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CONTINUOUS RIGID FUNCTIONS

Abstract

A function f : R→ R is vertically [horizontally] rigid for C ⊆ (0,∞)
if graph(cf) [graph(f(c ·))] is isometric with graph(f) for every c ∈ C.
f is vertically [horizontally] rigid if this applies to C = (0,∞).

Balka and Elekes have shown that a continuous function f vertically
rigid for an uncountable set C must be of the form f(x) = px + q or
f(x) = peqx + r, in this way confirming Jancović’s conjecture saying
that a continuous f is vertically rigid if and only if it is of one of these
forms. We prove that their theorem actually applies to every C ⊆ (0,∞)
generating a dense subgroup of ((0,∞), ·), but not to any smaller C.

A continuous f is shown to be horizontally rigid if and only if it is
of the form f(x) = px + q. In fact, f is already of that kind if it is
horizontally rigid for some C with card(C ∩ ((0,∞) \ {1})) ≥ 2.

1 Introduction and Main Results.

Given a set C ⊆ (0,∞) and a set I of Euclidean isometries of the plane R2,
a function f : R → R is called vertically rigid for C via I if for every c ∈ C
there exists α ∈ I such that

graph(cf) = α(graph(f)).

We call f vertically rigid for C if I contains all isometries, vertically rigid
via I if C = (0,∞), and vertically rigid if C = (0,∞) and I consists of all
isometries (see [2, 1]).

Mathematical Reviews subject classification: Primary: 39B72; Secondary: 26A09, 39B22,
51M04

Key words: vertically rigid function, horizontally rigid function
Received by the editors February 8, 2008
Communicated by: Brian S. Thomson

∗This research was supported by DFG grant RI 1087/3. It was written during an extended
stay of the author at the Institut de Mathématiques de Jussieu, Paris, France.
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Of course, if f is vertically rigid, then for every c ∈ R \ {0} there is an
isometry α satisfying the above equation. Every f : R→ R is vertically rigid
for c = 1.

Functions of the form f(x) = px + q and of the form f(x) = peqx + r,
p, q, r ∈ R, clearly are vertically rigid. The following central theorem from
[1] confirms a conjecture of D. Janković formulated in [2] and says that all
continuous vertically rigid functions are of that kind.

Theorem 1. Let a continuous function f : R → R be vertically rigid for an
uncountable set C ⊆ (0,∞). Then there exist p, q, r ∈ R such that f(x) =
px+ q for all x ∈ R or f(x) = peqx + r for all x ∈ R.

The authors of [1] ask for the role of C in this theorem. Does it need to be
uncountable? The following two statements show that the crucial condition
for C is to generate a dense subgroup of ((0,∞), ·). They will be proved in
Section 2.

Theorem 2. Let a continuous function f : R → R be vertically rigid for a
set C ⊆ (0,∞) generating a dense subgroup of ((0,∞), ·). Then there exist
p, q, r ∈ R such that f(x) = px + q for all x ∈ R or f(x) = peqx + r for all
x ∈ R.

Proposition 1. Suppose that C ⊆ (0,∞) does not generate a dense subgroup
of ((0,∞), ·). Then there exists a continuous function f : R → R that is
vertically rigid for C via horizontal translations, but is not of the form of
Theorems 1 and 2.

Every set C1 = {c1, c2} ⊆ (0, 1) ∪ (1,∞) with ln c1
ln c2

/∈ Q generates a dense
subgroup of ((0,∞), ·), because {ln c1, ln c2} generates a dense subgroup of
(R,+).

The set C2 = {ep : p ∈ Q} is a countable dense subgroup of ((0,∞), ·). But
no finite subset of C2 generates a dense subgroup of ((0,∞), ·). In particular,
C2 does not contain a subset of the form C1.

Every non-dense subgroup G of ((0,∞), ·) is of the form G = {gk0 : k ∈ Z}
with some g0 ∈ (0,∞), since Ḡ = {ln g : g ∈ G} must be a non-dense subgroup
of (R,+), that is, Ḡ = {kḡ0 : k ∈ Z} = ḡ0Z with ḡ0 ∈ R.

Balka and Elekes prove Theorem 1 by reducing it to the case of vertical
rigidity via translations. We shall follow a similar strategy. As an analogue of
their statement on translations we shall show the following proposition.

Proposition 2. Let C ⊆ (0,∞) generate a dense subgroup of ((0,∞), ·) and
let f : R → R have at least one point of continuity and be vertically rigid for
C via translations. Then there exist p, q, r ∈ R such that f(x) = peqx + r for
all x ∈ R.
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Note that the requirement on C to generate a dense group is again crucial,
as Proposition 1 shows.

