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ON THE CONVERGENCE OF
GENERALIZED CONTINUOUS
MULTIVALUED MAPPINGS

Abstract

The main results presented in this paper concern generalized con-
tinuous multivalued mappings. An attempt has been made to formu-
late sufficient conditions under which convergence of nets of multivalued
mappings preserves generalized continuity.

1 Introduction.

In what follows X, Y are topological spaces and E is a non-empty family of
non-empty subsets of X. For a subset A of a topological space Cl(A) denotes
the closure of A and ∅, the empty set. Here N stands for the set of all natural
numbers. A multivalued mapping is a mapping from X to P (Y ) \ {∅} where
P (Y ) is the power set of Y . We use capital letters F , G, H etc. to denote
multivalued mappings. For a multivalued mapping F : X −→ P (Y ) \ {∅} we
write simply F : X −→ Y . A single-valued mapping f : X −→ Y can be
considered as a multivalued mapping as x 7→ {f(x)}, x ∈ X.
For a multivalued mapping F : X −→ Y and for A ⊆ Y , we write,

F+(A) = {x ∈ X : F (x) ⊆ A}, F−(A) = {x ∈ X : F (x) ∩A 6= ∅}.
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For a single-valued mapping f : X −→ Y and for A ⊆ Y ,

f+(A) = f−(A) = f−1(A) = {x ∈ X : f(x) ∈ A}.

A multivalued mapping F : X −→ Y is said to be upper (lower) E-continuous
at x ∈ X [9] if for each open neighbourhood U of x and each open set V in
Y with F (x) ⊆ V (F (x) ∩ V 6= ∅) there exists E ∈ E with E ⊆ U such that
E ⊆ F+(V ) (E ⊆ F−(V )). It is called upper (lower) E-continuous on X if it
is so at every point of X.

Let O = {E ⊆ X : E 6= ∅ and open in X}, Br = {E ⊆ X : E is second
category with the Baire property}, B = {E ⊆ X : E is either non-empty
open or second category with the Baire property}, and B∗ = {E ⊆ X : E is
not nowhere dense with the Baire property}. In the case E = O,(= Br,= B,
= B∗) we have the upper (lower) E-continuity as the usual notion of upper
(lower) quasicontinuity citebib13, (Baire continuity [10], B-continuity [10], B∗-
continuity [3] respectively).
For a multivalued mapping F : X −→ Y , we write,

C+(F ) = {x ∈ X : F is upper E-continuous at x}

and
C−(F ) = {x ∈ X : F is lower E-continuous at x}.

For an open set V in a topological space (Y, τ), we write,

V + = {A ∈ P (Y ) : A ⊆ V }, V − = {A ∈ P (Y ) : A ∩ V 6= ∅}.

The topologies in P (Y ) generated by the base, {V + : V ∈ τ} and subbase,
{V − : V ∈ τ} are respectively called the upper, lower Vietoris topologies [12].
These topologies will be denoted by τ+ and τ− respectively.
A net {aj : j ∈ J} of elements of Y is said to be convergent to a ∈ Y [4], if
for each neighbourhood V of a, there exists j0 ∈ J such that aj ∈ V for every
j ∈ J , j ≥ j0.
For a net {Aj : j ∈ J} of subsets of Y and for A ⊆ Y , we write, A ∈ τ+−limAj
(A ∈ τ− − limAj) if {Aj : j ∈ J} converges to A in (P (Y ), τ+) ((P (Y ), τ−))
[2].
A net {Fj : j ∈ J} of multivalued mappings Fj : X −→ Y is said to be τ+-
pointwise (τ−- pointwise) convergent to a multivalued mapping F : X −→ Y
if for every x ∈ X, F (x) ∈ τ+ − limFj(x) (F (x) ∈ τ− − limFj(x)).
If Y is locally compact, then we may consider the lbc-topology [11] on the
family 2Y of all closed non-empty subsets of Y . The basis of the lbc-topology
on 2Y is the family of all sets of the form [U1, . . . Un;V1, . . . Vk] where Ui, Vj
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are arbitrary open sets in Y with a compact closure and

[U1, . . . Un;V1, . . . Vk] = {A ∈ 2Y : A ∩ Ui 6= ∅, A ∩ Cl(Vj) = ∅,
i = 1, 2, . . . n; j = 1, 2, . . . k}.

