty} J_{t}
$$

The following are proved:
Lemma 1 (Gát, Goginava, Tkebuchava [6]). For $x \in\left(2^{-2 A-1}, 1\right) \backslash J$ we have

$$
\left|F_{p_{A}}^{w}(x)\right| \geq c \frac{\log (1 / x)}{x \log p_{A}}
$$

Corollary 4 (Gát, Goginava, Tkebuchava [6]). For $x \in\left(2^{-2 A-1}, 2^{-A}\right) \backslash J$ we have the estimation $\left|F_{p_{A}}^{w}(x)\right| \geq \frac{c}{x}$.

Lemma 2 (Gát, Goginava, Tkebuchava [6]). Let L_{Φ} be an Orlicz space and let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a measurable function with condition $\varphi(x)=o(\Phi(x))$ as $x \rightarrow \infty$. Then there exists an Orlicz space L_{ω}, such that $\omega(x)=o(\Phi(x))$ as $x \rightarrow \infty$, and $\omega(x) \geq \varphi(x)$ for $x \geq c \geq 0$.

Now, for the Walsh-Kaczmarz logarithmic kernels we will prove the following:

Lemma 3. Let $x \in I_{2 A}\left(1, x_{1}, \ldots, x_{t-1}, 1,1,0, \ldots, 0\right)=: I_{2 A}^{t}, t=2,3, \ldots, A$. Then

$$
\left|F_{p_{A}}^{\kappa}(x)\right| \geq c A 2^{2 A-t}
$$

Proof. Set $x \in I_{2 A}^{t}$. Let

$$
G_{p_{A}}^{\alpha}(x):=l_{p_{A}} F_{p_{A}}^{\alpha}(x)
$$

for $\alpha=w$ or κ. Thus, we have

$$
\begin{equation*}
G_{p_{A}}^{\kappa}(x)=\sum_{j=1}^{2^{2 A}} \frac{D_{j}^{\kappa}(x)}{p_{A}-j}+\sum_{j=2^{2 A}+1}^{p_{A}-1} \frac{D_{j}^{\kappa}(x)}{p_{A}-j}:=I+I I \tag{4}
\end{equation*}
$$

First, by the help of (1) we discuss II.

$$
I I=\sum_{j=1}^{p_{A-1}-1} \frac{D_{j+2^{2 A}}^{\kappa}(x)}{p_{A-1}-j}=l_{p_{A-1}} D_{2^{2 A}}(x)+r_{2 A}(x) G_{p_{A-1}}^{w}\left(\tau_{2 A}(x)\right)
$$

If $x \in I_{2 A}^{t}$, then (see (3))

$$
D_{2^{2 A}}(x)=0
$$

and

$$
\tau_{2 A}(x)=\left(0, \ldots, 0,1,1, x_{t-1}, \ldots, x_{1}, x_{0}=1, x_{2 A}, \ldots\right)
$$

Moreover, by Lemma 1 we have

$$
\begin{equation*}
|I I|=\left|G_{p_{A-1}}^{w}\left(\tau_{2 A}(x)\right)\right| \geq c(2 A-t) 2^{2 A-t} \tag{5}
\end{equation*}
$$

Now, we discuss I. We use the equation (1)

$$
\begin{aligned}
I & =\sum_{l=0}^{2 A-1} \sum_{j=2^{l}}^{2^{l+1}-1} \frac{D_{j}^{\kappa}(x)}{p_{A}-j}+\frac{D_{2^{2 A}}(x)}{p_{A-1}} \\
& =\sum_{l=0}^{2 A-1} \sum_{j=0}^{2^{l}-1} \frac{D_{j+2^{l}}^{\kappa}(x)}{p_{A}-j-2^{l}}+\frac{D_{2^{2 A}}(x)}{p_{A-1}} \\
& =\sum_{l=0}^{2 A-1} \sum_{j=0}^{2^{l}-1} \frac{D_{2^{l}}(x)+r_{l}(x) D_{j}^{w}\left(\tau_{l}(x)\right)}{p_{A}-j-2^{l}} .
\end{aligned}
$$

Since, $x_{0}=1, D_{2^{l}}(x)=0$ for all $l \geq 1$. Thus,

$$
\begin{align*}
I & =\frac{1}{p_{A}-1}+\sum_{l=1}^{2 A-1} \sum_{j=0}^{2^{l}-1} \frac{r_{l}(x) D_{j}^{w}\left(\tau_{l}(x)\right)}{p_{A}-j-2^{l}} \tag{6}\\
& =: \frac{1}{p_{A}-1}+\sum_{l=1}^{2 A-1} I_{l}
\end{align*}
$$

