RESEARCH

Tadeusz Poreda, Institute of Mathematics, Technical University of Łódź, Łódź, Poland. email: poredat@p.lodz.pl

Wiesława Poreda, Faculty of Mathematics and Computer Science, University of Łódź, Łódź, Poland. email: poreda@math.uni.lodz.pl

ON THE SUMS OF TWO QUASI-CONTINUOUS FUNCTIONS WITH CLOSED GRAPHS

Abstract

In 2000 J. Borsík, J. Doboš, and M. Repický characterized sums of quasi-continuous functions with closed graphs. More precisely, they showed that such a sum must be Baire one star, and proved that each Baire one star function defined on a separable metric space which is Baire in the strong sense is the sum of three quasi-continuous functions with closed graphs. They showed also that not every Baire one star function defined on \mathbb{R} is the sum of two quasi-continuous functions with closed graphs, and asked for characterization of such sums. The goal of this article is to present the required characterization.

1 Preliminaries.

Let \mathbb{R} and \mathbb{N} denote the real line and the set of all positive integers, respectively. The symbol ω_1 denotes the first uncountable ordinal.

Throughout the paper we consider a fixed separable metric space (X, d) which is Baire in the strong sense; i.e., each closed subset of X is a Baire space. Let B(x, r) stand for the open ball with radius r centered at x. If $x \in X$ and A is a nonvoid subset of X, then we define

$$\operatorname{dist}(x,A) \stackrel{\mathrm{df}}{=} \inf \big\{ d(x,t) \colon t \in A \big\}.$$

Mathematical Reviews subject classification: Primary: 26A21, 54C30; Secondary: 26A15, 54C08 Key words: quasi-continuous functions, closed graph

Key words: quasi-continuous functions, closed graph Received by the editors March 23, 2009

Communicated by: Krzysztof Ciesielski

If $A \subset X$, then the symbols int A and cl A denote the interior and the closure of A, respectively. The word *function* denotes a mapping from a subset of Xinto \mathbb{R} . The symbol \mathcal{C}_f stands for the set of points of continuity of a function f, and $\mathcal{D}_f \stackrel{\text{df}}{=} X \setminus \mathcal{C}_f$.

Let $f: X \to \mathbb{R}$. We say that f is a *Baire one star function* [7] (see also [6]), if for each nonempty closed set $P \subset X$, there exists an open set $U \subset X$ such that $P \cap U \neq \emptyset$ and $f \upharpoonright_{P \cap U}$ is continuous. We say that f is *quasi-continuous* in the sense of Kempisty (cf. [4]), if for each $x \in X$, each neighborhood U of x and each $\varepsilon > 0$, there is a nonvoid open set $V \subset U$ such that diam $f[V \cup \{x\}] < \varepsilon$.

J. Borsík proved in 2002 that each function with closed graph defined on a complete metric space is Baire one star [2]. Clearly the sum of Baire one star functions is Baire one star as well. Moreover each Baire one star function is the sum of two functions with closed graphs [2], and it is the sum of two quasi-continuous functions [1]. However, there are Baire one star functions defined on \mathbb{R} which cannot be written as the sum of two quasi-continuous functions with closed graphs [3]. We shall prove the following theorem.

Theorem. Let $f: X \to \mathbb{R}$. The following conditions are equivalent:

- 1. there are quasi-continuous functions with closed graphs $f_1, f_2: X \to \mathbb{R}$ such that $f = f_1 + f_2$ on X,
- 2. f is Baire one star and for each $x \in X$,

$$\lim_{t \to x, t \in \mathcal{C}_f} \sup_{|f(t)| = \infty} \quad or \quad \lim_{t \to x, t \in \mathcal{C}_f} \inf_{|f(t) - f(x)| = 0.$$
(1)

We shall divide the proof into two parts. The proof of necessity is quite simple, see below. The proof of sufficiency is postponed to the next section.

PROOF OF NECESSITY. Let $f_1, f_2: X \to \mathbb{R}$ be quasi-continuous functions with closed graphs such that $f = f_1 + f_2$ on X. By [3], f is Baire one star.

