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COMPOSITE CONTINUOUS PATH
SYSTEMS AND DIFFERENTIATION

Abstract

The concept of composite differentiation was introduced by O’Malley
and Weil to generalize approximate differentiation. The concept of con-
tinuous path systems was introduced by us. This paper combines these
concepts to introduce the notion of composite continuous path systems
into differentiation theory. It is shown that a number of results that hold
for composite differentiation and for continuous path differentiation also
hold for composite continuous path differentiation. In particular, a com-
posite continuous path derivative of a continuous function is a Baire class
one function on some dense open set, and extreme composite continuous
path derivatives of a continuous function are Baire class two functions.
It is also shown that extreme composite continuous path derivatives of
a Borel measurable function are Lebesgue measurable. Finally, for each
composite continuous path system E, continuous functions typically do
not have E−derived numbers with E−index less than one.

1 Introduction.

The derivative f ′ of a differentiable real valued function f defined on the real
line R has been generalized in many ways. Generalizations have been achieved
by restricting the path of the limit of the difference quotient of f at a fixed
point x to a subset Ex of R — clearly, x must be a member of and a limit
point of Ex. Bruckner, O’Malley and Thomson in [5] introduced their concept
of path derivative and showed that many known generalized derivatives fall
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into this framework. They showed that most of the nice properties of these
derivatives are due to the thickness of the paths as well as the way the path
Ey intersects Ex whenever y is close to x for a collection E = {Ex : x ∈ R} —
E is called a path system. (See Section 2 for the definition of a path system.)
It is easily seen that the approximate derivative function is associated with
a path system. It is shown in [5] that many nice properties possessed by
generalized derivative functions are also possessed by path derivative functions.
In [7] O’Malley shows that for a real valued function f possessing a finite
approximate derivative f ′ap everywhere in [0, 1], there is a sequence of perfect
sets Xn whose union is [0, 1] and a sequence of differentiable functions fn such
that fn = f over Xn and f ′n = f ′ap over Xn. It is also clear that a derivative of
a real valued function whose domain is a subset X of R can be defined if X is a
nonempty dense-in-itself set. Using this fact and the decomposition property
of approximate derivatives, O’Malley and Weil [9] introduced the concept of
composite differentiation of a real valued function defined on R. (See Section
2 for the definition of composite derivative of a function.) Roughly speaking,
R is written as a countable union of closed sets Xi, i = 1, 2, . . . , such that the
function restricted to Xi is differentiable for each i. Clearly each piecewise
linear, continuous function has a composite derivative which need not be a
Darboux function. It is known that composite derivative functions are Baire
class one functions, [9] and that every approximate derivative function is a
composite derivative, [7].

The notion of a continuous system of paths was introduced in [1], where
the path system E = {Ex : x ∈ R }, which consists of compact sets, is required
to be continuous as a function from R into the metric space of compact subsets
of R endowed with the Hausdorff metric. This notion leads to continuous path
derivative of a real valued function defined on R. Several nice properties of
continuous path derivatives were shown in [1, 2], and [3]. The present paper
extends the notion of continuous path system by using the idea behind compos-
ite differentiation. That is, we define the notion of composite continuous path
system. (See Definition 3.1. below.) The main results concern various proper-
ties of composite continuous path derivatives, extreme composite continuous
path derivatives and composite continuous path derived numbers. In Section
4, we generalize the main results given in [1], in particular it is shown that
the composite continuous path derivative of a continuous real valued function
is an element of Baire class one on a dense open set, the extreme composite
continuous path derivatives of Borel measurable functions and of continuous
functions are respectively Lebesgue measurable and members of Baire class
two. In Section 5, some results concerning the typical properties of composite
continuous path derived numbers of continuous real valued functions are pre-
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sented that generalizes some of the results given in [3]. The definitions and
results given here could be stated on the real line, however for simplicity we
consider the interval [a, b] as the ambient space.

