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 Lódź, Poland. email: poredat@p.lodz.pl
Wies lawa Poreda, Faculty of Mathematics and Computer Science, University
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ON THE SUMS OF TWO
QUASI-CONTINUOUS FUNCTIONS

WITH CLOSED GRAPHS

Abstract

In 2000 J. Borśık, J. Doboš, and M. Repický characterized sums
of quasi-continuous functions with closed graphs. More precisely, they
showed that such a sum must be Baire one star, and proved that each
Baire one star function defined on a separable metric space which is
Baire in the strong sense is the sum of three quasi-continuous functions
with closed graphs. They showed also that not every Baire one star
function defined on R is the sum of two quasi-continuous functions with
closed graphs, and asked for characterization of such sums. The goal of
this article is to present the required characterization.

1 Preliminaries.

Let R and N denote the real line and the set of all positive integers, respectively.
The symbol ω1 denotes the first uncountable ordinal.

Throughout the paper we consider a fixed separable metric space (X, d)
which is Baire in the strong sense; i.e., each closed subset of X is a Baire space.
Let B(x, r) stand for the open ball with radius r centered at x. If x ∈ X and
A is a nonvoid subset of X, then we define

dist(x,A) df= inf
{
d(x, t) : t ∈ A

}
.
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If A ⊂ X, then the symbols intA and clA denote the interior and the closure
of A, respectively. The word function denotes a mapping from a subset of X
into R. The symbol Cf stands for the set of points of continuity of a function f ,

and Df
df= X \ Cf .

Let f : X → R. We say that f is a Baire one star function [7] (see also [6]),
if for each nonempty closed set P ⊂ X, there exists an open set U ⊂ X such
that P ∩U 6= ∅ and f�P∩U is continuous. We say that f is quasi-continuous in
the sense of Kempisty (cf. [4]), if for each x ∈ X, each neighborhood U of x and
each ε > 0, there is a nonvoid open set V ⊂ U such that diam f [V ∪ {x}] < ε.

J. Borśık proved in 2002 that each function with closed graph defined on a
complete metric space is Baire one star [2]. Clearly the sum of Baire one star
functions is Baire one star as well. Moreover each Baire one star function is
the sum of two functions with closed graphs [2], and it is the sum of two quasi-
continuous functions [1]. However, there are Baire one star functions defined
on R which cannot be written as the sum of two quasi-continuous functions
with closed graphs [3]. We shall prove the following theorem.

Theorem. Let f : X → R. The following conditions are equivalent :

1. there are quasi-continuous functions with closed graphs f1, f2 : X → R
such that f = f1 + f2 on X,

2. f is Baire one star and for each x ∈ X,

lim sup
t→x,t∈Cf

|f(t)| =∞ or lim inf
t→x,t∈Cf

|f(t)− f(x)| = 0. (1)

We shall divide the proof into two parts. The proof of necessity is quite
simple, see below. The proof of sufficiency is postponed to the next section.

Proof of necessity. Let f1, f2 : X → R be quasi-continuous functions with
closed graphs such that f = f1 + f2 on X. By [3], f is Baire one star.

Fix an x ∈ X such that

lim sup
t→x,t∈Cf

|f(t)| <∞. (2)

Since f1 is a quasi-continuous function defined on a Baire space X, there is
a sequence (xn) ⊂ Cf such that xn → x and f1(xn) → f1(x). (Cf., e.g.,
[5].) By (2), the sequence (f2(xn)) is bounded. So, it has a subsequence,
say (f2(xnk)), convergent to some y ∈ R. Since function f2 has closed graph,
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then y = f2(x). Consequently,

lim inf
t→x,t∈Cf

|f(t)− f(x)| ≤ lim
k→∞

|f(xnk)− f(x)|

≤ lim
k→∞

|f1(xnk)− f1(x)|+ lim
k→∞

|f2(xnk)− f2(x)| = 0.

2 Proof of Sufficiency.

First we define some transfinite sequence of closed subsets of X. Put

F0
df= cl Df .

Assume that we have already defined the closed sets Fβ for each β < α, where
α is some ordinal. If α = γ + 1 for some ordinal γ, then we put

Fα
df= cl Df�Fγ

,

and otherwise we let
Fα

df=
⋂
β<α

Fβ .

It can be readily verified that Fα1 ⊃ Fα2 whenever α1 < α2. So, Fξ = Fξ+1

for some ordinal ξ.
Since f is Baire one star, Fα+1 is nowhere dense in Fα for each ordinal α.

