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ON ROMANOVSKI’S LEMMA

Abstract

Romanovski introduced a procedure, Romanovski’s lemma, to con-
struct the Denjoy integral without the use of transfinite induction. Here
we give two versions of Romanovski’s lemma which hold in general topo-
logical spaces. We provide several applications in various areas of math-
ematics.

1 Introduction.

In an article published in 1932 [20], Romanovski introduced a procedure to
construct the Denjoy integral without the use of transfinite induction. The ba-
sic tool used in such a procedure is the following result, known as Romanovski’s
lemma.

Theorem 1.1. (Romanovski’s lemma) Let F be a family of open intervals in
(a, b) with the following four properties:

I. If (α, β) ∈ F and (β, γ) ∈ F, then (α, γ) ∈ F.

II. If (α, β) ∈ F and (γ, δ) ⊂ (α, β) then (γ, δ) ∈ F.

III. If (α, β) ∈ F for all [α, β] ⊂ (c, d) then (c, d) ∈ F.
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IV. If all the intervals contiguous to a perfect closed set E ⊂ [a, b] belong to
F then there exists an interval I ∈ F with I ∩ E 6= ∅.

Then (a, b) ∈ F.

The proof is very simple, but most importantly, the use of this lemma in
several problems is also very simple, and many times provides rather short
and direct proofs of hard results. The book of Gordon [11] gives several appli-
cations, such as the construction of the Denjoy integral we mentioned before
or the study of the functions of the Baire classes.

It should be mentioned that the construction of the Denjoy integral by
transfinite induction is also a very nice piece of mathematics. A detailed
presentation can be found in the book by Hobson [13]. It is a matter of taste,
of course, whether one prefers one approach or the other.

The aim of this article is to give versions of Romanovski’s lemma that are
useful in problems involving several variables. These versions are actually valid
in general topological spaces. We present several applications to highlight the
use of this rather powerful tool. The plan of the article is as follows. We start
by giving two versions of the lemma that are valid in general spaces in Section
2. Our first application is a proof of the well known Cantor-Baire stationary
principle by using the new versions of the lemma; this we present in Section
3. In Section 4 we prove a rather interesting characterization of positive mea-
sures in several variables in terms of the almost everywhere angular boundary
behavior of the distributional φ−transform, generalizing the corresponding re-
sults for everywhere behavior [22]. We then employ these ideas to prove that
a function with a derivative that exists almost everywhere in a region Ω ⊂ C
will in some cases be analytic in Ω. In Section 5 we apply Romanovski’s lemma
in the study of analytic functions with known radial behavior at the boundary
of the unit disc, a subject where many unexpected counterexamples exist.

Naturally, there are many other areas where Romanovski’s lemma would
prove to be very helpful, and our purpose in writing this article is to invite
the reader to try it in such domains.

2 Versions of Romanovski’s Lemma.

Our first version applies to any topological space.

Theorem 2.1. Let X be a topological space. Let U be a non empty family of
open sets of X that satisfies the following four properties:

Iv1 . U 6= {∅}.

IIv1 . If U ∈ U, V ⊂ U, and V is open, then V ∈ U.
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IIIv1 . If Uα ∈ U ∀α ∈ A, then
⋃
α∈A Uα ∈ U.

IVv1 . Whenever U ∈ U, U 6= X, then there exists V ∈ U such that V ∩
(X \ U) 6= ∅.

Then U must be the class of all open subsets of X.

Proof. Let W =
⋃
U∈U U. Using Iv1 it follows that W 6= ∅, employing IIIv1

we obtain that W ∈ U, while from IVv1 it follows that W = X. If we now use
IIv1 we obtain that all open subsets of X belong to U.

The next version deals with local basis of neighborhoods.

Theorem 2.2. Let X be a topological space. For each x ∈ X let Cx be a local
basis of non-empty open neighborhoods at x, and let C =

⋃
x∈X Cx. Let B ⊂ C

be a family that satisfies the following properties:

Iv2 . B 6= ∅.

IIv2 . If U ∈ B, V ⊂ U, and V ∈ C, then V ∈ B.

IIIv2 . If U ∈ C and if for each x ∈ U there exists Vx ∈ B with x ∈ Vx ⊂ U,
then U ∈ B.

IVv2 . If F is closed, F 6= ∅, and for each x ∈ X \ F there exists Vx ∈ B with
x ∈ Vx ⊂ X \ F, then ∃U0 ∈ B with U0 ∩ F 6= ∅.

