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CONTINUOUS RIGID FUNCTIONS

Abstract

A function f : R — R is vertically [horizontally] rigid for C' C (0, c0)
if graph(cf) [graph(f(c -))] is isometric with graph(f) for every c € C.
f is vertically [horizontally] rigid if this applies to C' = (0, c0).

Balka and Elekes have shown that a continuous function f vertically
rigid for an uncountable set C' must be of the form f(z) = px + g or
f(z) = pe?® 4+ r, in this way confirming Jancovié’s conjecture saying
that a continuous f is vertically rigid if and only if it is of one of these
forms. We prove that their theorem actually applies to every C' C (0, c0)
generating a dense subgroup of ((0,0),-), but not to any smaller C.

A continuous f is shown to be horizontally rigid if and only if it is
of the form f(xz) = pz + ¢. In fact, f is already of that kind if it is
horizontally rigid for some C' with card(C N ((0,00) \ {1})) > 2.

1 Introduction and Main Results.

Given a set C' C (0,00) and a set Z of Euclidean isometries of the plane R?,
a function f : R — R is called wvertically rigid for C wvia I if for every ¢ € C
there exists a € 7 such that

graph(cf) = a(graph(f)).

We call f wvertically rigid for C' if T contains all isometries, vertically rigid
via T if C = (0,00), and vertically rigid if C = (0,00) and Z consists of all
isometries (see [2, 1]).
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Of course, if f is vertically rigid, then for every ¢ € R\ {0} there is an
isometry « satisfying the above equation. Every f : R — R is vertically rigid
for ¢ =1.

Functions of the form f(z) = px + ¢ and of the form f(z) = pe? + r,
p,q,r € R, clearly are vertically rigid. The following central theorem from
[1] confirms a conjecture of D. Jankovié¢ formulated in [2] and says that all
continuous vertically rigid functions are of that kind.

Theorem 1. Let a continuous function f : R — R be vertically rigid for an
uncountable set C C (0,00). Then there exist p,q,r € R such that f(x) =
px+q for allx € R or f(x) = pe?™ +r for all z € R.

The authors of [1] ask for the role of C' in this theorem. Does it need to be
uncountable? The following two statements show that the crucial condition
for C is to generate a dense subgroup of ((0,00),:). They will be proved in
Section 2.

Theorem 2. Let a continuous function f : R — R be vertically rigid for a
set C C (0,00) generating a dense subgroup of ((0,00),-). Then there exist
p,q, 7 € R such that f(x) = px + q for all x € R or f(x) = pe?® + r for all
z eR.

Proposition 1. Suppose that C C (0,00) does not generate a dense subgroup
of ((0,00),-). Then there exists a continuous function f : R — R that is
vertically rigid for C' wvia horizontal translations, but is not of the form of
Theorems 1 and 2.

Every set C1 = {c1,c2} C (0,1) U (1,00) with igg; ¢ Q generates a dense
subgroup of ((0,00),), because {lncy,Ilncy} generates a dense subgroup of
(R, +).

The set Cy = {e? : p € Q} is a countable dense subgroup of ((0, c0), ). But
no finite subset of Cy generates a dense subgroup of ((0,00),). In particular,
C5 does not contain a subset of the form Cj.

Every non-dense subgroup G of ((0,00),-) is of the form G = {g& : k € Z}
with some gg € (0,00), since G = {Ilng : g € G} must be a non-dense subgroup
of (R,+), that is, G = {kgo : k € Z} = goZ with go € R.

Balka and Elekes prove Theorem 1 by reducing it to the case of vertical
rigidity via translations. We shall follow a similar strategy. As an analogue of
their statement on translations we shall show the following proposition.

Proposition 2. Let C C (0,00) generate a dense subgroup of ((0,00),-) and
let f: R — R have at least one point of continuity and be vertically rigid for
C' via translations. Then there exist p,q,r € R such that f(x) = pet” +r for
all z € R.
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Note that the requirement on C' to generate a dense group is again crucial,
as Proposition 1 shows.

We define analogous concepts of horizontal rigidity by replacing graph(cf)
with graph(f(c -)) in the above definition (see [1]). The following theorem
from [1] characterizes all functions horizontally rigid via translations.

Theorem 3. A function f : R — R is horizontally rigid via translations if
and only if there exists p € R such that f is constant on (—oo,p) and constant
on (p,o0).