Using the fact that X is second countable, we conclude that there is an ordi-
nal ξ for which Fξ = ∅, and the least such ordinal is countable.

Let (λ, %) : N → ξ × N be any bijection. For brevity, for each closed set
A ⊂ X, we define the function hA : X \A→ [0,∞) as follows:

hA(x) df=


1

dist(x,A)
if A is nonvoid,

0 otherwise.

For each n ∈ N, we define the function Mn : X \ Fλ(n)+1 → [0,∞) by

Mn(t) df= |f(t)|+ n+ hFλ(n)+1(t).

Moreover for each n ∈ N and each t ∈ X \ Fλ(n)+1, we define

Un(t) df= (f(t)− (2n)−1, f(t) + (2n)−1) ∪ (−∞,−2Mn(t)) ∪ (2Mn(t),∞).
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2.1 Families L
λ(n)
%(n) .

For each n ∈ N, we shall construct the family L
λ(n)
%(n) , consisting of pairwise

disjoint open sets, so that the following conditions are satisfied:

(E1) diamK < (2n)−1 for each K ∈ L
λ(n)
%(n) ,

(E2) the set En
df=
⋃
K∈L

λ(n)
%(n)

clK is a subset of X \ F0 which is closed in X,

(E3) En ⊂
⋃
x∈Fλ(n)

B(x, 2n−1) \
(
F0 ∪

⋃
i<nEi

)
,

(E4) B(x, 2n−1) ∩ En 6= ∅ for each x ∈ Fλ(n) \ Fλ(n)+1,

(E5) clK ⊂ B(x, 2 dist(x,K)) for each x ∈ F0 and each K ∈ L
λ(n)
%(n) ,

(E6) for each K ∈ L
λ(n)
%(n) , there exists an aK ∈ Fλ(n) \ Fλ(n)+1 such that

dist(aK ,K) < n−1 and

(∀z ∈ K) |f(aK)− f(z)| < n−1 or (∀z ∈ K) |f(z)| > Mn(aK),

(E7) for each α < ξ and each x ∈ F0 \ Fα, there exists an r > 0 such that

λ(n) ≥ α⇒ B(x, r) ∩ En = ∅.

Fix an n ∈ N and assume that we have already defined the families L
λ(i)
%(i)

for all i < n. Put

Tn
df=

⋃
x∈Fλ(n)\Fλ(n)+1

f−1(Un(x)) ∩B(x, n−1) \
(
F0 ∪

⋃
i<n

Ei

)
⊂ Cf .

For each t ∈ Tn, choose ϕn(t) > 0 so that

ϕn(t) < dist
(
t, F0 ∪

⋃
i<n

Ei

)
/4 and diam f [B(t, ϕn(t))] < (2n)−1. (3)

Observe that for each t ∈ Tn,

ϕn(t) < dist
(
t, F0 ∪

⋃
i<n

Ei

)
/4 ≤ dist(t, Fλ(n))/4 < (4n)−1. (4)



Sums of Two Quasi-continuous Functions with Closed Graphs 417

Let Sn be a maximal (with respect to inclusion) subset of Tn with the
property that

d(x, y) > n−1 whenever x, y ∈ Sn and x 6= y. (5)

Define
L
λ(n)
%(n)

df=
{
B(t, ϕn(t)) : t ∈ Sn

}
.

We shall verify that the family L
λ(n)
%(n) fulfills (E1)–(E7).

Let t ∈ Sn. Then by (4), diamB(t, ϕn(t)) ≤ 2ϕn(t) < (2n)−1.
To prove (E2) fix an x ∈ clEn. Let (xk) ⊂ En be convergent to x. For

each k, choose a tk ∈ Sn such that xk ∈ clB(tk, ϕn(tk)). Observe that there
is a k0 ∈ N such that for each k > k0, by (4),

d(tk, tk+1) ≤ d(tk, xk) + d(xk, x) + d(x, xk+1) + d(xk+1, tk+1) < n−1.

So by (5), tk = tk0 for k > k0, and consequently, x ∈ clB(tk0 , ϕn(tk0)) ⊂ En.
Let t ∈ Sn and z ∈ clB(t, ϕn(t)). Then t ∈ Tn, so by (4),

dist(z, Fλ(n)) ≤ d(z, t) + dist(t, Fλ(n)) < ϕn(t) + n−1 < 2n−1.