Then B = C.

Proof. Let W =
⋃
U∈B U. Then W = X, since if not F = X \ W would

satisfy the conditions of IVv2 , but this is not possible.
Let now V ∈ C. Since X =

⋃
U∈B U, for each x ∈ V there exists Bx ∈ B

with x ∈ Bx, and thus there is Cx ∈ C with x ∈ Cx ⊂ V ∩ Bx. Using IIv2 we
obtain that Cx ∈ B, and thus we can use IIIv2 to conclude that V ∈ B.

This version, Theorem 2.2, applies to balls in a metric space. Indeed, one
can take C to be the family all of non-empty balls, or a suitable subfamily, say
Cx equal to the set of balls centered at x and radius smaller than some given
number rx > 0.

Observe that, as it is easy to see, the usual Romanovski’s lemma, Theorem
1.1, follows from Theorem 2.2.
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3 The Cantor-Baire Stationary Principle.

In this section we shall show how Romanovski’s lemma can be used to give
a proof of the well known and useful Cantor-Baire stationary principle [18].
The symbol Ω refers to the first uncountable ordinal number.

Theorem 3.1. (Cantor-Baire Stationary Principle) Let {Fα}α<Ω be a family
of closed subsets of Rn, indexed by the countable ordinal numbers. Suppose
{Fα}α<Ω is decreasing; i.e., Fα ⊆ Fβ if α ≥ β. Then there exists α∗ < Ω such
that Fα = Fα∗ for α ≥ α∗.

Proof. Let X = Rn \
⋂
α<Ω Fα. Let B be the family of non-empty balls

B ⊂ X that satisfy that there exists α < Ω with B ∩ Fα = ∅. We shall show
that B = C, the family of all non-empty balls of Rn contained in X, using
Theorem 2.2. Observe that Iv2 and IIv2 are clear. In order to prove IIIv2 ,
let B =

⋃
σ∈ΣBσ be an element of C that is an arbitrary union of elements

Bσ of B; since B is a ball in Rn, there exists a sequence {σn}n∈N such that
B =

⋃
n∈N Bσn . If αn < Ω is such that Bσn ∩ Fαn = ∅, and α̂ = supn∈N αn,

then B ∩ Fbα = ∅, so that B ∈ B. Condition IVv2 is easy because if x ∈ X
then there exists α < Ω such that x /∈ Fα and thus there exists a ball B with
x ∈ B and B ∩ Fα = ∅, which yields that B ∈ B. Finally, since we obtain
that X =

⋃
B∈BB, then X =

⋃
n∈N Bn, where {Bn}n∈N is an enumeration of

the elements of B with rational centers and rational radii; choosing αn < Ω
with Bn ∩ Fαn = ∅, and putting α∗ = supn∈N αn, we obtain α∗ < Ω with
X ∩ Fα∗ = ∅. It follows that Fα = Fα∗ for α ≥ α∗.

4 Measures and the φ−transform.

In this section we shall deal with real valued distributions and functions. We
shall use the standard spaces of test functions D (Rn) and D′ (Rn) [10]. The
φ−transform [6, 21, 22] is defined as follows. Let φ ∈ D (Rn) be a fixed
normalized test function; that is, one that satisfies∫

Rn
φ (x) dx = 1 . (4.1)

If f ∈ D′ (Rn) we introduce the function of n+ 1 variables F = Fφ {f} by the
formula

F (x, t) = 〈f (x + ty) , φ (y)〉 , (4.2)
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where (x, t) ∈ H, the half space Rn× (0,∞) . Naturally the evaluation in (4.2)
is with respect to the variable y. We call F the φ−transform of f. Whenever
we consider φ−transforms we assume that φ satisfies (4.1).

The definition of the φ−transform tells us that if the distributional point
value [14, 15] f (x0) exists and equals γ then F (x0, t)→ γ as t→ 0+, but ac-
tually F (x, t)→ γ as (x, t)→ (x0, 0) in an angular or non-tangential fashion;
that is if |x− x0| ≤ Mt for some M > 0 (just replace φ (y) by φ (y −Mω)
where |ω| = 1).