Consequently, every continuous function horizontally rigid via translations
is constant. We shall show that in the context of continuous functions the
assumption of horizontal rigidity via translations can essentially be weakened.

Proposition 3. Let a continuous function f : R — R be horizontally rigid
for some ¢ € (0,1) U (1,00) via a translation. Then f is constant.

In the previous statement it is important that the rigidity can be realized
via a translation. Indeed, for every ¢ € (0,1) U (1, 00), the function

fc — 7%3 x Z Oa
—x, <0
is both horizontally and vertically rigid for ¢ via the reflection with respect to
the straight line “x = y” as well as via a rotation depending on f., because

felew) = efel@) = f7 (@) = { nore
—cx, <0
and graph(f; 1) is obtained from graph(f.) by the reflection mentioned above.
Moreover, graph(f.) is symmetric under a reflection with respect to its bisec-
tor. Composition of both reflections gives the required rotation.
Of course, every function of the form f(x) = px + ¢ is horizontally rigid.
The following theorem says in particular that all continuous horizontally rigid
functions are of that kind and this way answers a second question from [1].

Theorem 4. Let a continuous function f : R — R be horizontally rigid for
two values c1,¢o € (0,1)U (1,00), ¢1 # ca. Then there exist p,q € R such that
f(x) =px+q for all z € R.

The above example shows that rigidity for at least two different values
c1,Co is a necessary assumption in Theorem 4. Proposition 3 and Theorem 4
will be proved in Section 3.
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2 Vertically Rigid Functions.

PROOF OF PROPOSITION 1. C' generates a non-dense subgroup G = {g& : k €
Z} of ((0,00),-). Let hy : R — R be a continuous function with period 1. We
define f(z) = h1(z)g%. Then

90 f (@) = hi(2)g5 ™" = ha(z + k)gg™* = f(x + k).

Hence, for every k € Z, f is vertically rigid for g§ via a horizontal translation.
This applies in particular to all ¢ = g& € C.

If h; is non-constant, then f is neither of the form f(z) = px + ¢ nor of
the form f(z) = pe? + r. This proves the claim. O

The preparation of the proof of Proposition 2 starts with a characterization
of all functions f vertically rigid for some fixed ¢ via some fixed translation.

Lemma 1. Let f : R — R be a function and let ¢ € (0,1) U (1,00), u,v € R.
Then the following are equivalent.

(i) cf(x) = f(x +u)+v for all z € R.

(i1) If u =0, then f(x) = -%5 is constant. Otherwise there exists a function

c—1
hu : R — R with period u such that f(z) = hy(z)ct + -5 for all z € R.

PROOF. The implication (ii)=-(i) and the case u = 0 in (i)=(ii) are trivial.
For showing (i)=-(ii) under the assumption u # 0 we define

hu(w) = (f(2) — ) v

Then f(z) = hy(z)c + -2 by definition. One easily checks by (i) that h,,
has the period u. O

The following fact can be found in [1]. We present a proof to keep the
present paper self-contained.

Lemma 2. Let f: R — R be vertically rigid for a set C C (0,1) U (1, 00) via
translations. Then there exists a € R such that f — a is vertically rigid for C
via horizontal translations.

PRrROOF. For every ¢ € C, there are uc, v, € R such that cf(z) = f(x+u.)+ v,
for all z € R. Putting a. = % we easily obtain c(f(z) —a.) = f(z+u.) — ac.

Hence the lemma is proved once it is shown that a. = a is universal for all c.
We fix ¢g € C. Then

cocf(0) = co(f(ue) +ve) = cof(ue) + cove = fue + tey) + Ve, + Cove
and, by reversing the order of ¢g and ¢, cocf(0) = f(uc, + te) + Ve + €U, SO

Ve Veg

Vey F CoVe = Ve + Ve, and a. = 245 = o = Ao does not depend on ¢. [
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Next we generalize a statement from [1].

Lemma 3. Let C C (0,1) U (1,00) generate a dense subgroup of ((0,00),-)
and let f : R — R satisfy f(0) =1 and be vertically rigid for C' via horizontal

translations. Then there exists a dense subgroup (G,+) of (R,+) such that
f(G) € (0,00) and

flx+g)=f(x)f(g) forallz eR, g € G.