On the other hand,

dist
(
z, F0 ∪

⋃
i<n

Ei

)
≥ dist

(
t, F0 ∪

⋃
i<n

Ei

)
− d(z, t) > 3ϕn(t) > 0.

It follows that z ∈
⋃
x∈Fλ(n)

B(x, 2n−1) \
(
F0 ∪

⋃
i<nEi

)
.

Now let x ∈ Fλ(n) \ Fλ(n)+1. Take any m > n with

m−1 ≤ dist
(
x,
⋃
i<n

Ei

)
.

By (1), there is a z ∈ f−1(Un(x))∩B(x,m−1) \F0. Clearly z ∈ Tn. If z ∈ Sn,
then we are done. So, assume that z /∈ Sn. Then by the maximality of Sn,
there exists a t ∈ Sn with d(z, t) ≤ n−1, whence t ∈ B(x, 2n−1) ∩ En.

Fix x ∈ F0 and K = B(t, ϕn(t)) ∈ L
λ(n)
%(n) . Then

dist(x,K) ≥ d(x, t)− ϕn(t) ≥ dist(t, F0)− ϕn(t) > 3ϕn(t) > diamK

and
clK ⊂ clB(x, dist(x,K) + diamK) ⊂ B(x, 2 dist(x,K)).



418 Tadeusz Poreda, Wies lawa Poreda

Take any t ∈ Sn and z ∈ K
df= B(t, ϕn(t)). By definition, there is an

aK ∈ Fλ(n) \ Fλ(n)+1 such that t ∈ f−1(Un(aK)) ∩ B(aK , n−1). Then clearly
dist(aK ,K) < n−1. If |f(t)− f(aK)| < (2n)−1, then by (3),

|f(aK)− f(z)| ≤ |f(aK)− f(t)|+ diam f [K] < n−1.

Otherwise |f(t)| > 2Mn(aK) > Mn(aK) + n. Using again (3), we obtain

|f(z)| ≥ |f(t)| − diam f [K] > Mn(aK).

Now fix α < ξ and x ∈ F0 \Fα. Then dist(x, Fα) > 4m−1 for some m ∈ N.
By (E2) and (E3),

V
df= B(x, 2m−1) \

⋃
n<m

En (6)

is an open neighborhood of x. Choose an r ∈ (0,m−1) so that B(x, r) ⊂ V .
Finally fix an n ∈ N with λ(n) ≥ α and take any K ∈ L

λ(n)
%(n) . If n < m,

then by (6),
B(x, r) ∩ clK ⊂ V ∩ En = ∅.

In the opposite case by (E3),

B(x, r) ∩ clK ⊂ B(x, r) ∩
⋃
x∈Fα

B(x, 2m−1) = ∅.

2.2 The Main Part of the Proof of the Theorem.

First observe that

for each t ∈ X \ F0, there exists an r > 0 such that clK ∩B(t, r) 6= ∅
for at most one K ∈

⋃
n∈N L

λ(n)
%(n) . (7)

For this, fix a t ∈ X \ F0. Then dist(t, F0) > 4m−1 for some m ∈ N. Observe
that by (E3),⋃

n≥m

En ⊂
⋃
n≥m

⋃
x∈Fλ(n)

B(x, 2n−1) ⊂
⋃
n≥m

⋃
x∈Fλ(n)

B(x, 2m−1),

whence B(t, 2m−1) ∩
⋃
n≥mEn = ∅. By (E2), the set

⋃
n<mEn is closed. So,

if t /∈
⋃
n∈N En, then B(t, r) ∩

⋃
n∈N En = ∅ for some r > 0. Otherwise since

by (E3), the sets E1, E2, . . . are pairwise disjoint, there is a unique k < m
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such that t ∈ Ek. By (5), there is a unique K ∈ L
λ(k)
%(k) with t ∈ clK. Using

again (5) we can find an r > 0 such that

B(t, r) ∩
(

(Ek \K) ∪
⋃
n 6=k

En

)
= ∅.

Observe also that by (E5), for each x ∈ F0 and each K ∈
⋃
n∈N L

λ(n)
%(n) ,

diam({x} ∪K) ≤ diamB(x, 2 dist(x,K)) ≤ 4 dist(x,K). (8)

The following notation is standard. For x ∈ X, we define

f+(x) df= max{f(x), 0}, f−(x) df= max{−f(x), 0}.