2 Preliminaries.

In this section we give the notation and terminology. For subsets A of [a, b],
Ac is the complement of A in the interval [a, b], and d(x,A) is the usual dis-
tance from x to A. Let f : [a, b] → R be a function and x0 ∈ [a, b]. An
extended real number α is called a derived number (bilateral derived num-
ber) of f at x0 if there is a sequence {sn}∞n=1 ⊂ [a, b] with limn→∞ sn = x0

and limn→∞
f(sn)−f(x0)

sn−x0
= α (resp., there are sequences {sn} ⊂ [a, b] and

{tn} ⊂ [a, b] such that sn < x0 < tn for each n and limn→∞
f(sn)−f(x0)

sn−x0
=

limn→∞
f(tn)−f(x0)

tn−x0
= α.) A function g : [a, b]→ R is called a derived function

(bilateral derived function) of f if g(t) is a derived number (bilateral derived
number) of f at t for each t ∈ [a, b]. A point p is a point of accumulation or limit
point (respectively, bilateral point of accumulation or bilateral limit point)
of S ⊂ [a, b] if there is a sequence {sn}∞n=1 in S such that sn 6= p for n ≥ 1
and limn→∞ sn = p (respectively, if there are sequences {sn} and {tn} in S
such that for each n ≥ 1, sn < p < tn and limn→∞ sn = limn→∞ tn = p.) Let
x ∈ [a, b]. A path leading to x is a set Ex ⊆ [a, b] containing x and having x as a
point of accumulation. A path system is a collection E = {Ex : x ∈ [a, b]} such
that each Ex is a path leading to x. The restriction of a path system E on a set
A ⊆ [a, b] is EA = {Ex ∈ E : x ∈ A}. If for each x, Ex has x as a bilateral point
of accumulation, E is called a bilateral path system. We should point out that,
a bilateral path system or bilateral derived number on a closed interval [a, b], is
interpreted as unilateral at both endpoints a and b. Let f : [a, b]→ R and let
E = {Ex : x ∈ [a, b]} be a system of paths. If limy→x, y∈Ex

f(y)−f(x)
y−x = g(x)

is finite, then f is E−differentiable at x and f ′E(x) = g(x). The extreme
E-derivatives of f at a point x are f̄ ′

E(x) = lim supy→x, y∈Ex

f(y)−f(x)
y−x and

f ′
E

(x) = lim infy→x, y∈Ex

f(y)−f(x)
y−x . If f is E−differentiable at every point x

and f ′E(x) = g(x), then f is said to be E−differentiable and g is called the
E−derivative of f . The extreme E-derivatives of f are f̄ ′

E and f ′
E

. Note that,
if f is continuous and E−differentiable at x, the path Ex can be replaced with
its closure Ex. By a decomposition of the interval [a, b] we mean closed sets
Xn for n = 1, 2, 3, · · · such that ∪∞n=1Xn = [a, b]. A function f : [a, b] → R is
said to be compositely differentiable to a function g: [a, b]→ R relative to the
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decomposition {Xn}∞n=1 of the interval [a, b] if for each n and each x ∈ Xn

lim
t→x, t∈Xn

f(t)− f(x)
t− x

= g(x).

In this case the above limit need not be unique unless x is a limit point of Xn.

3 Composite Continuous Path Systems.

In this section we introduce the composite continuous path systems by con-
sidering the compact subsets of the interval [a, b] endowed with the Hausdorff
metric as the underlying metric space.

Definition 3.1. Let A ⊆ [a, b] be closed and let E = {Ex : x ∈ [a, b]} be a
system of paths so that for each x ∈ [a, b], Ex is a compact subset of the interval
[a, b]. If the function E : x→ Ex is a continuous function on A, then we say
E is a continuous system of paths on A. Let {Ai}∞i=1 be a decomposition of
[a, b] such that the function E : x → Ex is a continuous function on Ai for
each i ≥ 1; then we say E is a composite continuous system of paths on [a, b].
A composite continuous path derivative is a path derivative with respect to a
composite continuous path system. Similarly, extreme composite continuous
path derivatives are defined.