We define analogous concepts of horizontal rigidity by replacing graph(cf)
with graph(f(c ·)) in the above definition (see [1]). The following theorem
from [1] characterizes all functions horizontally rigid via translations.

Theorem 3. A function f : R → R is horizontally rigid via translations if
and only if there exists p ∈ R such that f is constant on (−∞, p) and constant
on (p,∞).

Consequently, every continuous function horizontally rigid via translations
is constant. We shall show that in the context of continuous functions the
assumption of horizontal rigidity via translations can essentially be weakened.

Proposition 3. Let a continuous function f : R → R be horizontally rigid
for some c ∈ (0, 1) ∪ (1,∞) via a translation. Then f is constant.

In the previous statement it is important that the rigidity can be realized
via a translation. Indeed, for every c ∈ (0, 1) ∪ (1,∞), the function

fc =

{
−xc , x ≥ 0,
−x, x ≤ 0

is both horizontally and vertically rigid for c via the reflection with respect to
the straight line “x = y” as well as via a rotation depending on fc, because

fc(cx) = cfc(x) = f−1
c (x) =

{
−x, x ≥ 0,
−cx, x ≤ 0

and graph(f−1
c ) is obtained from graph(fc) by the reflection mentioned above.

Moreover, graph(fc) is symmetric under a reflection with respect to its bisec-
tor. Composition of both reflections gives the required rotation.

Of course, every function of the form f(x) = px + q is horizontally rigid.
The following theorem says in particular that all continuous horizontally rigid
functions are of that kind and this way answers a second question from [1].

Theorem 4. Let a continuous function f : R → R be horizontally rigid for
two values c1, c2 ∈ (0, 1)∪ (1,∞), c1 6= c2. Then there exist p, q ∈ R such that
f(x) = px+ q for all x ∈ R.

The above example shows that rigidity for at least two different values
c1, c2 is a necessary assumption in Theorem 4. Proposition 3 and Theorem 4
will be proved in Section 3.
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2 Vertically Rigid Functions.

Proof of Proposition 1. C generates a non-dense subgroup G = {gk0 : k ∈
Z} of ((0,∞), ·). Let h1 : R→ R be a continuous function with period 1. We
define f(x) = h1(x)gx0 . Then

gk0f(x) = h1(x)gx+k
0 = h1(x+ k)gx+k

0 = f(x+ k).

Hence, for every k ∈ Z, f is vertically rigid for gk0 via a horizontal translation.
This applies in particular to all c = gk0 ∈ C.

If h1 is non-constant, then f is neither of the form f(x) = px + q nor of
the form f(x) = peqx + r. This proves the claim.

The preparation of the proof of Proposition 2 starts with a characterization
of all functions f vertically rigid for some fixed c via some fixed translation.

Lemma 1. Let f : R→ R be a function and let c ∈ (0, 1) ∪ (1,∞), u, v ∈ R.
Then the following are equivalent.

(i) cf(x) = f(x+ u) + v for all x ∈ R.

(ii) If u = 0, then f(x) ≡ v
c−1 is constant. Otherwise there exists a function

hu : R→ R with period u such that f(x) = hu(x)c
x
u + v

c−1 for all x ∈ R.

Proof. The implication (ii)⇒(i) and the case u = 0 in (i)⇒(ii) are trivial.
For showing (i)⇒(ii) under the assumption u 6= 0 we define

hu(x) =
(
f(x)− v

c−1

)
c−

x
u .

Then f(x) = hu(x)c
x
u + v

c−1 by definition. One easily checks by (i) that hu
has the period u.

The following fact can be found in [1]. We present a proof to keep the
present paper self-contained.

Lemma 2. Let f : R→ R be vertically rigid for a set C ⊆ (0, 1) ∪ (1,∞) via
translations. Then there exists a ∈ R such that f − a is vertically rigid for C
via horizontal translations.

Proof. For every c ∈ C, there are uc, vc ∈ R such that cf(x) = f(x+uc)+vc
for all x ∈ R. Putting ac = vc

c−1 we easily obtain c(f(x)−ac) = f(x+uc)−ac.
Hence the lemma is proved once it is shown that ac = a is universal for all c.