The φ−transform converges to the distribution as t → 0+ : If φ ∈ D (Rn)
and f ∈ D′ (Rn) , then

lim
t→0+

F (x, t) = f (x) , (4.3)

distributionally in the space D′ (Rn) ; that is, if ρ ∈ D (Rn) then

lim
t→0+

〈F (x, t) , ρ (x)〉 = 〈f (x) , ρ (x)〉 . (4.4)

We shall use the following nomenclature. A (Radon) measure would mean
a positive functional in the space of continuous functions, which would be
denoted by integral notation such as dµ, or by distributional notation, f = fµ,
so that

〈f, φ〉 =
∫

Rn
φ (x) dµ , (4.5)

and 〈f, φ〉 ≥ 0 if φ ≥ 0. A signed measure is a real bounded functional in the
space of continuous functions, denoted as, say dν, or as g = gν . Observe that
any signed measure can be written as ν = ν+ − ν−, where ν± are measures
concentrated on disjoint sets. We shall also use the Lebesgue decomposition,
according to which any signed measure ν can be written as ν = νabs + νsig,
where νabs is absolutely continuous with respect to the Lebesgue measure,
so that it corresponds to a regular distribution, while νsig is a signed measure
concentrated on a set of Lebesgue measure zero. We shall also need to consider
the measures (νsig)± = (ν±)sig, the positive and negative singular parts of ν.

If x0 ∈ Rn we shall denote by Cx0,θ the cone in H starting at x0 of angle
θ,

Cx0,θ = {(x, t) ∈ H : |x− x0| ≤ (tan θ)t} . (4.6)

If f ∈ D′ (Rn) and x0 ∈ Rn then we consider the upper and lower angular
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values of its φ−transform,

f+
φ,θ (x0) = lim sup

(x,t)→(x0,0)
(x,t)∈Cx0,θ

F (x, t) , (4.7)

f−φ,θ (x0) = lim inf
(x,t)→(x0,0)
(x,t)∈Cx0,θ

F (x, t) . (4.8)

The quantities f±φ,θ (x0) are well defined at all points x0, but, of course, they
could be infinite.

The following result was proved in [22].

Theorem 4.1. Let f ∈ D′ (Rn) . Let U be an open set. Then f is a mea-
sure in U if and only if its φ−transform F = Fφ {f} with respect to a given
normalized, positive test function φ ∈ D (Rn) satisfies

f−φ,θ (x) ≥ 0 ∀x ∈ U , (4.9)

for all angles θ. Moreover, if the support of φ is contained in a ball of radius R
and center at the origin and if (4.9) holds for a single value of θ > arctanR,
then f is a measure in U.

It is easy to see that the result is not true if we use radial limits instead of
angular ones. An example is provided by taking f (x) = −δ′ (x) and φ ∈ D (R)
with φ′ (0) > 0. Actually this example shows that if (4.9) holds for a value
of θ < arctanR, then f might not be a measure. Furthermore, one needs
the inequality (4.9) to be true at all points of U, as the example f (x) =
−δ (x− a) , for any a ∈ U, shows.

We should also point out that if there exists a constant M > 0 such that
f−φ,θ (x) ≥ −M, ∀x ∈ U, where θ > arctanR, then f is a signed measure in U,
whose singular part is positive [22].

Using Romanovski’s lemma we can prove the ensuing stronger result.

Theorem 4.2. Let f ∈ D′ (Rn) . Let U be an open set. If the φ−transform
F = Fφ {f} with respect to a given normalized, positive test function φ ∈
D (Rn) with suppφ ⊂ {x ∈ Rn : |x| ≤ R} satisfies

f+
φ,ϑ (x) ≥ 0 almost everywhere in U, (4.10)

for some ϑ, while for each x ∈ U there is a constant Mx > 0 such that

f−φ,θ (x) ≥ −Mx , (4.11)

where θ > arctanR, then f is a measure in U.
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Proof. Let U be the family of open subsets V of U such that the restriction
f |V is a measure. Let us first show that U 6= ∅. Indeed, let t0 ≥ 1 be fixed and
let

gn (x) = min
{
F (y, t) : |y − x| ≤ (tan θ)t, n−1 ≤ t ≤ t0

}
. (4.12)

The functions gn are continuous and because of (4.11), for each x ∈ U there
exists a constant M

′

x > 0 such that gn (x) ≥ −M ′

x. If we now employ the
Baire theorem we obtain the existence of a non-empty open set V ⊂ U and a
constant M > 0 such that F (x, t) ≥ −M for all (y, t) ∈ Cx,θ with x ∈ V and
0 < t ≤ t0, and hence f−φ,θ (x) ≥ −M for x ∈ V. It follows that f |V is a signed
measure ν = νabs + νsig, whose singular part νsig is a measure; it thus follows
using (4.10) that the regular distribution fabs corresponding to νabs satisfies
fabs (x) ≥ 0 a.e. in V, and consequently the signed measure νabs is actually a
measure. Therefore ν ≥ 0.