Example 3.2. There exists a path system E = {Ex : x ∈ [0, 1]} which is
composite continuous but not continuous.

Proof. Let A ⊂ [0, 1] be the Cantor set, {(cn, dn)}∞n=1 be the complementary
intervals of A in [0, 1], and let δ(x) = 1

2d(x,A) for each x ∈ [0, 1] \ A. Define
the path system E = {Ex : x ∈ [0, 1]} as Ex = A for x ∈ A. If cn < x < dn
for some n = 1, 2, · · · , define Ex = [x − δ(x), x] for cn < x ≤ cn+dn

2 , and
Ex = [x, x + δ(x)] for each cn+dn

2 < x < dn. It is easy to see that E is a
composite continuous path system, but not a continuous path system.

In general composite derivatives are not path derivatives unless some extra
conditions are imposed, see [8]. The following theorem shows that each com-
posite derivative that can be expressed as path derivative is also a composite
continuous path derivative.

Theorem 3.3. Let f and g be real valued functions on [0, 1]. If g is a de-
rived function of f and f has g as a composite derivative, then there exists a
composite continuous path system E = {Ex : x ∈ [0, 1]} such that f ′E = g.
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Proof. Let Ai, i = 1, 2, 3, · · · , be the decomposition of [0, 1] associated with
the composite derivative g and limt→x, t∈Ai

f(t)−f(x)
t−x = g(x) whenever x is a

limit point of Ai. Let Pi be the perfect part of Ai. Then Ci = Ai \ Pi is
countable. There is no loss in assuming that the Fσ set Pn \ ∪k<nPk is not
empty. Let Knj

be closed sets such that ∪∞j=1Knj
= Pn\∪k<nPk, and for each

x in Knj
let Ex = An. Then limt→x,t∈Ex

f(t)−f(x)
t−x = g(x), and {Ex : x ∈ Knj

}
is continuous. Let C = [0, 1]\∪∞n=1Pn. Then C is a countable set contained in
∪∞n=1Cn. For each singleton x in C let Ex = {xn : n = 1, 2, 3, · · · }∪{x}, where
{xn} is a sequence in [0, 1] that converges to x and limn→∞

f(xn)−f(x)
xn−x = g(x).

Clearly {Ex : x ∈ {x}} is continuous for each x ∈ C. The collection E =
{Ex : x ∈ [0, 1]} so defined is a composite continuous path system such that
f ′E(x) = g(x) for each x.

In Theorem 3.3, We may replace the derived function g of f with a bilateral
one and use the following theorem to obtain a bilateral system of paths with
each path being a perfect set.

Theorem 3.4. [[6], Lemma 1, Page 86]. Let f : [0, 1] → R be compositely
differentiable to g : [0, 1] → R. Suppose, for each x ∈ [0, 1], that g(x) is a
bilateral derived number of f at x. Then there exists a nondecreasing sequence
Pn of perfect sets such that

(i) every point of Pn is a bilateral limit point of Pn+1,

(ii) ∪∞n=1Pn = [0, 1], and

(iii) fPn
is differentiable to gPn

for each n ≥ 1.

Theorem 3.5. Let f and g be real valued functions on [0, 1]. If g is a bilateral
derived function of f and f has g as a composite derivative, then there exists
a bilateral composite continuous path system E = {Ex : x ∈ [0, 1]} such that
for each x, Ex is a perfect set and f ′E = g.