We fix c0 ∈ C. Then

c0cf(0) = c0(f(uc) + vc) = c0f(uc) + c0vc = f(uc + uc0) + vc0 + c0vc

and, by reversing the order of c0 and c, c0cf(0) = f(uc0 + uc) + vc + cvc0 . So
vc0 + c0vc = vc + cvc0 and ac = vc

c−1 = vc0
c0−1 = ac0 does not depend on c.
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Next we generalize a statement from [1].

Lemma 3. Let C ⊆ (0, 1) ∪ (1,∞) generate a dense subgroup of ((0,∞), ·)
and let f : R→ R satisfy f(0) = 1 and be vertically rigid for C via horizontal
translations. Then there exists a dense subgroup (G,+) of (R,+) such that
f(G) ⊆ (0,∞) and

f(x+ g) = f(x)f(g) for all x ∈ R, g ∈ G.

Proof. For every c ∈ C, there is uc ∈ R such that cf(x) = f(x+ uc) and in
turn 1

cf(x) = f(x − uc) for x ∈ R. Let G = {k1uc1 + . . . + kmucm
: m ≥ 0,

ci ∈ C, ki ∈ Z} be the subgroup of (R,+) generated by {uc : c ∈ C}. Iteration
of the previous equations yields

ck1
1 . . . ckm

m f(x) = f(x+ k1uc1 + . . .+ kmucm) = f(x+ g)

for arbitrary x ∈ R and g = k1uc1 + . . .+ kmucm ∈ G. Application of that to
x = 0 and the supposition f(0) = 1 give

ck1
1 . . . ckm

m = f(k1uc1 + . . .+ kmucm) = f(g).

Consequently, f(g) > 0 for all g ∈ G and

f(x+ g) = f(x)f(g) for all x ∈ R, g ∈ G.

It remains to show that G is dense in R. Let us assume the contrary; that
is, G = aZ with some fixed a ≥ 0. Hence, for every c ∈ C, there is kc ∈ Z such
that uc = kca. Note that kc, a 6= 0, because uc 6= 0, for f(0) 6= cf(0) = f(uc).

By Lemma 1, f(x) = huc(x)c
x

uc , where huc has the period uc and satisfies
huc

(0) = huc
(0)c

0
uc = f(0) = 1.

We fix c0 ∈ C. Then

f(kc0kca) = f(kc0uc) = huc(kc0uc)c
kc0 uc

uc

= huc(0)ckc0 = ckc0 = ekc0 ln c.

Reversing the order of kc0 and kc we get f(kc0kca) = ekc ln c0 . So kc0 ln c =
kc ln c0 and ln c = kc

ln c0
kc0

for all c ∈ C. Hence {ln c : c ∈ C} ⊆ ln c0
kc0

Z, which
shows that {ln c : c ∈ C} does not generate a dense subgroup of (R,+). Thus
C does not generate a dense subgroup of ((0,∞), ·), a contradiction.

Proof of Proposition 2. We can assume that C ⊆ (0, 1)∪(1,∞) and that
f is non-constant. Lemma 2 justifies the additional assumption that f is
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vertically rigid for C via horizontal translations. Moreover, we suppose that
f(0) = 1. This can be obtained by horizontally translating the graph of f and
by scaling f with some factor from R \ {0}.

By the previous lemma, there is a dense subgroup G of (R,+) such that
f(G) ⊆ (0,∞) and

f(x+ g) = f(x)f(g) for all x ∈ R, g ∈ G. (1)

Application of this to x = g1, g = g2 implies

ln f(g1 + g2) = ln f(g1) + ln f(g2) for all g1, g2 ∈ G.

So the function ln ◦f |G is additive on the dense subgroup G of (R,+). Since
f has a point of continuity x0 ∈ R, ln ◦f |G is bounded on some interval.
Therefore ln ◦f |G is of the form ln f(g) = qg for all g ∈ G with some fixed
q ∈ R and

f(g) = eqg for all g ∈ G. (2)

Now let x ∈ R be arbitrary. We pick a sequence (gi)∞i=0 ⊆ G converging to
x0 − x. Then, by (1), f(x) = f(x+gi)

f(gi)
and, by (2) and the continuity of f at

x0,

f(x) = limi→∞
f(x+gi)
f(gi)

= limi→∞
f(x+gi)
eqgi

= f(x0)

eq(x0−x) = f(x0)
eqx0 e

qx.

This proves f(x) = peqx with p = f(x0)
eqx0 for all x ∈ R.

The proof of Theorem 2 requires additional preparation. The first obser-
vation is obvious.

Lemma 4. Let f : R→ R be vertically rigid for c1 via α1 and for c2 via α2.
Then c1f is vertically rigid for c2

c1
via α2α

−1
1 .