It is shown in [11] that the space 2Y with the lbc-topology is locally compact.

2 Strong Convergence of Nets.

The notion of strong convergence of multivalued mappings was introduced by
Kupka and Toma in [7]. In [2], Irena Domnik considered nets of multivalued
mappings upper and lower strongly convergent. A net {Fj : j ∈ J} of multi-
valued mappings Fj : X −→ Y is said to be upper (lower) strongly convergent
to a multivalued mapping F : X −→ Y [2] if for each open cover A of Y there
exists j0 ∈ J such that for every j ∈ J , j ≥ j0 and for every x ∈ X,

Fj(x) ⊆ St(F (x), A) (F (x) ⊆ St(Fj(x),A))

where the set St(A,A) =
⋃
{B ∈ A : B ∩A 6= ∅} is called the star of A(⊆ Y )

with respect to a cover A of Y .
The upper (lower) strong convergence seems to be a generalization of the
uniform convergence. For single-valued mappings, if {fn : X → (Y, d) : n ∈ N}
(d a metric) upper strongly converges to f , then for a cover A containing
all ε/4 balls there is m ∈ N such that for any n > m and any x ∈ X,
fn(x) ∈ St(f(x),A), so d(fn(x), f(x)) < ε.
In the next theorems we formulate sufficient conditions under which the upper
(lower) strong convergence preserves the upper (lower) E-continuity. We use
the general scheme of the proofs as the scheme in [2] and use the following
lemma in the proof of the next theorem.

Lemma 2.1. [2] Let Y be a regular space. If A is a para-compact subset of
Y and U is open in Y such that A ⊆ U , then there exists an open set V in Y
such that A ⊆ V ⊆ Cl(V ) ⊆ U .

Theorem 2.2. Let Y be a regular space and F : X −→ Y be a multivalued
mapping with para-compact values. If a net {Fj : j ∈ J} of multivalued
mappings Fj : X −→ Y is τ+- pointwise and lower strongly converges to F ,
then ⋂

i∈J

⋃
j≥i

C+(Fj) ⊆ C+(F ).
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Proof. Let x0 ∈
⋂
i∈J

⋃
j≥i C

+(Fj), V be open in Y with F (x0) ⊆ V and let
U be an open neighbourhood of x0. By Lemma 2.1, there exists an open set
W in Y such that F (x0) ⊆ W ⊆ Cl(W ) ⊆ V . Since F (x0) ∈ τ+ − limFj(x0)
and F (x0) ⊆ W , there exists j1 ∈ J such that Fj(x0) ⊆ W for every j ∈ J ,
j ≥ j1. Again since {Fj : j ∈ J} lower strongly converges to F , corresponding
to the open cover A = {V, Y \ Cl(W )} of Y there exists j2 ∈ J such that

F (x) ⊆ St(Fj(x),A) for every j ∈ J, j ≥ j2 and x ∈ X.
Choose j ∈ J (j ≥ j1, j ≥ j2) such that x0 ∈ C+(Fj). Then there

exists E ∈ E with E ⊆ U such that Fj(x) ⊆ W for every x ∈ E. Thus
St(Fj(x),A) = V for every x ∈ E and so, F (x) ⊆ V for every x ∈ E. Hence
x0 ∈ C+(F ) and consequently⋂

i∈J

⋃
j≥i

C+(Fj) ⊆ C+(F ).

Theorem 2.3. Let Y be a regular space. If a net {Fj : j ∈ J} of multivalued
mappings Fj : X −→ Y is τ−- pointwise and upper strongly converges to a
multivalued mapping F : X −→ Y , then⋂

i∈J

⋃
j≥i

C−(Fj) ⊆ C−(F ).