We use Abel's transformation for $I_{l}(l \geq 1)$

$$
\begin{gathered}
I_{l}=r_{l}(x) \sum_{j=1}^{2^{l}-2}\left(\frac{1}{p_{A}-j-2^{l}}-\frac{1}{p_{A}-j-2^{l}-1}\right) j K_{j}^{w}\left(\tau_{l}(x)\right) \\
+\frac{r_{l}(x)\left(2^{l}-1\right) K_{2^{l}-1}^{w}\left(\tau_{l}(x)\right)}{p_{A}-2^{l+1}+1}=: I_{l}^{1}+I_{l}^{2} \\
\left|I_{l}^{1}\right| \leq \frac{c}{2^{4 A}} \sum_{j=1}^{2^{l}-1} j\left|K_{j}^{w}\left(\tau_{l}(x)\right)\right|
\end{gathered}
$$

Since, ([14])

$$
\begin{equation*}
n\left|K_{n}^{w}(x)\right| \leq 2 \sum_{j=0}^{m-1} 2^{j} \sum_{i=j}^{m-1} D_{2^{i}}\left(x+e_{j}\right) \text { for } 2^{m-1} \leq n<2^{m} \tag{7}
\end{equation*}
$$

and for I_{l}^{1} we can write

$$
\begin{aligned}
\left|I_{l}^{1}\right| & \leq \frac{c}{2^{4 A}} \sum_{m=1}^{l} \sum_{j=2^{m-1}}^{2^{m}-1} j\left|K_{j}^{w}\left(\tau_{l}(x)\right)\right| \\
& \leq \frac{c}{2^{4 A}} \sum_{m=1}^{l} 2^{m}\left(\sum_{s=0}^{m-1} 2^{s} \sum_{q=s}^{m-1} D_{2^{q}}\left(\tau_{l}(x)+e_{s}\right)\right) \\
& \leq \frac{c 2^{l}}{2^{4 A}} \sum_{s=0}^{l-1} 2^{s} \sum_{q=s}^{l-1} D_{2^{q}}\left(\tau_{l}(x)+e_{s}\right) .
\end{aligned}
$$

Since, $D_{2^{n}} \leq 2^{n}$ and $t \leq A$ we obtain that

$$
\begin{equation*}
\sum_{l=0}^{t+2}\left|I_{l}^{1}\right| \leq \frac{c}{2^{4 A}} \sum_{l=0}^{t+2} 2^{3 l} \leq \frac{c 2^{3 t}}{2^{4 A}}<c \tag{8}
\end{equation*}
$$

By the inequality (7) we obtain again

$$
\left|I_{l}^{2}\right| \leq \frac{c}{2^{2 A}} \sum_{s=0}^{l-1} 2^{s} \sum_{q=s}^{l-1} D_{2^{q}}\left(\tau_{l}(x)+e_{s}\right)
$$

and

$$
\begin{equation*}
\sum_{l=0}^{t+2}\left|I_{l}^{2}\right| \leq \frac{c}{2^{2 A}} \sum_{l=0}^{t+2} 2^{2 l} \leq \frac{c 2^{2 t}}{2^{2 A}} \leq c \tag{9}
\end{equation*}
$$

Let $t+2<l<2 A$. Then we have

$$
\tau_{l}(x)=\left(0, \ldots, 0,1,1, x_{t-1}, \ldots, x_{1}, 1,0, \ldots, 0, x_{2 A}, \ldots\right)
$$

Hence,

$$
D_{2^{q}}\left(\tau_{l}(x)+e_{s}\right)=\left\{\begin{aligned}
0, & \text { if } s \geq l-t \text { or } 0 \leq s \leq l-t-1, q>s \\
2^{s}, & \text { if } 0 \leq s \leq l-t-1, q=s
\end{aligned}\right.
$$

so we can write

$$
\begin{align*}
\sum_{l=t+3}^{2 A-1}\left|I_{l}^{1}\right| & \leq \frac{c}{2^{4 A}} \sum_{l=t+3}^{2 A-1} 2^{l} \sum_{s=0}^{l-t-1} 2^{2 s} \\
& \leq \frac{c}{2^{4 A}} \sum_{l=t+3}^{2 A-1} 2^{3 l-2 t} \leq \frac{c}{2^{4 A}} 2^{6 A-2 t}<c 2^{2 A-t} \tag{10}\\
& \sum_{l=t+3}^{2 A-1}\left|I_{l}^{2}\right| \tag{11}
\end{align*}
$$

Combining (4)-(11) we complete the proof of Lemma 3.