PROOF. For every ¢ € C, there is u. € R such that cf(z) = f(z + u.) and in
turn 2 f(z) = f(z — uc) for z € R. Let G = {k1uc, + ... + kmuc,, : m >0,
¢; € C, k; € Z} be the subgroup of (R, +) generated by {u. : ¢ € C}. Iteration
of the previous equations yields

c’fl ...cf,;” (x) = f(x + ke, + ... + kmue,,) = f(x + g)

for arbitrary x € R and g = kyuc, + ... + knu.,, € G. Application of that to
2 = 0 and the supposition f(0) =1 give

c’fl ol = fkyue, 4.+ Epue,,) = f(g).
Consequently, f(g) > 0 for all g € G and
flx+g)=f(z)f(g) forallz eR, g € G.

It remains to show that G is dense in R. Let us assume the contrary; that
is, G = aZ with some fixed a > 0. Hence, for every c € C, there is k. € Z such
that u. = k.a. Note that k., a # 0, because u,. # 0, for f(0) # cf(0) = f(uc).

By Lemma 1, f(z) = hy,, (x)cue, where hy,_ has the period u, and satisfies
B (0) = hu ()™ = f(0) = 1.

We fix ¢g € C. Then

keguc
Flhkeokea) = f (eye) = hu, (keyuc)e e

= huc (O)Ckco — CkCU — ekCO lnc.

Reversing the order of k., and k. we get f(ke kea) = e So k. Inc =

kelncg and Inc = kclgﬂ for all ¢ € C. Hence {lnc:ce C} C IZﬁZ, which
) €0

shows that {lnc: ¢ € C} does not generate a dense subgroup of (R, +). Thus

C' does not generate a dense subgroup of ((0,00), -), a contradiction. O

PROOF OF PROPOSITION 2. We can assume that C' C (0,1)U(1,00) and that
f is non-constant. Lemma 2 justifies the additional assumption that f is
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vertically rigid for C' via horizontal translations. Moreover, we suppose that
f(0) = 1. This can be obtained by horizontally translating the graph of f and
by scaling f with some factor from R\ {0}.

By the previous lemma, there is a dense subgroup G of (R,+) such that
f(G) € (0,00) and

flx+g)=f(z)f(g) forall z e R, g € G. (1)

Application of this to z = g1, g = go implies

In f(g1 + g2) = In f(g1) +In f(g2) for all g1, 92 € G.

So the function lnof|s is additive on the dense subgroup G of (R, +). Since
f has a point of continuity zo € R, lnof|s is bounded on some interval.
Therefore Inof|g is of the form In f(g) = gg for all g € G with some fixed
q € R and

f(g) =€ for all g € G. (2)

Now let = € R be arbitrary. We pick a sequence (g;)52, C G converging to
2o — x. Then, by (1), f(z) = % and, by (2) and the continuity of f at
Zo,

o) = e S50 = i o L5880 = o) = S e
This proves f(z) = pe? with p = fe(q"i‘g) for all x € R. O

The proof of Theorem 2 requires additional preparation. The first obser-
vation is obvious.

Lemma 4. Let f: R — R be vertically rigid for ¢; via ay and for co via as.
Then c1 f is vertically rigid for z—f via agafl.

Given an isometry a : R? — R2?, M, is to denote the uniquely deter-
mined orthogonal matrix satisfying a(Z) = M, (g) + (%) with the universal
translation vector (*) = a(J) for all (3) € R%

Lemma 5. Letc € (0,1)U(1,00), let o be an isometry of R?, and let f : R — R
be vertically rigid for c via a.

(a) If M, € {((1) (1)), (_01 _01), (_01 2), ((1) _01)} then f is vertically rigid for c?
via a translation. If, in addition, f is continuous, then f is not bijective
from R onto R.

(b) If M, € {((IJE‘)), (_01 Bl)} then f is a bijection from R onto R.
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PROOF. In all cases we shall use
{(f(a)) : © €R} = graph(cf) = algraph(f)) = {Ma () + (1) : x € R}.
Case 1. My = (} ). Then cf(z) = f(z —u) + v for all € R. Hence
Af(x) =c(f(x —u) +v) =cf(x —u) +cv= f(xr—2u)+v+cv,

which shows that f is vertically rigid for ¢? via a translation.
Case 2. My = (' °). Now cf(2) = —f(—2 +u) + v and

Af(x) = —cf(—z+u) + v = flx) — v+ cv,

which gives the claim. In particular, f(x) = _}7 is constant.
Case 8. My = (7' 9). In this case cf(z) = f(—z +u) + v and

Af(x) =cf(—z+u) +cv = f(x) + v+ cv.