Define the functions f1, f2 : X → R as follows:

f1(x) df=


f+(x) + hD(x) if x ∈ X \D,
f+(x) + hFα+1(x) if x ∈ Fα \ Fα+1, α < ξ,
f+(aK) + hFλ(n)+1(aK) if x ∈ clK, K ∈ L

λ(n)
%(n) , %(n) even,

f(x) + f−(aK) + hFλ(n)+1(aK) if x ∈ clK, K ∈ L
λ(n)
%(n) , %(n) odd,

f2(x) df=


−f−(x)− hD(x) if x ∈ X \D,
−f−(x)− hFα+1(x) if x ∈ Fα \ Fα+1, α < ξ,
f(x)− f+(aK)− hFλ(n)+1(aK) if x ∈ clK, K ∈ L

λ(n)
%(n) , %(n) even,

−f−(aK)− hFλ(n)+1(aK) if x ∈ clK, K ∈ L
λ(n)
%(n) , %(n) odd,

where
D

df= F0 ∪
⋃
n∈N

⋃
K∈L

λ(n)
%(n)

clK = F0 ∪
⋃
n∈N

En.

Observe that D is closed.
Indeed, let (tk) ⊂ D be convergent to some t0 ∈ X. If there is a subse-

quence (tkm) ⊂ F0, then t0 ∈ clF0 ⊂ D.
So, assume that for each k, there is an nk ∈ N such that tk ∈ Enk . If

nk = n0 for infinitely many k, then by (E2), t0 ∈ En0 ⊂ D.
Finally if nk →∞, then by (E3), for each k, there is an xk ∈ Fλ(nk) ⊂ F0

such that tk ∈ B(xk, 2n−1
k ). Consequently,

d(xk, t0) ≤ d(xk, tk) + d(tk, t0) ≤ 2n−1
k + d(tk, t0)→ 0

and t0 ∈ clF0 ⊂ D.
Clearly f = f1 + f2 on X. We shall verify that f1 is quasi-continuous and

its graph is closed. The proofs of the analogous statements for f2 are similar,
we shall omit them.
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2.2.1 f1 is Quasi-continuous.

Fix an x ∈ X, a neighborhood U of x, and an ε ∈ (0, 1). We consider several
cases.

If x /∈ D, then f1 is continuous at x. So, the set

V
df= U ∩ f−1

1 ((f1(x)− ε/3, f1(x) + ε/3))

is an open neighborhood of x contained in U such that diam f1[V ] < ε.
If x ∈ D \F0, then there is an n ∈ N and a K ∈ L

λ(n)
%(n) with x ∈ clK. Since

f1�clK is continuous, the set

V
df= U ∩K ∩ f−1

1 ((f1(x)− ε/3, f1(x) + ε/3))

is a nonvoid and open subset of U such that diam f1[V ∪ {x}] < ε.
Finally assume that x ∈ Fα \ Fα+1 for some α < ξ. Since f�Fα\Fα+1

is
continuous, we can choose an r ∈ (0, 1) such that B(x, 3r) ⊂ U \ Fα+1 and
diam f [B(x, 2r) ∩ Fα] < ε/2. Let n > 6r−2ε−1 be such that %(n) is even and
λ(n) = α. By (E4), there is a K ∈ L

λ(n)
%(n) such that V df= B(x, 2n−1) ∩K 6= ∅.

Notice that V is a nonvoid open subset of U . Choose aK ∈ Fα\Fα+1 according
to (E6). Then by (8),

d(x, aK) ≤ diam({x} ∪K) + dist(aK ,K) ≤ 4 dist(x,K) + n−1 < 9n−1 < 2r.

Hence dist(aK , Fα+1) ≥ dist(x, Fα+1)− d(x, aK) > r and

diam f1[V ∪ {x}] = |f+(aK) + hFλ(n)+1(aK)− f+(x)− hFα+1(x)|
≤ |f+(aK)− f+(x)|+ |hFα+1(aK)− hFα+1(x)|

< ε/2 +
|dist(x, Fα+1)− dist(aK , Fα+1)|

dist(aK , Fα+1) dist(x, Fα+1)

< ε/2 +
d(x, aK)

3r2
< ε/2 +

3
nr2

< ε.