During the proof of Theorem 1 we will use the following Lemma:
Lemma 4 (Gát, Goginava, Tkebuchava [7]). Let $\lambda>0$ and $f \in L^{1}(I)$. Then

$$
\lambda \mu\left\{x \in I:\left|t_{n}^{w}(f, x)\right|>\lambda\right\} \leq c\|f\|_{1}
$$

where c is an absolute constant independent of n and f.

5 Proofs of the Theorems.

Proof of Theorem 1. Define the maximal function f^{*} by

$$
f^{*}:=\sup _{n \in \mathbf{P}}\left|S_{2^{n}} f\right| .
$$

It is well-known that f^{*} is of weak type $(1,1)$. During the proof of Theorem 1 we will use the equation (1) and

$$
\begin{equation*}
D_{2^{A}-j}^{\kappa}(x)=D_{2^{A}}(x)-\omega_{2^{A}-1}(x) D_{j}^{\omega}\left(\tau_{A-1}(x)\right), \quad j=0,1, \ldots, 2^{A-1} \tag{12}
\end{equation*}
$$

(see [12]).
For $n \in \mathbf{P}$ set $n_{1}:=A \in \mathbf{N}$ (that is, $2^{A} \leq n<2^{A+1}$). To prove Theorem 1 we decompose the kernel F_{n}^{κ} in the following way:

$$
\begin{aligned}
l_{n} F_{n}^{\kappa} & =\sum_{k=1}^{n-1} \frac{D_{k}^{\kappa}}{n-k}=\sum_{k=1}^{2^{A-1}-1} \frac{D_{k}^{\kappa}}{n-k}+\sum_{k=2^{A-1}}^{2^{A}-1} \frac{D_{k}^{\kappa}}{n-k}+\sum_{k=2^{A}}^{n-1} \frac{D_{k}^{\kappa}}{n-k} \\
& =: l_{n}\left(F_{n}^{\kappa, 1}+F_{n}^{\kappa, 2}+F_{n}^{\kappa, 3}\right)
\end{aligned}
$$

First, we discuss $f * F_{n}^{\kappa, 1}$. The equation (1) and Abel's transformation immediately give

$$
\begin{aligned}
l_{n} F_{n}^{\kappa, 1}= & \sum_{k=0}^{A-2} \sum_{l=2^{k}}^{2^{k+1}-1} \frac{D_{l}^{\kappa}}{n-l}=\sum_{k=0}^{A-2} \sum_{l=0}^{2^{k}-1} \frac{D_{2^{k}+l}^{\kappa}}{n-2^{k}-l} \\
= & \sum_{k=0}^{A-2} D_{2^{k}} \sum_{l=0}^{2^{k}-1} \frac{1}{n-2^{k}-l}+\sum_{k=0}^{A-2} \sum_{l=0}^{2^{k}-1} \frac{r_{k} D_{l}^{w} \circ \tau_{k}}{n-2^{k}-l} \\
= & \sum_{k=0}^{A-2} D_{2^{k}}\left(l_{n-2^{k}+1}-l_{n-2^{k+1}+1}\right) \\
& +\sum_{k=0}^{A-2} \sum_{l=0}^{2^{k}-2}\left(\frac{1}{n-2^{k}-l}-\frac{1}{n-2^{k}-l-1}\right) r_{k} l K_{l}^{w} \circ \tau_{k} \\
& +\sum_{k=0}^{A-2} \frac{2^{k}-1}{n-2^{k+1}+1} r_{k} K_{2^{k}-1}^{w} \circ \tau_{k} \\
= & l_{n}\left(F_{n}^{\kappa, 1,1}+F_{n}^{\kappa, 1,2}+F_{n}^{\kappa, 1,3}\right) .
\end{aligned}
$$

This means that

$$
\begin{equation*}
\left|f * F_{n}^{\kappa, 1,1}\right| \leq c f^{*} \tag{13}
\end{equation*}
$$