In particular, f(x) = -% is constant.
Case 4. Ma—( 1) Then cf(x) = —f(x — u) + v and

Afx) = —cf(x —u) +cv=flx—2u)—v+co.

In the previous four cases we have obtained c®f(x) = f(z + @) + v. Let
us assume that f is continuous. Then, by Lemma 1, f(x) = ﬁ ifu=0or
f(@) = hg(x)c*% + Zz*5 with a continuous hy with period @ if @ # 0. Hence
hg is bounded and one of the limits lim, o f(x) or lim,_,_ f(x) exists and
agrees with —*—. However, if f were a bijection from R onto R, f would be
monotonous Wlth {lim,— 00 f( ), limg,—, oo f(2)} = {00, —00}. This completes
the proof of (a).

Case 5. M, = (? (1)) We obtain

{(fin) = () rw e Ry = {Ma(,;)) 1w € R} = {(']7) 12 € R},

The left-hand side is a translate of the graph of ¢f : R — R and in turn a graph
of a well-defined function from R into R. The coincidence with the right-hand
side shows that f~! is a function from R into R. This yields the claim.

Case 6. M, = (31 Bl). Now

{= (o) + () o e Ry ={ = Ma(y(,)) s eR} = {(/{7) s 0 € R}

The left-hand side is the graph of the function © — —cf(—z + u) + v from
R into R. This gives the claim as in the previous case and completes the
proof. O
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PRrROOF OF THEOREM 2. For every ¢ € C, we fix an isometry a. such that

graph(cf) = ac(graph(f)). (3)

As it has been done in [1], we study the set
Sy = {ﬁ :a,b € graph(f), a# b},

where ||-|| stands for the Euclidean norm. Sy is non-empty and symmetric with
respect to the origin. More precisely, S splits into S}" = {(z) €cSp:x> 0}
and 75}', the components S;' and ij[ each being connected according to
the intermediate value theorem.

For ¢ > 0, let 9. be the self-map of S* = {a € R? : ||a|]| = 1} defined by

t

Ve((z,y)') = % Equation (3) yields
Ye(Sy) = My, (Sy) for all ¢ € C, (4)

where ¢.(Sy) splits into two connected components wC(SJT) and wc(—SJ‘f) =
—wc(Sj{) and M, (Sy) consists of two disjoint isometric copies of S;[. Hence

length(z/)c(S]'f)) = length(S}*‘) for all ¢ € C. (5)

Case 1. length(S}') = 0. Then S}' is a singleton, Sy = SJT U (—S;ﬁ') =
{s0, —so0}, and f is of the form f(z) = px + q.

Case 2. length(SJT) > 0. We denote the two end-points of S; by e1,ea.
Equation (5) can be stated in terms of scalar products.

(Ye(e1),vc(e2)) = (e1,e2) = (Y1(e1), Y1 (e2)) for all ¢ € C. (6)

Assume for a moment that {e1,e2} € {(_01), ((1)), ((1)) } Then elementary

differential calculus shows that the map ¢ — (¥c(e1),¥c(e2)) from (0,00)
into R attains every value at most twice. However, since C' generates a dense
subgroup of ((0,00), -), C contains at least two distinct elements ¢y, co different
from ¢y = 1. By (6), (c(e1),9c(e2)) coincide for ¢ € {cg,c1,c2}. This

contradiction yields
{er,e2} € {( %), (o) (D)} (7)

Case 2.1. {e1,ea} C {(_01), ((1))} Then S]T is an open half-circle, Sy =
SUN{( %), ()}, and (4) amounts to Sy = M, (Sy) for all ¢ € C. Thus

Ma. € {(57): (5 %) (0" 1) (0 %)}
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and, by Lemma 5 (a), f is vertically rigid for ¢? via a translation. So f
is vertically rigid for C = {c? : ¢ € C} via translations. The subgroup G
of ((0,00),-) generated by C is G = {¢?> : g € G}, G denoting the group
generated by C. Hence C generates a dense group, too. Now Proposition 2
shows that f(z) = pe?® +r.

Case 2.2. {e1,ea} & {(Pl), ((1))} Then, by (7), SJT is a quarter of S*
between () and (1) or (°)) and Sy = SF U (=57) is the corresponding
symmetric set. (4) yields Sy = My, (Sf) and in turn

Ma. € {(61): (0 %) (Vo) (5 9)} forall e e €.