Fix an $x \in X$ such that

$$\limsup_{t \to x, t \in \mathcal{C}_f} |f(t)| < \infty.$$
⁽²⁾

Since f_1 is a quasi-continuous function defined on a Baire space X, there is a sequence $(x_n) \subset \mathcal{C}_f$ such that $x_n \to x$ and $f_1(x_n) \to f_1(x)$. (Cf., e.g., [5].) By (2), the sequence $(f_2(x_n))$ is bounded. So, it has a subsequence, say $(f_2(x_{n_k}))$, convergent to some $y \in \mathbb{R}$. Since function f_2 has closed graph, then $y = f_2(x)$. Consequently,

$$\lim_{t \to x, t \in \mathcal{C}_f} |f(t) - f(x)| \leq \lim_{k \to \infty} |f(x_{n_k}) - f(x)| \\
\leq \lim_{k \to \infty} |f_1(x_{n_k}) - f_1(x)| + \lim_{k \to \infty} |f_2(x_{n_k}) - f_2(x)| = 0.$$

2 Proof of Sufficiency.

First we define some transfinite sequence of closed subsets of X. Put

$$F_0 \stackrel{\mathrm{df}}{=} \mathrm{cl} \, \mathcal{D}_f.$$

Assume that we have already defined the closed sets F_{β} for each $\beta < \alpha$, where α is some ordinal. If $\alpha = \gamma + 1$ for some ordinal γ , then we put

$$F_{\alpha} \stackrel{\mathrm{df}}{=} \mathrm{cl}\, \mathcal{D}_{f\restriction_{F_{\gamma}}},$$

and otherwise we let

$$F_{\alpha} \stackrel{\mathrm{df}}{=} \bigcap_{\beta < \alpha} F_{\beta}.$$

It can be readily verified that $F_{\alpha_1} \supset F_{\alpha_2}$ whenever $\alpha_1 < \alpha_2$. So, $F_{\xi} = F_{\xi+1}$ for some ordinal ξ .

Since f is Baire one star, $F_{\alpha+1}$ is nowhere dense in F_{α} for each ordinal α . Using the fact that X is second countable, we conclude that there is an ordinal ξ for which $F_{\xi} = \emptyset$, and the least such ordinal is countable.

Let $(\lambda, \varrho) \colon \mathbb{N} \to \xi \times \mathbb{N}$ be any bijection. For brevity, for each closed set $A \subset X$, we define the function $h_A \colon X \setminus A \to [0, \infty)$ as follows:

$$h_A(x) \stackrel{\text{df}}{=} \begin{cases} \frac{1}{\operatorname{dist}(x,A)} & \text{if } A \text{ is nonvoid,} \\ 0 & \text{otherwise.} \end{cases}$$

For each $n \in \mathbb{N}$, we define the function $M_n: X \setminus F_{\lambda(n)+1} \to [0, \infty)$ by

$$M_n(t) \stackrel{\text{df}}{=} |f(t)| + n + h_{F_{\lambda(n)+1}}(t).$$

Moreover for each $n \in \mathbb{N}$ and each $t \in X \setminus F_{\lambda(n)+1}$, we define

10

$$U_n(t) \stackrel{\text{df}}{=} (f(t) - (2n)^{-1}, f(t) + (2n)^{-1}) \cup (-\infty, -2M_n(t)) \cup (2M_n(t), \infty).$$

2.1 Families $\mathcal{L}_{\varrho(n)}^{\lambda(n)}$.

For each $n \in \mathbb{N}$, we shall construct the family $\mathcal{L}_{\varrho(n)}^{\lambda(n)}$, consisting of pairwise disjoint open sets, so that the following conditions are satisfied:

- (E1) diam $K < (2n)^{-1}$ for each $K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}$,
- (E2) the set $E_n \stackrel{\text{df}}{=} \bigcup_{K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}} \operatorname{cl} K$ is a subset of $X \setminus F_0$ which is closed in X,
- (E3) $E_n \subset \bigcup_{x \in F_{\lambda(n)}} B(x, 2n^{-1}) \setminus (F_0 \cup \bigcup_{i < n} E_i),$
- (E4) $B(x, 2n^{-1}) \cap E_n \neq \emptyset$ for each $x \in F_{\lambda(n)} \setminus F_{\lambda(n)+1}$,
- (E5) cl $K \subset B(x, 2 \operatorname{dist}(x, K))$ for each $x \in F_0$ and each $K \in \mathcal{L}_{\rho(n)}^{\lambda(n)}$,
- (E6) for each $K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}$, there exists an $a_K \in F_{\lambda(n)} \setminus F_{\lambda(n)+1}$ such that $\operatorname{dist}(a_K, K) < n^{-1}$ and

$$(\forall z \in K) |f(a_K) - f(z)| < n^{-1} \text{ or } (\forall z \in K) |f(z)| > M_n(a_K),$$

(E7) for each $\alpha < \xi$ and each $x \in F_0 \setminus F_\alpha$, there exists an r > 0 such that

$$\lambda(n) \ge \alpha \Rightarrow B(x, r) \cap E_n = \emptyset.$$

Fix an $n \in \mathbb{N}$ and assume that we have already defined the families $\mathcal{L}_{\varrho(i)}^{\lambda(i)}$ for all i < n. Put

$$T_n \stackrel{\mathrm{df}}{=} \bigcup_{x \in F_{\lambda(n)} \setminus F_{\lambda(n)+1}} f^{-1}(U_n(x)) \cap B(x, n^{-1}) \setminus \left(F_0 \cup \bigcup_{i < n} E_i\right) \subset \mathfrak{C}_f.$$

For each $t \in T_n$, choose $\varphi_n(t) > 0$ so that

$$\varphi_n(t) < \operatorname{dist}\left(t, F_0 \cup \bigcup_{i < n} E_i\right)/4 \text{ and } \operatorname{diam} f[B(t, \varphi_n(t))] < (2n)^{-1}.$$
 (3)

Observe that for each $t \in T_n$,

$$\varphi_n(t) < \operatorname{dist}\left(t, F_0 \cup \bigcup_{i < n} E_i\right)/4 \le \operatorname{dist}(t, F_{\lambda(n)})/4 < (4n)^{-1}.$$
 (4)

Sums of Two Quasi-continuous Functions with Closed Graphs 417

Let S_n be a maximal (with respect to inclusion) subset of T_n with the property that

$$d(x,y) > n^{-1}$$
 whenever $x, y \in S_n$ and $x \neq y$. (5)

Define

$$\mathcal{L}_{\varrho(n)}^{\lambda(n)} \stackrel{\mathrm{df}}{=} \big\{ B(t, \varphi_n(t)) \colon t \in S_n \big\}.$$

We shall verify that the family $\mathcal{L}_{\varrho(n)}^{\lambda(n)}$ fulfills (E1)–(E7).

Let $t \in S_n$. Then by (4), diam $B(t, \varphi_n(t)) \leq 2\varphi_n(t) < (2n)^{-1}$.

To prove (E2) fix an $x \in \operatorname{cl} E_n$. Let $(x_k) \subset E_n$ be convergent to x. For each k, choose a $t_k \in S_n$ such that $x_k \in \operatorname{cl} B(t_k, \varphi_n(t_k))$. Observe that there is a $k_0 \in \mathbb{N}$ such that for each $k > k_0$, by (4),

$$d(t_k, t_{k+1}) \le d(t_k, x_k) + d(x_k, x) + d(x, x_{k+1}) + d(x_{k+1}, t_{k+1}) < n^{-1}$$

So by (5), $t_k = t_{k_0}$ for $k > k_0$, and consequently, $x \in \operatorname{cl} B(t_{k_0}, \varphi_n(t_{k_0})) \subset E_n$. Let $t \in S_n$ and $z \in \operatorname{cl} B(t, \varphi_n(t))$. Then $t \in T_n$, so by (4),

$$\operatorname{dist}(z, F_{\lambda(n)}) \le d(z, t) + \operatorname{dist}(t, F_{\lambda(n)}) < \varphi_n(t) + n^{-1} < 2n^{-1}$$