The equation (see [5])

$$
\left\|f *\left(r_{k} K_{l}^{w} \circ \tau_{k}\right)\right\|_{1} \leq\|f\|_{1}\left\|r_{k} K_{l}^{w} \circ \tau_{k}\right\|_{1} \leq\|f\|_{1}\left\|K_{l}^{w}\right\|_{1} \leq c\|f\|_{1}
$$

immediately gives

$$
\begin{equation*}
\left\|f * F_{n}^{\kappa, 1,2}\right\|_{1} \leq \frac{c\|f\|_{1}}{l_{n}}\left(\sum_{k=0}^{A-2} \sum_{l=0}^{2^{k}-2} \frac{1}{n-2^{k}-l}\right) \leq c\|f\|_{1} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f * F_{n}^{\kappa, 1,3}\right\|_{1} \leq \frac{c\|f\|_{1}}{l_{n}} \sum_{k=0}^{A-2} \frac{2^{k}-1}{n-2^{k+1}+1} \leq c\|f\|_{1} \tag{15}
\end{equation*}
$$

Second, to discuss $f * F_{n}^{\kappa, 2}$ we use equation (12).

$$
\begin{aligned}
l_{n} F_{n}^{\kappa, 2} & =\sum_{l=1}^{2^{A-1}} \frac{D_{2^{A}-l}^{\kappa}}{n-2^{A}+l} \\
& =\sum_{l=1}^{2^{A-1}} \frac{D_{2^{A}}}{n-2^{A}+l}-\sum_{l=1}^{2^{A-1}} \frac{w_{2^{A}-1} D_{l}^{w} \circ \tau_{A-1}}{n-2^{A}+l} \\
& =: l_{n}\left(F_{n}^{\kappa, 2,1}-F_{n}^{\kappa, 2,2}\right)
\end{aligned}
$$

This means that

$$
\begin{equation*}
\left|f * F_{n}^{\kappa, 2,1}\right| \leq c f^{*} \tag{16}
\end{equation*}
$$

Abel's transformation yields

$$
\begin{aligned}
& l_{n} F_{n}^{\kappa, 2,2}= w_{2 A}-1 \\
& \sum_{l=1}^{2^{A-1}-1}\left(\frac{1}{n-2^{A}+l}-\frac{1}{n-2^{A}+l+1}\right) l K_{l}^{w} \circ \tau_{A-1} \\
&+\frac{w_{2^{A}-1} 2^{A-1}}{n-2^{A-1}} K_{2^{A-1}}^{w} \circ \tau_{A-1}
\end{aligned}
$$

The equation (see [5])
$\left\|f *\left(w_{2^{A}-1} K_{l}^{w} \circ \tau_{A-1}\right)\right\|_{1} \leq\|f\|_{1}\left\|w_{2^{A}-1} K_{l}^{w} \circ \tau_{A-1}\right\|_{1} \leq\|f\|_{1}\left\|K_{l}^{w}\right\|_{1} \leq c\|f\|_{1}$
gives again

$$
\begin{equation*}
\left\|f * F_{n}^{\kappa, 2,2}\right\|_{1} \leq \frac{c\|f\|_{1}}{l_{n}}\left(\sum_{l=1}^{2^{A-1}} \frac{1}{n-2^{A}+l}+1\right) \leq c\|f\|_{1} \tag{17}
\end{equation*}
$$

At last, we discuss $f * F_{n}^{\kappa, 3}$. The equation (1) implies

$$
\begin{gather*}
l_{n} F_{n}^{\kappa, 3}=\sum_{k=0}^{n-2^{A}-1} \frac{D_{2^{A}+k}^{\kappa}}{n-2^{A}-k}=l_{n-2^{A}} D_{2^{A}}+r_{A} l_{n-2^{A}} F_{n-2^{A}}^{w} \circ \tau_{A} \\
\left|f * \frac{l_{n-2^{A}}}{l_{n}} D_{2^{A}}\right| \leq c f^{*} \tag{18}
\end{gather*}
$$

means that we have to discuss $t_{n-2^{A}}^{\prime}(f, x):=\left(f *\left(r_{A} F_{n-2^{A}}^{w} \circ \tau_{A}\right)\right)(x)$. The transformation $\tau_{A}: I \rightarrow I$ is measure-preserving and such that $\tau_{A}\left(\tau_{A}(x)\right)=x$ (that is, $\tau_{A}^{-1}=\tau_{A}$) for all $x \in I[17]$. Thus, Theorem 39.C in [9] allows us to write

$$
\begin{aligned}
t_{n-2^{A}}^{\prime}(f, x) & =\int_{I} f(x \oplus y) r_{A}(y) F_{n-2^{A}}^{w}\left(\tau_{A}(y)\right) d y \\
& =\int_{I} f\left(x \oplus \tau_{A}(y)\right) r_{A}\left(\tau_{A}(y)\right) F_{n-2^{A}}^{w}(y) d \tau_{A}(y) \\
& =\int_{I} f\left(x \oplus \tau_{A}(y)\right) r_{A}\left(\tau_{A}(y)\right) F_{n-2^{A}}^{w}(y) \frac{d \tau_{A}(y)}{d y} d y
\end{aligned}
$$