Lemma 5 shows that, depending on whether f is bijective from R onto R or
not, either

MacE{(é?),(_ol_ol)}forallcec, or (8)
Mo, €{(75), (%)} forallceC. (9)

The situation (8) can be treated as in Case 2.1.

Finally, we assume (9), which corresponds to the case that f is a bijection
from R onto R. There exist at least two distinct elements ¢, co € C, because
C generates a dense subgroup of ((0,00),:). By Lemma 4, ¢; f is vertically
rigid for 2 via ac,a . (9) yields

_ -1 _ 10y (=10
aczagll - MaczMacl - Mo‘czMaCl € {(0 1)’ ( 0 —1)}'
So, by Lemma 5 (a), ¢1 f is not bijective from R onto R and in turn neither is
f. This contradiction completes the proof. O

3 Horizontally Rigid Functions.

PROOF OF PROPOSITION 3. There exist u,v € R such that f(cz) = f(x +
u) + v for all z € R. We can assume ¢ > 1, because the previous equation
yvields f(iz) = f(z —uc) — v = f(z + 1) + v. Note that v = 0, since

flezt) = (5 +u) +o=flety) +o.
Hence f(cz) = f(z+u) and f(z) = f(% +u) for all 2 € R. The last is
@)= f(G (o= 21) + &)

Iteration of this gives

F@) = f(Gr (o = 225) + 22)
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for all x € R and k € {1,2,...}. The argument on the right-hand side tends

to %4 as k — oo. So, by continuity, f(z) = f(cciﬁ) for all z € R. H

The proof of Theorem 4 as well as its preparation are close to those of
Theorem 2. We start again with an obvious fact.

Lemma 6. Let f: R — R be horizontally rigid for ¢; via aq and for co via
az. Then f(c1 -) is horizontally rigid for & via asar .
Lemma 7. Let f : R — R be horizontally rigid for some ¢ € (0,1)U(1, 00) via

an isometry a such that M, = (_01 _01). Then f is horizontally rigid for ¢

via a horizontal translation. If, moreover, f is continuous, then f is constant.

PrOOF. There exist u,v € R such that

{(;&0): @ € R} = graph(f(c-)) = algraph(f)) = {Ma(,{,))+(4): x € R}

Hence f(cx) = —f(—x +u) + v and
f(Pr)=—f(—cx+u)+v=—f(c(—z+%)) +v=flz—%+u)

for all z € R. So f is horizontally rigid for ¢? via a horizontal translation.
Now the second claim is a consequence of Proposition 3. O

PrROOF OF THEOREM 4. Let «; be the isometry corresponding to to ¢;; that
is,
graph(f(c; -)) = a;(graph(f)) for i =1,2.

Using the sets Sy, S]T and the maps 1/16((:3, y)t) = ”8:2%:“ = I\Eizgzl\ from the

proof of Theorem 2 we obtain the following analogues of (4) and (5).

Ye, (Sf) = Mai(Sf)’ and (10)
length(ie, (S;{)) = length(SJf) fori=1,2.

If length(S;r) = 0 we obtain the representation f(x) = px + ¢ as in the
proof of Theorem 2. If length(S?) > 0 we show as in the very proof that
S;ﬁ' is either an open half-circle between (_01) and ((1)) or a quarter of a circle
having () as an end-point. Then (10) yields Sy = M, (Sy) and hence

M € (39 (50 (570 (5 0)) fori = 1.2 (1)

if SJT is an half-circle or

Moy € {(61): (50 )5 (F0)s (B )} for i = 1,2 (12)
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if SJT is a quarter of a circle.

Case 1. {Ma,, Mo, } N {(59), (5 %)} # 0. Then there is i € {1,2} such
that either M,, = ((1) (1)), which means that f is horizontally rigid for ¢ via a
translation and in turn constant by Proposition 3, or M,, = (_1 0 ), where

0 -1
f is constant according to Lemma 7.
Case 2. {Ma,, Mo, } N {(59), (3" %)} =0. Now (11) and (12) yield

{May, Moo} € {(70' 7). (0 21)} or (Mo Mo} € {(V0), (5 61) -
By Lemma 6, f(c1 -) is horizontally rigid for £ via asa; . We obtain

Ma2afl = M"?Mojll = Ma, Mo, € {((1)(1))7 (701 Bl)}'

Following the arguments of Case 1 we conclude that f(c; -) is constant. Hence

f is constant as well and the proof is complete. O
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