Proof. Since f is compositely differentiable to g, using Theorem 3.4., we
may obtain an increasing sequence of perfect sets Pn such that, (i) every
point of Pn is a bilateral limit point of Pn+1, (ii) ∪∞n=1Pn = [0, 1], and (iii)
fPn

is differentiable to gPn
for each n ≥ 1. We have [0, 1] = ∪∞n=1Pn =

∪∞n=2(Pn \ Pn−1) ∪ P1. For each x ∈ P1 let Ex = P2. For n ≥ 2 let Knj
be

closed sets such that ∪∞j=1Knj = Pn \ Pn−1, and for x ∈ Knj let Ex = Pn+1.
Then for each x ∈ Knj , where j = 1, 2, 3, · · · (resp. x ∈ P1) x is a bilateral limit
point of Ex = Pn+1 (resp. Ex = P2) and limt→x,t∈Ex

f(t)−f(x)
t−x = g(x). The

collection E = {Ex : x ∈ [0, 1]} so defined is a bilateral composite continuous
path system with each path being a perfect set and f ′E(x) = g(x) for each
x.
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4 Baire Classification and Measurability.

Let us turn to the Baire classes of composite continuous path derivative func-
tions and extreme composite continuous path derivatives. Here Bi denotes
the Baire functions of class i for i = 1, 2. Recall that a function f is in B1

if and only if each nonempty perfect subset P of the domain of f contains a
point of continuity of fP , and a function f is in B2 if and only if the sets
{x : f(x) < r} and {x : f(x) > r} are Gδσ sets for each r ∈ R.

An approximate derivative is a derived function and a composite deriva-
tive, see [7] and thus it is a composite continuous path derivative. We know
that all composite derivatives are members of B1, see [9]. In [1] we gave an
example of a B2 function f and a continuous path system E with f̄

′
E not be-

ing Borel measurable. Thus, in general an extreme composite continuous path
derivative cannot be Borel measurable. It is also known that continuous path
derivatives of arbitrary functions need not be elements of B1, but continuous
path derivatives of continuous functions are members of B1, see [1]. In this
section we give a generalization of Theorem 4.1. in the setting of composite
continuous path systems.

Theorem 4.1. [[1], Theorem 5 and Theorem 16] Let E = {Ex : x ∈ [a, b]}
be a continuous system of paths on [a, b].

a) For continuous functions f : [a, b]→ R,

(i) f ′E ∈ B1 whenever f ′E exits,

(ii) f̄
′
E and f ′

E
are members of B2.

b) For Borel measurable functions f : [a, b] → R, f̄ ′
E and f ′

E
are Lebesgue

measurable.

As an immediate consequence of this theorem and the Baire Category
Theorem we have the following result.

Theorem 4.2. Let f : [0, 1]→ R be a continuous function and let E = {Ex :
x ∈ [0, 1]} be a bilateral composite continuous system of paths. If f ′E(x) exists
for all x ∈ [0, 1], then there is a dense open subset U of [0, 1] such that f ′E
restricted to U is a Baire class one function.

Proof. Let [0, 1] = ∪∞i=1Ai, where the path system E is continuous on each
closed set Ai. Let I be a closed subinterval of [0,1] with positive length. Then
by Baire Category Theorem for some i ≥ 1, there exists a closed interval J of
positive length with J ⊂ (Ai∩I). Since E = {Ex : x ∈ Ai} is a continuous and
bilateral system of paths on Ai, the path system R = {Rx = Ex ∩ J : x ∈ J}



Composite Continuous Path Systems 37

is a continuous path system on J ⊆ Ai. On the other hand the function
f : J → R is continuous and for each x ∈ J , f ′R(x) = f ′E(x). Thus by
Theorem 4.1., f ′E = f ′R is of Baire class one on the closed interval J . Now
let I ={(ai, bi)}∞i=1 be an enumeration of the open subintervals of [0,1] with
rational endpoints and let A = {Ki = (ai, bi) ∈ I : f ′E [ai,bi] ∈ B1 on [ai, bi]}.
Let U = ∪Ki∈AKi. It is clear that U is an open dense subset of [0, 1] and f ′E
restricted to U is a Baire class one function.

The next lemma is a Urysohn extension theorem for continuous path sys-
tems. We use the following theorem, which is proved in [4].