On the other hand,

$$\operatorname{dist}\left(z, F_0 \cup \bigcup_{i < n} E_i\right) \ge \operatorname{dist}\left(t, F_0 \cup \bigcup_{i < n} E_i\right) - d(z, t) > 3\varphi_n(t) > 0.$$

It follows that $z \in \bigcup_{x \in F_{\lambda(n)}} B(x, 2n^{-1}) \setminus (F_0 \cup \bigcup_{i < n} E_i)$. Now let $x \in F_{\lambda(n)} \setminus F_{\lambda(n)+1}$. Take any m > n with

$$m^{-1} \leq \operatorname{dist}\left(x, \bigcup_{i < n} E_i\right).$$

By (1), there is a $z \in f^{-1}(U_n(x)) \cap B(x, m^{-1}) \setminus F_0$. Clearly $z \in T_n$. If $z \in S_n$, then we are done. So, assume that $z \notin S_n$. Then by the maximality of S_n , there exists a $t \in S_n$ with $d(z,t) \leq n^{-1}$, whence $t \in B(x,2n^{-1}) \cap E_n$. Fix $x \in F_0$ and $K = B(t,\varphi_n(t)) \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}$. Then

$$\operatorname{dist}(x,K) \ge d(x,t) - \varphi_n(t) \ge \operatorname{dist}(t,F_0) - \varphi_n(t) > 3\varphi_n(t) > \operatorname{diam} K$$

and

$$\operatorname{cl} K \subset \operatorname{cl} B(x,\operatorname{dist}(x,K) + \operatorname{diam} K) \subset B(x,2\operatorname{dist}(x,K)).$$

Take any $t \in S_n$ and $z \in K \stackrel{\text{df}}{=} B(t, \varphi_n(t))$. By definition, there is an $a_K \in F_{\lambda(n)} \setminus F_{\lambda(n)+1}$ such that $t \in f^{-1}(U_n(a_K)) \cap B(a_K, n^{-1})$. Then clearly $\operatorname{dist}(a_K, K) < n^{-1}$. If $|f(t) - f(a_K)| < (2n)^{-1}$, then by (3),

$$|f(a_K) - f(z)| \le |f(a_K) - f(t)| + \operatorname{diam} f[K] < n^{-1}.$$

Otherwise $|f(t)| > 2M_n(a_K) > M_n(a_K) + n$. Using again (3), we obtain

$$|f(z)| \ge |f(t)| - \operatorname{diam} f[K] > M_n(a_K).$$

Now fix $\alpha < \xi$ and $x \in F_0 \setminus F_\alpha$. Then $\operatorname{dist}(x, F_\alpha) > 4m^{-1}$ for some $m \in \mathbb{N}$. By (E2) and (E3),

$$V \stackrel{\text{df}}{=} B(x, 2m^{-1}) \setminus \bigcup_{n < m} E_n \tag{6}$$

is an open neighborhood of x. Choose an $r \in (0, m^{-1})$ so that $B(x, r) \subset V$.

Finally fix an $n \in \mathbb{N}$ with $\lambda(n) \geq \alpha$ and take any $K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}$. If n < m, then by (6),

$$B(x,r) \cap \operatorname{cl} K \subset V \cap E_n = \emptyset.$$

In the opposite case by (E3),

$$B(x,r) \cap \operatorname{cl} K \subset B(x,r) \cap \bigcup_{x \in F_{\alpha}} B(x,2m^{-1}) = \emptyset.$$

2.2 The Main Part of the Proof of the Theorem.

First observe that

for each $t \in X \setminus F_0$, there exists an r > 0 such that $\operatorname{cl} K \cap B(t, r) \neq \emptyset$ for at most one $K \in \bigcup_{n \in \mathbb{N}} \mathcal{L}_{\varrho(n)}^{\lambda(n)}$. (7)