Proof. Let x0 ∈
⋂
i∈J

⋃
j≥i C

−(Fj), V be open in Y with F (x0) ∩ V 6= ∅
and let U be an open neighbourhood of x0. Let y0 ∈ F (x0) ∩ V . Since Y is
regular, there exists an open set W in Y such that y0 ∈ W ⊆ Cl(W ) ⊆ V .
Now F (x0) ∈ τ−− limFj(x0) and F (x0)∩W 6= ∅. So, there exists j1 ∈ J such
that Fj(x0) ∩W 6= ∅ for every j ∈ J , j ≥ j1. Again since {Fj : j ∈ J} upper
strongly converges to F , corresponding to the open cover A = {V, Y \Cl(W )}
of Y there exists j2 ∈ J such that

Fj(x) ⊆ St(F (x), A) for every j ∈ J, j ≥ j2 and x ∈ X.
Choose j ∈ J (j ≥ j1, j ≥ j2) such that x0 ∈ C−(Fj). Then there exists

E ∈ E with E ⊆ U such that Fj(x) ∩W 6= ∅ for every x ∈ E. Suppose that
F (x′) ∩ V = ∅ for some x′ ∈ E. Then F (x′) ⊆ Y \ V and so, St(F (x′),A) =
Y \ Cl(W ). Hence Fj(x′) ⊆ Y \ Cl(W ). But Fj(x′) ∩W 6= ∅. Thus we arrive
at a contradiction. Hence F (x)∩ V 6= ∅ for every x ∈ E. So, x0 ∈ C−(F ) and
consequently ⋂

i∈J

⋃
j≥i

C−(Fj) ⊆ C−(F ).
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3 Topological Convergence of Nets.

Let Ω be the first uncountable ordinal number. For a transfinite sequence
{Aξ : ξ < Ω} of subsets of Y , Liξ<ΩAξ is defined as the set of all y ∈ Y such
that for every neighbourhood V of y there exists ξ0 < Ω such that Aξ ∩V 6= ∅
for every ξ, ξ0 < ξ < Ω. Lsξ<ΩAξ is defined as the set of all y ∈ Y such
that for every neighbourhood V of y and for every ξ < Ω, there exists ξ′ < Ω
such that ξ < ξ′ and Aξ′ ∩ V 6= ∅. {Aξ : ξ < Ω} is said to be topologically
convergent to A ⊆ Y if Liξ<ΩAξ =Lsξ<ΩAξ = A and in this case we write
A = Ltξ<ΩAξ [8].

A multivalued mapping F : X −→ Y is said to be a topological limit of a
transfinite sequence {Fξ : ξ < Ω} of multivalued mappings Fξ : X −→ Y if for
every x ∈ X,

F (x) = Ltξ<ΩFξ(x) [8]

and in this case we write F = Ltξ<ΩFξ.
In this section we formulate sufficient conditions under which the topo-

logical convergence preserves the upper, lower E-continuity. We will use the
following lemmas.

Lemma 3.1. [5] Let Y be a first countable T1-space. If a transfinite sequence
{aξ : ξ < Ω} of elements of Y converges to a ∈ Y , then there exists ξ0 < Ω
such that aξ = a for every ξ, ξ0 < ξ < Ω.

Lemma 3.2. [11] If Y is a locally compact space, then the topological con-
vergence of nets of subsets of Y and the convergence in the space 2Y with the
lbc-topology are equivalent.

Lemma 3.3. [6] Every para-compact subset of a Hausdorff space is closed.

Theorem 3.4. Let Y be a locally compact separable metric space and let
Fξ, F : X −→ Y , ξ < Ω be multivalued mappings with closed values. If
E is countable, each Fξ, ξ < Ω is upper (lower) E-continuous on X and if
F = Ltξ<ΩFξ, then F is upper (lower) E-continuous on X.