Theorem 4.3. Let (X, d) be a metric space, let Z be a normed space, and
let F(Z) be the metric space of non-empty bounded closed subsets of Z with
Hausdorff metric dH . Given any non-empty closed subset A ⊂ X and any
continuous mapping F : A → F(Z), there exists a continuous mapping G :
X → F(Z) such that G(x) = F (x) for each x ∈ A and G(x) lies in the closure
of the convex hull of

⋃
a∈A F (a) for every x ∈ X.

Lemma 4.4. Let R be a continuous mapping from the closed set A ⊆ [0, 1]
into F(R) (endowed with the Hausdorff metric dH) such that, for each x ∈ A,
R(x) is a path at x and R(x) ⊆ [0, 1]. Then there exists a continuous system
of paths E = {Ex : x ∈ [0, 1]} such that Ex = R(x) for each x ∈ A.

Proof. Take Z = R and X = [0, 1] . Since R is a continuous mapping from
the closed set A ⊆ [0, 1] into F(R), from Theorem 4.3., it follows that there
exists a continuous mapping G : [0, 1]→ F(R) such that G(x) = R(x) for each
x ∈ A and G(x) lies in the closure of the convex hull of

⋃
a∈A F (a) ⊆ [0, 1]. Let

δ(x) = 1
2 inf{x, 1− x, d(x,G(x) \ {x})} for x ∈ (0, 1), δ(0) = 1

2d(0, G(0) \ {0}),
and let δ(1) = 1

2d(1, G(1) \ {1}). Let E0 = G(0) ∪ [0, δ(0)], E1 = G(1) ∪ [1−
δ(1), 1], and Ex = G(x)∪[x−δ(x), x+δ(x)] for each x ∈ (0, 1). It is easy to see
that for each x, Ex ⊆ [0, 1] is a path at x, hence E = {Ex : x ∈ [0, 1]} is a path
system and we have dH(Ex, Ey) ≤| x− y | + | δ(x)− δ(y) | +dH(G(x), G(y))
for each x and y in X = [0, 1]. Thus E is a continuous system of paths on
[0,1] with Ex = R(x) for each x ∈ A.

Theorem 4.5. Let E = {Ex : x ∈ [0, 1]} be a composite continuous system of
paths.

(i) If f : [0, 1] → R is a continuous function, then f ′
E

and f̄
′
E are B2

functions.

(ii) If f [0, 1] → R is a Borel measurable function, then f ′
E

and f̄
′
E are

Lebesgue measurable.
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Proof. Let [0, 1] = ∪∞m=1Am be the associated decomposition where the path
system E is continuous on each closed set Am. Utilizing Lemma 4.4. for each
m ≥ 1, there exists a continuous path system Rm = {Rm(x) : x ∈ [0, 1]} such
that Rm(x) = Ex for each x ∈ Am. In case (i), the function f is continuous
and Rm is a continuous system of paths. Thus by Theorem 4.1., f̄ ′

Rm
∈ B2.

Let r ∈ R be arbitrary. We then have

{x ∈ [0, 1] : f̄ ′
E(x) > r} = ∪∞m=1{x ∈ Am : f̄ ′

E(x) > r}
= ∪∞m=1(Am ∩ {x ∈ [0, 1] : f̄ ′

Rm
(x) > r}),

which is a Gδσ set. Similarly the set

{x ∈ [0, 1] : f̄ ′
E(x) < r} = ∪∞m=1{x ∈ Am : f̄ ′

E(x) < r}
= ∪∞m=1(Am ∩ {x ∈ [0, 1] : f̄ ′

Rm
(x) < r}),

which is also a Gδσ set. Thus f̄ ′E ∈ B2. In a similar way we can show that
f ′
E
∈ B2.
In case (ii), the function f is Borel measurable, and for each m ≥ 1, Rm

is a continuous system of paths. Thus by Theorem 4.1., f̄ ′
Rm

and f ′
Rm

are

Lebesgue measurable. By the same argument as in case (i), we see that f̄ ′
E

and f ′
E

are Lebesgue measurable.

Of interest is the following question whose positive resolution will generalize
Theorem 5.5.2. on page 209 of [10].