For this, fix a $t \in X \setminus F_0$. Then $dist(t, F_0) > 4m^{-1}$ for some $m \in \mathbb{N}$. Observe that by (E3),

$$\bigcup_{n\geq m}E_n\subset \bigcup_{n\geq m}\bigcup_{x\in F_{\lambda(n)}}B(x,2n^{-1})\subset \bigcup_{n\geq m}\bigcup_{x\in F_{\lambda(n)}}B(x,2m^{-1}),$$

whence $B(t, 2m^{-1}) \cap \bigcup_{n \ge m} E_n = \emptyset$. By (E2), the set $\bigcup_{n < m} E_n$ is closed. So, if $t \notin \bigcup_{n \in \mathbb{N}} E_n$, then $B(t, r) \cap \bigcup_{n \in \mathbb{N}} E_n = \emptyset$ for some r > 0. Otherwise since by (E3), the sets E_1, E_2, \ldots are pairwise disjoint, there is a unique k < m

such that $t \in E_k$. By (5), there is a unique $K \in \mathcal{L}_{\varrho(k)}^{\lambda(k)}$ with $t \in \operatorname{cl} K$. Using again (5) we can find an r > 0 such that

$$B(t,r) \cap \left((E_k \setminus K) \cup \bigcup_{n \neq k} E_n \right) = \emptyset$$

Observe also that by (E5), for each $x \in F_0$ and each $K \in \bigcup_{n \in \mathbb{N}} \mathcal{L}_{\varrho(n)}^{\lambda(n)}$,

 $\operatorname{diam}(\{x\} \cup K) \le \operatorname{diam} B(x, 2\operatorname{dist}(x, K)) \le 4\operatorname{dist}(x, K).$ (8)

The following notation is standard. For $x \in X$, we define

$$f^+(x) \stackrel{\text{df}}{=} \max\{f(x), 0\}, \ f^-(x) \stackrel{\text{df}}{=} \max\{-f(x), 0\}.$$

Define the functions $f_1, f_2 \colon X \to \mathbb{R}$ as follows:

$$f_{1}(x) \stackrel{\text{df}}{=} \begin{cases} f^{+}(x) + h_{D}(x) & \text{if } x \in X \setminus D, \\ f^{+}(x) + h_{F_{\alpha+1}}(x) & \text{if } x \in F_{\alpha} \setminus F_{\alpha+1}, \, \alpha < \xi, \\ f^{+}(a_{K}) + h_{F_{\lambda(n)+1}}(a_{K}) & \text{if } x \in \text{cl } K, \, K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}, \, \varrho(n) \text{ even}, \\ f(x) + f^{-}(a_{K}) + h_{F_{\lambda(n)+1}}(a_{K}) & \text{if } x \in \text{cl } K, \, K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}, \, \varrho(n) \text{ odd}, \end{cases}$$
$$f_{2}(x) \stackrel{\text{df}}{=} \begin{cases} -f^{-}(x) - h_{D}(x) & \text{if } x \in X \setminus D, \\ -f^{-}(x) - h_{F_{\alpha+1}}(x) & \text{if } x \in F_{\alpha} \setminus F_{\alpha+1}, \, \alpha < \xi, \\ f(x) - f^{+}(a_{K}) - h_{F_{\lambda(n)+1}}(a_{K}) & \text{if } x \in \text{cl } K, \, K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}, \, \varrho(n) \text{ even}, \\ -f^{-}(a_{K}) - h_{F_{\lambda(n)+1}}(a_{K}) & \text{if } x \in \text{cl } K, \, K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}, \, \varrho(n) \text{ odd}, \end{cases}$$

where

$$D \stackrel{\mathrm{df}}{=} F_0 \cup \bigcup_{n \in \mathbb{N}} \bigcup_{K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}} \mathrm{cl}\, K = F_0 \cup \bigcup_{n \in \mathbb{N}} E_n.$$

Observe that D is closed.

Indeed, let $(t_k) \subset D$ be convergent to some $t_0 \in X$. If there is a subsequence $(t_{k_m}) \subset F_0$, then $t_0 \in \operatorname{cl} F_0 \subset D$.