Proof. If possible let F be not upper (lower) E-continuous at x0 ∈ X. Then
there exists an open set V in Y with F (x0) ⊆ V (F (x0) ∩ V 6= ∅) and there
exists an open neighbourhood U of x0 such that each E ∈ E with E ⊆ U
contains a point x′ for which F (x′) ∩ (Y \ V ) 6= ∅ (F (x′) ⊆ Y \ V ). For each
E ∈ E with E ⊆ U , choose a point xE ∈ E ⊆ U such that F (xE)∩ (Y \V ) 6= ∅
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(F (xE) ⊆ Y \ V ) and construct the set A by choosing all such xE ’s. Then for
each a ∈ A,

F (a) ∩ (Y \ V ) 6= ∅ (F (a) ⊆ Y \ V ). (3.1)

Since E is countable, A is countable. Now F (x) = Ltξ<ΩFξ(x) for all
x ∈ X. By Lemma 3.2, for every x ∈ X, F (x) = limξ<Ω Fξ(x) in the space 2Y

with the lbc-topology. Since the space 2Y with the lbc-topology is metrizable
[1, Theorem 4], by Lemma 3.1, for each a ∈ A, there exists ξa < Ω such that
Fξ(a) = F (a) for every ξ, ξa < ξ < Ω. Again by Lemma 3.1, for x0 ∈ X,
there exists ξ0 < Ω such that Fξ(x0) = F (x0) for every ξ, ξ0 < ξ < Ω. Choose
ξ′ < Ω such that ξ0 < ξ′ and also ξa < ξ′ for every a ∈ A. Now Fξ′ is upper
(lower) E-continuous at x0 and Fξ′(x0) ⊆ V (Fξ′(x0) ∩ V 6= ∅). So, there is
E ∈ E with E ⊆ U such that for every e ∈ E, Fξ′(e) ⊆ V (Fξ′(e) ∩ V 6= ∅).
Thus for some a ∈ A, Fξ′(a) ⊆ V (Fξ′(a) ∩ V 6= ∅) and so, for some a ∈ A,
F (a) ⊆ V (F (a) ∩ V 6= ∅) which is contradictory to (3.1). So, F is upper
(lower) E-continuous on X.

Theorem 3.5. Let Y be a locally compact separable metric space and let Fξ,
F : X −→ Y , ξ < Ω be multivalued mappings with para-compact values. If
for every ξ < Ω, there exists ξ′ < Ω such that ξ < ξ′ and Fξ′ , is upper E-
continuous on X and if {Fξ : ξ < Ω} lower strongly converges to F so that
F = Ltξ<ΩFξ, then F is upper E-continuous on X.

Proof. There is a subnet {Fξ′ : ξ′ < Ω} of upper E-continuous multival-
ued mappings which lower strongly converges to F and F = Ltξ′<ΩFξ′ . By
Lemma 3.2, for every x ∈ X, F (x) = limξ′<Ω Fξ′(x) in the space 2Y with
the lbc-topology. Since the space 2Y with the lbc-topology is metrizable [1,
Theorem 4], by Lemma 3.1, for each x ∈ X, there exists ξx < Ω such that
Fξ′(x) = F (x) for every ξ′, ξx < ξ′ < Ω. So {Fξ′ : ξ′ < Ω} τ+- pointwise
converges to F . By Theorem 2.2,⋂

ξ′<Ω

⋃
ξ′′≥ξ′

C+(Fξ′′) = X ⊆ C+(F ).

The proof of the next theorem is similar to that of Theorem 3.5 and so,
we omit the proof.

Theorem 3.6. Let Y be a locally compact separable metric space and let Fξ,
F : X −→ Y , ξ < Ω be multivalued mappings with para-compact values. If for
every ξ < Ω, there exists ξ′ < Ω such that ξ < ξ′ and Fξ′ is lower E-continuous
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on X and if {Fξ : ξ < Ω} upper strongly converges to F so that F = Ltξ<ΩFξ,
then F is lower E-continuous on X.

We conclude by posing the following problem: Does Theorem 3.4 hold for
an arbitrary cluster system?
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