2.2.2 The Graph of f1 is Closed.

Now take any point 〈x, y〉 from the closure of the graph of f1. Let (xk) ⊂ X
be such that xk → x and f1(xk) → y. We shall prove that y = f1(x). We
consider several cases.
• If there is a subsequence (xkm) ⊂ F0, then x ∈ F0, whence x ∈ Fα \Fα+1

for some α < ξ. For each m ∈ N, there is a unique αm < ξ such that
xkm ∈ Fαm \ Fαm+1. Since Fα+1 is closed, αm ≤ α for sufficiently big m.
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Notice that f1 ≥ 0 on F0, whence y ≥ 0. For sufficiently big m, we
have d(xkm , x) < (y + 1)−1 and f1(xkm) < y + 1. Then dist(xkm , Fαm+1) =

1
hFαm+1(xkm)

≥ 1
f1(xkm)

>
1

y + 1
> d(xkm , x), whence x /∈ Fαm+1 and αm =

α. Since f�Fα\Fα+1
is continuous,

y = lim
k→∞

f1(xk) = lim
m→∞

(
f+(xkm)+hFα+1(xkm)

)
= f+(x)+hFα+1(x) = f1(x).

• If there is a subsequence (xkm) ⊂ X \D, then lim supm→∞ hD(xkm) ≤
limm→∞ f1(xkm) = y < ∞. Hence x = limm→∞ xkm ∈ X \ D ⊂ Cf1 and
y = f1(x).
• Finally assume that (xk) ⊂ D \ F0. For each k, there are unique nk ∈ N

and Kk ∈ L
λ(nk)
%(nk)

such that xk ∈ Kk. If x /∈ F0, then by (7), there is an n ∈ N
and a K ∈ L

λ(n)
%(n) such that Kk = K for sufficiently big k. By (E2), f1�clK is

continuous, whence y = f1(x). Now assume that x ∈ Fα \ Fα+1 for some
α < ξ. Use (E7) to find an r ∈ (0, (2|y|+ 1)−1) such that

(∀n ∈ N)
(
λ(n) > α⇒ B(x, r) ∩ En = ∅

)
. (9)

For each k, choose aKk according to (E6). Notice that by (E2), there is no
constant subsequence of (nk). Consequently, nk →∞ and by (8),

d(x, aKk) ≤ diam({x} ∪Kk) + dist(aKk ,Kk) ≤ 4d(x, xk) + n−1
k → 0. (10)

So, there is a k0 ∈ N such that

d(xk, x) < r and |f1(xk)| < |y|+ 2−1 < nk for k > k0. (11)

By (9), λ(nk) ≤ α for each k > k0. We consider two subcases.
N Assume that there is a subsequence (nkm) such that %(nkm) is even for

each m. For sufficiently big m, we have km > k0 and nkm > 2|y|+ 1. Then

d(xkm , Fλ(nkm )+1) ≥ d(aKkm , Fλ(nkm )+1)− d(xkm , akm)

>
1

f1(xkm)
− n−1

km
>

1
2|y|+ 1

> d(xkm , x),

whence x /∈ Fλ(nkm )+1 and by (9), λ(nkm) = α. Since f�Fα\Fα+1
is continuous,

y = limm→∞
(
f+(xkm) + hFλ(nkm )+1(xkm)

)
= f+(x) + hFα+1(x) = f1(x).

N So, assume that %(nk) is odd for each k. Then for each k > k0, by (11),

|f(xk)| ≤ |f(xk) + f−(aKk) + hFλ(nk)+1(aKk)|+ |f−(aKk)|+ hFλ(nk)+1(aKk)

= |f1(xk)|+ |f−(aKk)|+ hFλ(nk)+1(aKk) < Mnk(aKk),
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whence by (E6),
|f(aKk)− f(xk)| < n−1

k . (12)

It follows that

|y|+ 2−1 > f1(xk) = f(xk) + f−(aKk) + hFλ(nk)+1(aKk)

≥ hFλ(nk)+1(aKk)− |f(xk)− f(aKk)|+ (f(aKk) + f−(aKk))

> hFλ(nk)+1(aKk)− n−1
k .

By (10), we conclude that x /∈ Fλ(nk)+1, and by (9), that λ(nk) = α. Recall
that f+�Fα\Fα+1

is continuous. So by (12) and (10),

|y − f1(x)| = lim
k→∞

|f1(xk)− f1(x)|

= lim
k→∞

|f(xk) + f−(aKk) + hFλ(nk)+1(aKk)− f+(x)− hFα+1(x)|

≤ lim
k→∞

|f(xk)− f(aKk)|+ lim
k→∞

|f+(aKk)− f+(x)|

+ lim
k→∞

|hFα+1(aKk)− hFα+1(x)| = 0.

This completes the proof.
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