So, assume that for each k, there is an $n_k \in \mathbb{N}$ such that $t_k \in E_{n_k}$. If $n_k = n_0$ for infinitely many k, then by (E2), $t_0 \in E_{n_0} \subset D$.

Finally if $n_k \to \infty$, then by (E3), for each k, there is an $x_k \in F_{\lambda(n_k)} \subset F_0$ such that $t_k \in B(x_k, 2n_k^{-1})$. Consequently,

$$d(x_k, t_0) \le d(x_k, t_k) + d(t_k, t_0) \le 2n_k^{-1} + d(t_k, t_0) \to 0$$

and $t_0 \in \operatorname{cl} F_0 \subset D$.

Clearly $f = f_1 + f_2$ on X. We shall verify that f_1 is quasi-continuous and its graph is closed. The proofs of the analogous statements for f_2 are similar, we shall omit them.

2.2.1 f_1 is Quasi-continuous.

Fix an $x \in X$, a neighborhood U of x, and an $\varepsilon \in (0, 1)$. We consider several cases.

If $x \notin D$, then f_1 is continuous at x. So, the set

$$V \stackrel{\text{df}}{=} U \cap f_1^{-1}((f_1(x) - \varepsilon/3, f_1(x) + \varepsilon/3))$$

is an open neighborhood of x contained in U such that diam $f_1[V] < \varepsilon$.

If $x \in D \setminus F_0$, then there is an $n \in \mathbb{N}$ and a $K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}$ with $x \in \operatorname{cl} K$. Since $f_1|_{\operatorname{cl} K}$ is continuous, the set

$$V \stackrel{\mathrm{df}}{=} U \cap K \cap f_1^{-1}((f_1(x) - \varepsilon/3, f_1(x) + \varepsilon/3))$$

is a nonvoid and open subset of U such that diam $f_1[V \cup \{x\}] < \varepsilon$.

Finally assume that $x \in F_{\alpha} \setminus F_{\alpha+1}$ for some $\alpha < \xi$. Since $f \upharpoonright_{F_{\alpha} \setminus F_{\alpha+1}}$ is continuous, we can choose an $r \in (0,1)$ such that $B(x,3r) \subset U \setminus F_{\alpha+1}$ and diam $f[B(x,2r) \cap F_{\alpha}] < \varepsilon/2$. Let $n > 6r^{-2}\varepsilon^{-1}$ be such that $\varrho(n)$ is even and $\lambda(n) = \alpha$. By (E4), there is a $K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}$ such that $V \stackrel{\text{df}}{=} B(x,2n^{-1}) \cap K \neq \emptyset$. Notice that V is a nonvoid open subset of U. Choose $a_K \in F_{\alpha} \setminus F_{\alpha+1}$ according to (E6). Then by (8),

$$d(x, a_K) \le \operatorname{diam}(\{x\} \cup K) + \operatorname{dist}(a_K, K) \le 4 \operatorname{dist}(x, K) + n^{-1} < 9n^{-1} < 2r.$$

Hence dist $(a_K, F_{\alpha+1}) \ge dist(x, F_{\alpha+1}) - d(x, a_K) > r$ and

diam
$$f_1[V \cup \{x\}] = |f^+(a_K) + h_{F_{\lambda(n)+1}}(a_K) - f^+(x) - h_{F_{\alpha+1}}(x)|$$

 $\leq |f^+(a_K) - f^+(x)| + |h_{F_{\alpha+1}}(a_K) - h_{F_{\alpha+1}}(x)|$
 $< \varepsilon/2 + \frac{|\operatorname{dist}(x, F_{\alpha+1}) - \operatorname{dist}(a_K, F_{\alpha+1})|}{\operatorname{dist}(a_K, F_{\alpha+1}) \operatorname{dist}(x, F_{\alpha+1})}$
 $< \varepsilon/2 + \frac{d(x, a_K)}{3r^2} < \varepsilon/2 + \frac{3}{nr^2} < \varepsilon.$

2.2.2 The Graph of f_1 is Closed.

Now take any point $\langle x, y \rangle$ from the closure of the graph of f_1 . Let $(x_k) \subset X$ be such that $x_k \to x$ and $f_1(x_k) \to y$. We shall prove that $y = f_1(x)$. We consider several cases.