It is clear that IIv1 and IIIv1 are satisfied.
In order to prove IVv1 , let V ∈ U, and suppose that U \V 6= ∅. Then using

the Baire theorem again, there exists a set Y open in U \ V and a constant
M > 0 such that f−φ,θ (x) ≥ −M for all x ∈ Y. But if Y is open in U \ V, then
we can find W open in U such that W ∩U \V = Y. Observe now that f |V is a
measure, and thus f−φ,θ (x) ≥ 0 if x ∈ V, in particular, if x ∈W ∩V. Therefore,
f−φ,θ (x) ≥ −M for x ∈ W = Y ∪ (W ∩ V ) . The argument used above shows
that f |W is a measure; that is, W ∈ U and this proves IVv1 .

The following useful result on the existence of almost everywhere limits
follows from the Theorem 4.2.

Corollary 4.3. Let f ∈ D′ (Rn) . Let U be an open set. If the φ−transform
F = Fφ {f} with respect to a given normalized, positive test function φ ∈
D (Rn) with suppφ ⊂ {x ∈ Rn : |x| ≤ R} satisfies that for each x ∈ U there is
a constant Mx > 0 such that

Mx ≥ f+
φ,θ (x) ≥ f−φ,θ (x) ≥ −Mx , (4.13)

where θ > arctanR, while for some ϑ

f+
φ,ϑ (x) ≥ 0 ≥ f−φ,ϑ (x) , (4.14)

almost everywhere in U, then f = 0 in U.
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4.1 Analytic Functions and Existence of Derivatives A.E.

One can use these ideas, for example, to study the several equivalent definitions
of holomorphy of a function f defined in a region Ω ⊂ C. If we say that f is
holomorphic or analytic if it is equal to the sum of a convergent power series in
the neighborhood of each point of Ω, then we easily obtain that f is analytic if
and only if

∮
∂R
f (z) dz = 0 for each rectangle R with R ⊂ Ω; this is Morera’s

theorem. On the other hand, if f is analytic then it is complex differentiable;
that is,

f ′ (z) = lim
ξ→0

f (z + ξ)− f (z)
ξ

, (4.15)

exists at each z ∈ Ω. Conversely, if f is complex differentiable then it is
analytic, and this follows by proving that

∮
∂R
f (z) dz = 0 for each rectangle

R with R ⊂ Ω; earlier proofs of this fact used the continuity of f ′, but Goursat
[12] gave a nice proof, now standard in the textbooks in complex variables [17,
Sect. 1.2], that shows that the mere existence of f ′ (z) implies that f is
analytic. Actually Looman [16] proved that it is enough to assume that f ′ (z)
exists almost everywhere if we suppose that

f (z + ξ) = f (z) +O (ξ) , as ξ → 0 , (4.16)

everywhere in Ω. This follows from the Corollary 4.3. Indeed, if R is a fixed
rectangle with R ⊂ Ω, we can find f1 continuous in all C with f1 = f in R.
Let z0 = x0 + iy0 ∈ R and define

gz0 (z) =
∮
∂Rz0,z

f1 (ζ) dζ , (4.17)

where Rz0,z is the rectangle with vertices z0 = x0 + iy0, x + iy0, z = x + iy,
and x0 + iy.

The identity

gz0 (x+ iy) = gz1 (x+ iy) + gx1+iy0 (x+ iy1) + gx0+iy1 (x1 + iy) , (4.18)

implies that h = ∂2gz0/∂x∂y does not depend on z0. The hypotheses of Corol-
lary 4.3 are satisfied in R for h for any test function φ, since (4.16) yields

gz0 (z0 + ξ) = O
(
ξ2
)
, (4.19)

for any z0 ∈ R, while the existence of f ′ (z) yields

gz0 (z0 + ξ) = o
(
ξ2
)
, (4.20)
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and this holds almost everywhere. It follows that h = 0 in R and, consequently,
gz0 = 0 in R for any z0; this implies that f is analytic in R and thus, since R
is arbitrary, in Ω.