Given an isometry α : R2 → R2, Mα is to denote the uniquely deter-
mined orthogonal matrix satisfying α

(
x
y

)
= Mα

(
x
y

)
+
(
u
v

)
with the universal

translation vector
(
u
v

)
= α

(
0
0

)
for all

(
x
y

)
∈ R2.

Lemma 5. Let c ∈ (0, 1)∪(1,∞), let α be an isometry of R2, and let f : R→ R
be vertically rigid for c via α.

(a) If Mα ∈
{(

1
0

0
1

)
,
(−1

0
0
−1

)
,
(−1

0
0
1

)
,
(

1
0

0
−1

)}
then f is vertically rigid for c2

via a translation. If, in addition, f is continuous, then f is not bijective
from R onto R.

(b) If Mα ∈
{(

0
1

1
0

)
,
(

0
−1
−1
0

)}
then f is a bijection from R onto R.
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Proof. In all cases we shall use{(
x

cf(x)

)
: x ∈ R

}
= graph(cf) = α(graph(f)) =

{
Mα

(
x

f(x)

)
+
(
u
v

)
: x ∈ R

}
.

Case 1. Mα =
(

1
0

0
1

)
. Then cf(x) = f(x− u) + v for all x ∈ R. Hence

c2f(x) = c(f(x− u) + v) = cf(x− u) + cv = f(x− 2u) + v + cv,

which shows that f is vertically rigid for c2 via a translation.
Case 2. Mα =

(−1
0

0
−1

)
. Now cf(x) = −f(−x+ u) + v and

c2f(x) = −cf(−x+ u) + cv = f(x)− v + cv,

which gives the claim. In particular, f(x) ≡ v
c+1 is constant.

Case 3. Mα =
(−1

0
0
1

)
. In this case cf(x) = f(−x+ u) + v and

c2f(x) = cf(−x+ u) + cv = f(x) + v + cv.

In particular, f(x) ≡ v
c−1 is constant.

Case 4. Mα =
(

1
0

0
−1

)
. Then cf(x) = −f(x− u) + v and

c2f(x) = −cf(x− u) + cv = f(x− 2u)− v + cv.

In the previous four cases we have obtained c2f(x) = f(x + ū) + v̄. Let
us assume that f is continuous. Then, by Lemma 1, f(x) ≡ v̄

c2−1 if ū = 0 or
f(x) = hū(x)c2

x
ū + v̄

c2−1 with a continuous hū with period ū if ū 6= 0. Hence
hū is bounded and one of the limits limx→∞ f(x) or limx→−∞ f(x) exists and
agrees with v̄

c2−1 . However, if f were a bijection from R onto R, f would be
monotonous with {limx→∞ f(x), limx→−∞ f(x)} = {∞,−∞}. This completes
the proof of (a).

Case 5. Mα =
(

0
1

1
0

)
. We obtain{(

x
cf(x)

)
−
(
u
v

)
: x ∈ R

}
=
{
Mα

(
x

f(x)

)
: x ∈ R

}
=
{(

f(x)
x

)
: x ∈ R

}
.

The left-hand side is a translate of the graph of cf : R→ R and in turn a graph
of a well-defined function from R into R. The coincidence with the right-hand
side shows that f−1 is a function from R into R. This yields the claim.

Case 6. Mα =
(

0
−1
−1
0

)
. Now{

−
(

x
cf(x)

)
+
(
u
v

)
: x ∈ R

}
=
{
−Mα

(
x

f(x)

)
: x ∈ R

}
=
{(

f(x)
x

)
: x ∈ R

}
.

The left-hand side is the graph of the function x 7→ −cf(−x + u) + v from
R into R. This gives the claim as in the previous case and completes the
proof.
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Proof of Theorem 2. For every c ∈ C, we fix an isometry αc such that

graph(cf) = αc(graph(f)). (3)

As it has been done in [1], we study the set

Sf =
{

a−b
‖a−b‖ : a,b ∈ graph(f), a 6= b

}
,

where ‖·‖ stands for the Euclidean norm. Sf is non-empty and symmetric with
respect to the origin. More precisely, Sf splits into S+

f =
{(

x
y

)
∈ Sf : x > 0

}
and −S+

f , the components S+
f and −S+

f each being connected according to
the intermediate value theorem.