• If there is a subsequence $(x_{k_m}) \subset F_0$, then $x \in F_0$, whence $x \in F_\alpha \setminus F_{\alpha+1}$ for some $\alpha < \xi$. For each $m \in \mathbb{N}$, there is a unique $\alpha_m < \xi$ such that $x_{k_m} \in F_{\alpha_m} \setminus F_{\alpha_{m+1}}$. Since $F_{\alpha+1}$ is closed, $\alpha_m \leq \alpha$ for sufficiently big m.

420

Notice that $f_1 \geq 0$ on F_0 , whence $y \geq 0$. For sufficiently big m, we have $d(x_{k_m}, x) < (y+1)^{-1}$ and $f_1(x_{k_m}) < y+1$. Then $\operatorname{dist}(x_{k_m}, F_{\alpha_m+1}) = \frac{1}{h_{F_{\alpha_m+1}}(x_{k_m})} \geq \frac{1}{f_1(x_{k_m})} > \frac{1}{y+1} > d(x_{k_m}, x)$, whence $x \notin F_{\alpha_m+1}$ and $\alpha_m = \alpha$. Since $f \upharpoonright_{F_{\alpha} \setminus F_{\alpha+1}}$ is continuous,

$$y = \lim_{k \to \infty} f_1(x_k) = \lim_{m \to \infty} \left(f^+(x_{k_m}) + h_{F_{\alpha+1}}(x_{k_m}) \right) = f^+(x) + h_{F_{\alpha+1}}(x) = f_1(x).$$

• If there is a subsequence $(x_{k_m}) \subset X \setminus D$, then $\limsup_{m \to \infty} h_D(x_{k_m}) \leq \lim_{m \to \infty} f_1(x_{k_m}) = y < \infty$. Hence $x = \lim_{m \to \infty} x_{k_m} \in X \setminus D \subset \mathcal{C}_{f_1}$ and $y = f_1(x)$.

• Finally assume that $(x_k) \subset D \setminus F_0$. For each k, there are unique $n_k \in \mathbb{N}$ and $K_k \in \mathcal{L}_{\varrho(n_k)}^{\lambda(n_k)}$ such that $x_k \in K_k$. If $x \notin F_0$, then by (7), there is an $n \in \mathbb{N}$ and a $K \in \mathcal{L}_{\varrho(n)}^{\lambda(n)}$ such that $K_k = K$ for sufficiently big k. By (E2), $f_1 \upharpoonright_{cl K}$ is continuous, whence $y = f_1(x)$. Now assume that $x \in F_\alpha \setminus F_{\alpha+1}$ for some $\alpha < \xi$. Use (E7) to find an $r \in (0, (2|y|+1)^{-1})$ such that

$$(\forall n \in \mathbb{N}) \left(\lambda(n) > \alpha \Rightarrow B(x, r) \cap E_n = \emptyset \right).$$
(9)

For each k, choose a_{K_k} according to (E6). Notice that by (E2), there is no constant subsequence of (n_k) . Consequently, $n_k \to \infty$ and by (8),

$$d(x, a_{K_k}) \le \operatorname{diam}(\{x\} \cup K_k) + \operatorname{dist}(a_{K_k}, K_k) \le 4d(x, x_k) + n_k^{-1} \to 0.$$
(10)

So, there is a $k_0 \in \mathbb{N}$ such that

$$d(x_k, x) < r$$
 and $|f_1(x_k)| < |y| + 2^{-1} < n_k$ for $k > k_0$. (11)

By (9), $\lambda(n_k) \leq \alpha$ for each $k > k_0$. We consider two subcases.