It is also well known [5, Chapter 6] that if f is continuous in Ω, analytic in
Ω\Z, where Z is a closed set with finite linear Haussdorf measure H1 (Z) <∞,
then f is actually analytic in Ω. We can use Romanovski’s lemma, in the
version given in the Theorem 2.1, to prove the following result of Besicovitch
[2]: If f is continuous in Ω, the derivative f ′ (z) exists almost everywhere,
and f satisfies (4.16) in Ω \

⋃∞
n=1 Zn, where the Zn are closed sets of finite

linear Haussdorf measure, then f is analytic in Ω. Indeed, one may take U
to be the class of open subsets of Ω where f is analytic. Conditions IIv1 and
IIIv1 are easy, while to prove Iv1 and IVv1 one can use Baire’s theorem in the
decomposition of any K closed in Ω into a denumerable union of closed subsets
as

K =
∞⋃
n=1

(Xn ∪ Z1 · · · ∪ Zn) ∩K , (4.21)

where

Xn =
{
z :
∣∣∣∣f (z + ξ)− f (z)

ξ

∣∣∣∣ ≤ n for |ξ| ≤ 1, z + ξ ∈ Ω
}
. (4.22)

5 Continuous Extensions of Analytic Functions.

Let F be analytic in the unit disc D = {z ∈ C : |z| < 1} . Suppose that F can be
extended to an element Fex ∈ C

(
D
)
, the continuous functions in D = D∪∂D.

Then it is well known that the Cauchy integral formula

F (z) =
1

2πi

∮
|ξ|=1

f (ξ) dξ
ξ − z

, (5.1)

holds, where f is the restriction of Fex to ∂D. The set of all such restrictions
forms a well known and much studied subalgebra A of C (∂D) ; one could say
that in a sense A is of about “half the dimension” of C (∂D) , since the el-
ements of C (∂D) have distributionally convergent Fourier expansions of the
type g

(
eiθ
)

=
∑∞
n=−∞ ane

inθ, for some constants an, n ∈ Z, while the ele-
ments of A are those for which an = 0 for n < 0.

The Cauchy representation formula (5.1) holds not only for analytic func-
tions that have continuous extensions, but also in many other spaces, such
as the Hardy spaces Hp, 1 ≤ p ≤ ∞, if one takes f as the radial limit



440 Ricardo Estrada and Jasson Vindas

f (ξ) = limr→1− F (rξ) , which in such a case exists almost everywhere in
∂D and defines a Lebesgue integrable function there. It holds, in particular,
if F ∈ H∞; that is, if F is bounded in D [7, 19].

It is interesting that the mere existence of radial limits is usually not enough
for the validity of (5.1). Indeed, the function

W (z) = (z − 1) ei((z+1)/(z−1))2 , (5.2)

is analytic in D, the radial limit w (ξ) = limr→1−W (rξ) exists for all elements
ξ ∈ ∂D, and actually the function w is continuous in ∂D. However, w ∈
C (∂D) \A and the Cauchy representation formula does not hold: this is clear
because W is not bounded in D, while all elements of C

(
D
)

are.
If one considers functions with radial limits almost everywhere the situation

is even more surprising [4, 19], since if g ∈ C (∂D) and X is given a subset
of ∂D of first category (which one can take of full measure!) then there is a
function G, analytic in D, that satisfies g (ξ) = limr→1− G (rξ) for all ξ ∈ X.

We shall now use Romanovski’s lemma to show that if some extra condi-
tions are satisfied then if the almost everywhere radial limits of an analytic
function in D, F, are the restriction of a function f ∈ C (∂D) to a set of full
measure, then actually F admits an extension in C

(
D
)

and f ∈A. We shall
assume that F is bounded on radial segments and we shall also suppose that
F has distributional boundary values in the circle ∂D [1, 3, 9]. Notice that
the existence of the distributional limit f (ξ) = limr→1− F (rξ), f ∈ D′ (∂D) is
equivalent to the growth estimate

|F (z)| ≤ M

(1− |z|)α
, (5.3)

for some constants M > 0 and α ∈ R.
We need a couple of preliminary results. First, it is well known that if F is

analytic in D and if the distributional boundary value f (ξ) = limr→1− F (rξ)
exists, f ∈ D′ (∂D) , then f cannot have jump discontinuities; i.e., if the lateral
limits f (ξ+) and f (ξ−) exist at ξ ∈ ∂D, then they have to coincide f (ξ+) =
f (ξ−) [8]. This yields the following result.

Lemma 5.1. Let F be analytic in D with distributional boundary value f (ξ) =
limr→1− F (rξ), f ∈ D′ (∂D) . Suppose that there exists a bounded function f0

in ∂D and a finite set E ⊂ ∂D such that f = f0 in ∂D \E. Then f = f0 in all
of ∂D.