For c > 0, let ψc be the self-map of S1 = {a ∈ R2 : ‖a‖ = 1} defined by
ψc
(
(x, y)t

)
= (x,cy)t

‖(x,cy)t‖ . Equation (3) yields

ψc(Sf ) = Mαc
(Sf ) for all c ∈ C, (4)

where ψc(Sf ) splits into two connected components ψc(S+
f ) and ψc(−S+

f ) =
−ψc(S+

f ) and Mαc
(Sf ) consists of two disjoint isometric copies of S+

f . Hence

length(ψc(S+
f )) = length(S+

f ) for all c ∈ C. (5)

Case 1. length(S+
f ) = 0. Then S+

f is a singleton, Sf = S+
f ∪ (−S+

f ) =
{s0,−s0}, and f is of the form f(x) = px+ q.

Case 2. length(S+
f ) > 0. We denote the two end-points of S+

f by e1, e2.
Equation (5) can be stated in terms of scalar products.

〈ψc(e1), ψc(e2)〉 = 〈e1, e2〉 = 〈ψ1(e1), ψ1(e2)〉 for all c ∈ C. (6)

Assume for a moment that {e1, e2} 6⊆
{(

0
−1

)
,
(

1
0

)
,
(

0
1

)}
. Then elementary

differential calculus shows that the map c 7→ 〈ψc(e1), ψc(e2)〉 from (0,∞)
into R attains every value at most twice. However, since C generates a dense
subgroup of ((0,∞), ·), C contains at least two distinct elements c1, c2 different
from c0 = 1. By (6), 〈ψc(e1), ψc(e2)〉 coincide for c ∈ {c0, c1, c2}. This
contradiction yields

{e1, e2} ⊆
{(

0
−1

)
,
(

1
0

)
,
(

0
1

)}
. (7)

Case 2.1. {e1, e2} ⊆
{(

0
−1

)
,
(

0
1

)}
. Then S+

f is an open half-circle, Sf =
S1 \

{(
0
−1

)
,
(

0
1

)}
, and (4) amounts to Sf = Mαc(Sf ) for all c ∈ C. Thus

Mαc
∈
{(

1
0

0
1

)
,
(−1

0
0
−1

)
,
(−1

0
0
1

)
,
(

1
0

0
−1

)}
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and, by Lemma 5 (a), f is vertically rigid for c2 via a translation. So f
is vertically rigid for C̄ = {c2 : c ∈ C} via translations. The subgroup Ḡ
of ((0,∞), ·) generated by C̄ is Ḡ = {g2 : g ∈ G}, G denoting the group
generated by C. Hence C̄ generates a dense group, too. Now Proposition 2
shows that f(x) = peqx + r.

Case 2.2. {e1, e2} 6⊆
{(

0
−1

)
,
(

0
1

)}
. Then, by (7), S+

f is a quarter of S1

between
(

1
0

)
and

(
0
1

)
or
(

0
−1

)
and Sf = S+

f ∪ (−S+
f ) is the corresponding

symmetric set. (4) yields Sf = Mαc
(Sf ) and in turn

Mαc
∈
{(

1
0

0
1

)
,
(−1

0
0
−1

)
,
(

0
1

1
0

)
,
(

0
−1
−1
0

)}
for all c ∈ C.

Lemma 5 shows that, depending on whether f is bijective from R onto R or
not, either

Mαc
∈
{(

1
0

0
1

)
,
(−1

0
0
−1

)}
for all c ∈ C, or (8)

Mαc ∈
{(

0
1

1
0

)
,
(

0
−1
−1
0

)}
for all c ∈ C. (9)

The situation (8) can be treated as in Case 2.1.
Finally, we assume (9), which corresponds to the case that f is a bijection

from R onto R. There exist at least two distinct elements c1, c2 ∈ C, because
C generates a dense subgroup of ((0,∞), ·). By Lemma 4, c1f is vertically
rigid for c2

c1
via αc2α

−1
c1 . (9) yields

Mαc2α
−1
c1

= Mαc2
M−1
αc1

= Mαc2
Mαc1

∈
{(

1
0

0
1

)
,
(−1

0
0
−1

)}
.

So, by Lemma 5 (a), c1f is not bijective from R onto R and in turn neither is
f . This contradiction completes the proof.

3 Horizontally Rigid Functions.

Proof of Proposition 3. There exist u, v ∈ R such that f(cx) = f(x +
u) + v for all x ∈ R. We can assume c > 1, because the previous equation
yields f

(
1
cx) = f(x− uc)− v = f(x+ ū) + v̄. Note that v = 0, since

f
(
c u
c−1

)
= f

(
u
c−1 + u

)
+ v = f

(
c u
c−1

)
+ v.