▲ Assume that there is a subsequence (n_{k_m}) such that $\varrho(n_{k_m})$ is even for each m. For sufficiently big m, we have $k_m > k_0$ and $n_{k_m} > 2|y| + 1$. Then

$$d(x_{k_m}, F_{\lambda(n_{k_m})+1}) \ge d(a_{K_{k_m}}, F_{\lambda(n_{k_m})+1}) - d(x_{k_m}, a_{k_m})$$

> $\frac{1}{f_1(x_{k_m})} - n_{k_m}^{-1} > \frac{1}{2|y|+1} > d(x_{k_m}, x),$

whence $x \notin F_{\lambda(n_{k_m})+1}$ and by (9), $\lambda(n_{k_m}) = \alpha$. Since $f \upharpoonright_{F_{\alpha} \setminus F_{\alpha+1}}$ is continuous, $y = \lim_{m \to \infty} (f^+(x_{k_m}) + h_{F_{\lambda(n_{k_m})+1}}(x_{k_m})) = f^+(x) + h_{F_{\alpha+1}}(x) = f_1(x).$

▲ So, assume that $\rho(n_k)$ is odd for each k. Then for each $k > k_0$, by (11),

$$|f(x_k)| \le |f(x_k) + f^-(a_{K_k}) + h_{F_{\lambda(n_k)+1}}(a_{K_k})| + |f^-(a_{K_k})| + h_{F_{\lambda(n_k)+1}}(a_{K_k})$$

= $|f_1(x_k)| + |f^-(a_{K_k})| + h_{F_{\lambda(n_k)+1}}(a_{K_k}) < M_{n_k}(a_{K_k}),$

whence by (E6),

$$|f(a_{K_k}) - f(x_k)| < n_k^{-1}.$$
(12)

It follows that

$$|y| + 2^{-1} > f_1(x_k) = f(x_k) + f^-(a_{K_k}) + h_{F_{\lambda(n_k)+1}}(a_{K_k})$$

$$\geq h_{F_{\lambda(n_k)+1}}(a_{K_k}) - |f(x_k) - f(a_{K_k})| + (f(a_{K_k}) + f^-(a_{K_k}))$$

$$> h_{F_{\lambda(n_k)+1}}(a_{K_k}) - n_k^{-1}.$$

By (10), we conclude that $x \notin F_{\lambda(n_k)+1}$, and by (9), that $\lambda(n_k) = \alpha$. Recall that $f^+ \upharpoonright_{F_{\alpha} \setminus F_{\alpha+1}}$ is continuous. So by (12) and (10),

$$\begin{aligned} |y - f_1(x)| &= \lim_{k \to \infty} |f_1(x_k) - f_1(x)| \\ &= \lim_{k \to \infty} |f(x_k) + f^-(a_{K_k}) + h_{F_{\lambda(n_k)+1}}(a_{K_k}) - f^+(x) - h_{F_{\alpha+1}}(x)| \\ &\leq \lim_{k \to \infty} |f(x_k) - f(a_{K_k})| + \lim_{k \to \infty} |f^+(a_{K_k}) - f^+(x)| \\ &+ \lim_{k \to \infty} |h_{F_{\alpha+1}}(a_{K_k}) - h_{F_{\alpha+1}}(x)| = 0. \end{aligned}$$

This completes the proof.

References

- J. Borsík, Sums of quasicontinuous functions defined on pseudometrizable spaces, Real Anal. Exch., 22(1) (1996), 328–337.
- [2] J. Borsík, Sums, differences, products and quotients of closed graph functions, Tatra Mt. Math. Publ., 24(2) (2002), 117–123.
- [3] J. Borsík, J. Doboš, and M. Repický, Sums of quasicontinuous functions with closed graphs, Real Anal. Exch., 25(2) (2000), 679–690.
- [4] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19 (1932), 184–197.
- [5] T. Neubrunn, Quasi-continuity, Real Anal. Exch., 14(2) (1988–89), 259– 306.
- [6] R. J. O'Malley, Baire* 1, Darboux functions, Proc. Amer. Math. Soc., 60 (1976), 187–192.
- [7] D.E. Peek, Characterizations of Baire* 1 functions in general settings, Proc. Amer. Math. Soc., 95 (1985), 557–580.

422