Question 4.6. Let A ⊆ [0, 1] be closed and R = {Rx : x ∈ A} be a contin-
uous system of paths, such that for each x ∈ A, Rx ⊆ [0, 1]. If the function
f : [0, 1] → R is continuous and R−differentiable on A, is it possible to ex-
tend the path system R to a continuous path system E = {Ex : x ∈ [0, 1]}
and the function fA to a continuous function g : [0, 1] → R so that g is
E−differentiable and f ′R(x) = g′E(x) for each x ∈ A?

5 Typical Behavior.

As usual, in the normed space C[0, 1] of all continuous functions from [0, 1]
into R with the maximum norm, a property is said to hold typically if it is
satisfied by members of a residual subset. In [3], the index of a path derived
number of a function was defined, and it was shown that typically a continuous
function has no finite E−derived number with index less than one at each x
in [0, 1] when E is a continuous system of paths. Let us define the terms used
in the property. We shall restrict the definitions to continuous functions.
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We first define E−derived number at a point of [0, 1]. Note that derived
numbers were defined earlier. Here we introduce a path system E = {Ex :
x ∈ [0, 1]}, an extended real number α is called an E−derived number of a
continuous function f at x if there exists a sequence {xn} in Ex such that
limn→∞ xn = x and limn→∞

f(xn)−f(x)
xn−x = α. The collection of E−derived

numbers of f at x will be denoted by D(E, f, x). The union ∪{D(E, f, x) :
x ∈ [0, 1]}, denoted by D(E, f), is called the set of E−derived numbers of f .

For the definition of the index at x of an E−derived number in D(E, f, x),
we used the notation

γ({xn}, x) = lim sup
n→∞

xn − xn+1

xn − x
,

where {xn} is a monotone sequence that converges to x. Obviously, 0 ≤
γ({xn}, x) ≤ 1. For α in D(E, f, x), let S(α,E, f, x) be the collection of all
monotone sequences in Ex that converge to x and satisfies limn→∞

f(xn)−f(x)
xn−x =

α. The number

C(α,E, f, x) = inf{γ({xn}, x) : {xn} ∈ S(α,E, f, x)}

is called the E−index at x of α, where α ∈ D(E, f, x). The E−index of α in
[0, 1] is defined to be

C(α,E, f) = inf{C(α,E, f, x) : x ∈ [0, 1]}.

With the aid of Lemma 4.4, the proof of Theorem 5.2 is reduced to the fol-
lowing theorem on continuous path systems which is Theorem 4 on page 361
of [3].

Theorem 5.1. Let E = {Ex : x ∈ [0, 1]} be a continuous system of paths on
[0, 1]. Typically, a continuous function f has no finite E−derived number α
with C(α,E, f) < 1.

We are now ready to state and prove our result on path derived numbers
of continuous functions with respect to composite continuous path systems.

Theorem 5.2. Let E = {Ex : x ∈ [0, 1]} be a composite continuous system
of paths on [0,1]. Typically, a continuous function f has no finite E−derived
number α with C(α,E, f) < 1.

Proof. Let [0, 1] = ∪∞m=1Am be the associated decomposition where the
path system E is continuous on each closed set Am. For each m ≥ 1, Lemma
4.4. gives a continuous path system Rm = {Rm(x) : x ∈ [0, 1]} such that
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Rm(x) = Ex whenever x ∈ Am. By Theorem 5.1. for each m ≥ 1, the
collectionHm of all continuous functions f such that f has a finite Rm−derived
number α with C(α,Rm, f) < 1 is a set of first category. Hence H = ∪∞m=1Hm

is a set of first category. Let f be such that for some x ∈ [0, 1] there is
a finite α in D(E, f, x) with C(α,E, f, x) < 1. There is an m such that
x ∈ Am, as Rm(x) = Ex, it follows that α is an Rm−derived number with
C(α,Rm, f) < 1. That is f ∈ H. The theorem is proved.
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