Hence f(cx) = f(x+ u) and f(x) = f
(
x
c + u

)
for all x ∈ R. The last is

f(x) = f
(

1
c

(
x− cu

c−1

)
+ cu

c−1

)
.

Iteration of this gives

f(x) = f
(

1
ck

(
x− cu

c−1

)
+ cu

c−1

)
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for all x ∈ R and k ∈ {1, 2, . . .}. The argument on the right-hand side tends
to cu

c−1 as k →∞. So, by continuity, f(x) = f
(
cu
c−1

)
for all x ∈ R.

The proof of Theorem 4 as well as its preparation are close to those of
Theorem 2. We start again with an obvious fact.

Lemma 6. Let f : R → R be horizontally rigid for c1 via α1 and for c2 via
α2. Then f(c1 ·) is horizontally rigid for c2

c1
via α2α

−1
1 .

Lemma 7. Let f : R→ R be horizontally rigid for some c ∈ (0, 1)∪(1,∞) via
an isometry α such that Mα =

(−1
0

0
−1

)
. Then f is horizontally rigid for c2

via a horizontal translation. If, moreover, f is continuous, then f is constant.

Proof. There exist u, v ∈ R such that{(
x

f(cx)

)
: x ∈ R

}
= graph(f(c ·)) = α(graph(f)) =

{
Mα

(
x

f(x)

)
+
(
u
v

)
: x ∈ R

}
.

Hence f(cx) = −f(−x+ u) + v and

f(c2x) = −f(−cx+ u) + v = −f
(
c
(
− x+ u

c

))
+ v = f

(
x− u

c + u
)

for all x ∈ R. So f is horizontally rigid for c2 via a horizontal translation.
Now the second claim is a consequence of Proposition 3.

Proof of Theorem 4. Let αi be the isometry corresponding to to ci; that
is,

graph(f(ci ·)) = αi(graph(f)) for i = 1, 2.

Using the sets Sf , S+
f and the maps ψc

(
(x, y)t

)
= (x,cy)t

‖(x,cy)t‖ = ( x
c ,y)t

‖( x
c ,y)t‖ from the

proof of Theorem 2 we obtain the following analogues of (4) and (5).

ψci(Sf ) = Mαi(Sf ), and (10)

length(ψci
(S+
f )) = length(S+

f ) for i = 1, 2.

If length(S+
f ) = 0 we obtain the representation f(x) = px + q as in the

proof of Theorem 2. If length(S+
f ) > 0 we show as in the very proof that

S+
f is either an open half-circle between

(
0
−1

)
and

(
0
1

)
or a quarter of a circle

having
(

1
0

)
as an end-point. Then (10) yields Sf = Mαi(Sf ) and hence

Mαi
∈
{(

1
0

0
1

)
,
(−1

0
0
−1

)
,
(−1

0
0
1

)
,
(

1
0

0
−1

)}
for i = 1, 2 (11)

if S+
f is an half-circle or

Mαi
∈
{(

1
0

0
1

)
,
(−1

0
0
−1

)
,
(

0
1

1
0

)
,
(

0
−1
−1
0

)}
for i = 1, 2 (12)
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if S+
f is a quarter of a circle.
Case 1. {Mα1 ,Mα2} ∩

{(
1
0

0
1

)
,
(−1

0
0
−1

)}
6= ∅. Then there is i ∈ {1, 2} such

that either Mαi
=
(

1
0

0
1

)
, which means that f is horizontally rigid for c via a

translation and in turn constant by Proposition 3, or Mαi
=
(−1

0
0
−1

)
, where

f is constant according to Lemma 7.
Case 2. {Mα1 ,Mα2} ∩

{(
1
0

0
1

)
,
(−1

0
0
−1

)}
= ∅. Now (11) and (12) yield

{Mα1 ,Mα2} ⊆
{(−1

0
0
1

)
,
(

1
0

0
−1

)}
or {Mα1 ,Mα2} ⊆

{(
0
1

1
0

)
,
(

0
−1
−1
0

)}
.

By Lemma 6, f(c1 ·) is horizontally rigid for c2
c1

via α2α
−1
1 . We obtain

Mα2α
−1
1

= Mα2M
−1
α1

= Mα2Mα1 ∈
{(

1
0

0
1

)
,
(−1

0
0
−1

)}
.

Following the arguments of Case 1 we conclude that f(c1 ·) is constant. Hence
f is constant as well and the proof is complete.
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