Theorem 32.B in [9] and the fact that the transformation $\tau_{A}: I \rightarrow I$ is measure-preserving give for the Radon-Nikodym derivative $\frac{d \tau_{A}(y)}{d y}$ that $\frac{d \tau_{A}(y)}{d y}=$ 1 almost everywhere. Thus,

$$
t_{n-2^{A}}^{\prime}(f, x)=\int_{I} f\left(x \oplus \tau_{A}(y)\right) r_{A}(y) F_{n-2^{A}}^{w}(y) d y
$$

and

$$
\begin{aligned}
t_{n-2^{A}}^{\prime}\left(f, \tau_{A}(x)\right) & =r_{A}(x) \int_{I} f\left(\tau_{A}(x \oplus y)\right) r_{A}(x \oplus y) F_{n-2^{A}}^{w}(y) d y \\
& =r_{A}(x)\left(\left(r_{A} f \circ \tau_{A}\right) * F_{n-2^{A}}^{w}\right)(x)=r_{A}(x) t_{n-2^{A}}\left(r_{A} f \circ \tau_{A}, x\right)
\end{aligned}
$$

Now, by the help of Lemma 4 we show that the operator $t_{n-2^{A}}^{\prime}$ is of weak type $(1,1)$.

$$
\begin{align*}
\lambda \mu\left\{x \in I:\left|t_{n-2^{A}}^{\prime}(f, x)\right|>\lambda\right\} & =\lambda \mu\left\{x \in I:\left|t_{n-2^{A}}^{\prime}\left(f, \tau_{A}(x)\right)\right|>\lambda\right\} \\
& =\lambda \mu\left\{x \in I:\left|r_{A}(x) t_{n-2^{A}}\left(r_{A}\left(f \circ \tau_{A}\right), x\right)\right|>\lambda\right\} \\
& \leq c\left\|r_{A}\left(f \circ \tau_{A}\right)\right\|_{1} \leq c\|f\|_{1} . \tag{19}
\end{align*}
$$

Summarising our results on (13)-(19) we could complete the proof of Theorem 1.

The proof of Corollary 1 and 2 follow from Theorem 1 in the same way as it was done in [7].

Now, we will prove Theorem 2.
Proof of Theorem 2. The proof of Theorem 2 will be complete if we show that there exists $c>0$ such that (for more details see the proof of Theorem 1 from [6])

$$
\begin{equation*}
\mu\left\{(x, y) \in I^{2}:\left|t_{p_{A}, p_{A}}^{\kappa}\left(D_{2^{2 A+1}} \otimes D_{2^{2 A+1}}, x, y\right)\right|>2^{3 A}\right\}>c \frac{A}{2^{3 A}} \tag{20}
\end{equation*}
$$

Denote

$$
\Omega_{A}:=\bigcup_{l=A+2}^{2 A-2} \bigcup_{s=A+2}^{2 A-2} I_{2 A}^{2 A-l} \times I_{2 A}^{2 A-s}
$$

Since,

$$
t_{p_{A}}^{\kappa}\left(D_{2^{2 A+1}}, x\right)=S_{2^{2 A+1}}\left(F_{p_{A}}^{\kappa}, x\right)=F_{p_{A}}^{\kappa}(x)
$$

for $(x, y) \in I_{2 A}^{2 A-l} \times I_{2 A}^{2 A-s}$ we have the following estimation from Lemma 3 for quadratic logarithmic means of the function $D_{2^{2 A+1}}(x) D_{2^{2 A+1}}(y)$

$$
\left|F_{p_{A}}^{\kappa}(x) F_{p_{A}}^{\kappa}(y)\right|=\left|t_{p_{A}, p_{A}}^{\kappa}\left(D_{2^{2 A+1}} \otimes D_{2^{2 A+1}}, x, y\right)\right| \geq c 2^{l+s}
$$