Proof. Indeed, f − f0 has support contained in E, and it is thus equal to a
finite sum of Dirac delta functions and its derivatives at E, f (ω) − f0 (ω) =
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∑
ξ∈E

∑n
j=0 aξ,jδ

(j) (ω − ξ) . There is a constant a and a distribution g ∈
D′ (∂D) such that f − f0 = a + g(n+1). Since g would have jumps of mag-
nitude aξ,n at each ξ ∈ E, it follows that aξ,n = 0 ∀ξ ∈ E, and, by induction,
that aξ,j = 0 for 0 ≤ j ≤ n and ξ ∈ E. Hence f = f0.

We emphasize that the previous result does not hold if the analytic function
does not have distributional boundary values: (5.2) is an example.

Using a conformal map we also obtain the following result.

Lemma 5.2. Let F be analytic in D with distributional boundary value f (ξ) =
limr→1− F (rξ), f ∈ D′ (∂D) . Suppose there is an arc I =

{
eiθ : θ1 < θ < θ2

}
of ∂D such that f is a bounded function in I,∣∣f (eiθ)∣∣ ≤M, θ1 < θ < θ2 , (5.4)

and suppose that ∣∣F (reiθj)∣∣ ≤M, 0 ≤ r < 1, j = 1, 2 . (5.5)

Then ∣∣F (reiθ)∣∣ ≤M, 0 ≤ r < 1, θ1 < θ < θ2 . (5.6)

We can now give the main result of this section.

Theorem 5.3. Let F be analytic in D and let f be continuous in ∂D. Suppose
the following three conditions are satisfied:

1. limr→1− F (rξ) = f (ξ) , almost everywhere;

2. F has distributional boundary limits in ∂D; and

3. there is a countable set E such that for all ξ ∈ ∂D\E there is a constant
Mξ <∞ with |F (rξ)| ≤Mξ for all r ∈ [0, 1).

Then f ∈A and the function Fex defined in D as F in D and as f in ∂D
belongs to C

(
D
)
.

Proof. Let B be the set of open arcs I of ∂D such that the function given
by F in D and by f in I is continuous in D∪ I. We shall show that B satisfies
the hypotheses of the Theorem 2.2.

First we prove Iv2 ; that is, that B 6= ∅. Let rn ∈ [0, 1) such that rn ↗ 1,
and consider the functions hn (ξ) = max {|F (rξ)| : 0 ≤ r ≤ rn} ; the hn are
continuous functions, and for each ξ ∈ ∂D\E we have hn (ξ) ≤Mξ. Therefore,
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using the Baire theorem, we can find a non-empty open arc I and a constant
M > 0 such that hn (ξ) ≤M for all n and for ξ ∈ I, and thus |F (rξ)| ≤M for
all r ∈ [0, 1) and ξ ∈ I. Then limr→1− F (rξ) = g (ξ) exists in a weak∗ sense
in the space of bounded functions L∞ (J) for any open arc J with J ⊂ I. But
1 implies that f = g a.e. and therefore limr→1− F (rξ) = f (ξ) uniformly in J.
Hence I ∈ B.

Conditions IIv2 and IIIv2 are clear. Finally we can establish IVv2 as follows.
Let K be a non-empty closed proper subset of ∂D, such that ∂D\K =

⋃∞
n=1 In,

where In ∈ B are disjoint. If K has an isolated point ξ0, then the Lemma 5.1
immediately yields that if J is an open arc with J ∩K = {ξ0} then J ∈ B.
When K is perfect, we can use Baire’s theorem again to obtain an open arc
J with J ∩K 6= ∅ such that for some constant M, we have |F (rξ)| ≤ M for
r ∈ [0, 1) and for ξ ∈ J ∩K. We may suppose that M ≥ maxω∈∂D |f (ω)| , and
we may also suppose that the endpoints of J belong to K and that |F (rξ)| ≤
M for r ∈ [0, 1) when ξ is one of the endpoints. If In is one of the open arcs
of ∂D \K with In ⊂ J, then its endpoints belong to J ∩K and thus we can
use the Lemma 5.2 to conclude that |F (rξ)| ≤ M for r ∈ [0, 1) and ξ ∈ In.
Therefore |F | is bounded by M in the sector z = rω, r ∈ [0, 1) and ω ∈ J. It
follows that J ∈ B.
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