Consequently,

$$
\begin{aligned}
& \mu\left\{(x, y) \in I^{2}:\left|t_{p_{A}, p_{A}}^{\kappa}\left(D_{2^{2 A+1}} \otimes D_{2^{2 A+1}}, x, y\right)\right| \geq c 2^{3 A}\right\} \\
& \geq c \sum_{l=A+2}^{2 A-2} \sum_{s=3 A-l}^{2 A-2} \frac{2^{2 A-l} 2^{2 A-s}}{2^{4 A}} \geq \frac{c A}{2^{3 A}}
\end{aligned}
$$

Hence, (20) is proved and the proof of Theorem 2 is complete.
The validity of Corollary 3 follows immediately from Theorem 2 and Lemma 2.

References

[1] L. A. Balashov, Series with respect to the Walsh system with monotone coefficients, Sibirsk. Math. Zh., 12 (1971), 25-39 (in Russian).
[2] G. Gát, On $(C, 1)$ summability of integrable functions with respect to the Walsh-Kaczmarz system, Studia Math., 130(2) (1998), 135-148.
[3] G. Gát, U. Goginava, On the divergence of Nörlund logarithmic means of Walsh-Fourier series, Acta Math. Sinica (English series), 25(6) (2009), 903-916.
[4] R. Getsadze, On the boundedness in measure of sequences of superlinear operators in classes $L \phi(L)$, Acta Sci. Math. (Szeged), 71(1-2) (2005), 195-226.
[5] B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh series and transforms, Theory and Applications, Nauka, Moscow, 1987.
[6] G. Gát, U. Goginava, G. Tkebuchava, Convergence in measure of logarithmic means of double Walsh-Fourier series, Georgian Math. J., 12(4) (2005), 607-618.
[7] G, Gát, U. Goginava, G. Tkebuchava, Convergence of logarithmic means of multiple Walsh-Fourier series, Anal. Theory Appl., 21(4) (2005), 326338.
[8] U. Goginava, Convergence in measure of partial sums of double Fourier series with respect to the Walsh-Kaczmarz system, J. Math. Anal. Approx. Theory, 7(2) (2007), 160-167.
[9] P. R. Halmos, Measure Theory, D. Van Nostrand Company, New York, N. Y., 1950.
[10] S. A. Konjagin, On subsequences of partial Fourier-Walsh series, Mat. Notes, 54(4) (1993), 69-75.
[11] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz space, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff, Groningen 1961.
[12] K. Nagy, Almost everywhere convergence of a subsequence of the logarithmic means of Walsh-Kaczmarz-Fourier series, Journal of Math. Ineq. (2009) (to appear).
[13] F. Schipp, Pointwise convergence of expansions with respect to certain product systems, Anal. Math., 2 (1976), 63-75.
[14] F. Schipp, W.R. Wade, P. Simon, Walsh series, An introduction to dyadic harmonic analysis, With the collaboration of J. Pl, Adam Hilger, Bristol, 1990.
[15] P. Simon, On the Cesàro Summability with respect to the Walsh-Kaczmarz system, Journal of Approx. Theory, 106 (2000), 249-261.
[16] P. Simon, (C, α) summability of Walsh-Kaczmarz-Fourier series, Journal of Approx. Theory, 127 (2004), 39-60.
[17] V. A. Skvortsov, On Fourier series with respect to the Walsh-Kaczmarz system, Anal. Math., 7 (1981), 141-150.
[18] A. A. S̆neider, On series with respect to the Walsh functions with monotone coefficients, Izv. Akad. Nauk SSSR Ser. Math., 12 (1948), 179-192.
[19] G. Tkebuchava, Subsequence of partial sums of multiple Fourier and Fourier-Walsh series, Bull. Georg. Acad. Sci, 169(2) (2004), 252-253.
[20] W. S. Young, On the a.e. convergence of Walsh-Kaczmarz-Fourier series, Proc. Amer. Math. Soc., 44 (1974), 353-358.
[21] L. V. Zhizhiashvili, Nekotorye voprosy mnogomernogo garmonicheskogo analiza, [Some problems in multidimensional harmonic analysis], (Russian), Tbilis. Gos. Univ., Tbilisi, 1983.

Ushangi Goginava and Károly Nagy

[^0]: Mathematical Reviews subject classification: Primary: 42C10; Secondary: 42B08
 Key words: double Walsh-Kaczmarz-Fourier series, Orlicz space, convergence in measure
 Received by the editors July 29, 2009
 Communicated by: Alexander Olevskii

