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ON THE COMPLEXITY OF CONTINUOUS
FUNCTIONS DIFFERENTIABLE ON

COCOUNTABLE SETS

Abstract

We prove that the set of all functions in C[0, 1], with countably
many points at which the derivative does not exist, is ΠΠΠ1

1–complete, in
particular non–Borel. We obtain the classical Mazurkiewicz’s theorem
and the recent result of Sofronidis as corollaries from our result.

Let C[0, 1] stand for the Banach space of all real valued continuous func-
tions on [0, 1], with the supremum norm. The classical result of Mazurkiewicz
[3, 33.9] states that the set DIFF of all functions in the space C[0, 1] which
are differentiable everywhere is ΠΠΠ1

1–complete, in particular non–Borel. In the
recent paper [6] Sofronidis showed that the set of piecewise differentiable func-
tions forms a ΠΠΠ1

1–complete set. By definition, a piecewise differentiable func-
tion has finitely many points at which derivative does not exist. In this note
we study what will happen if we change in Sofronidis’ theorem the statement
”finitely” into ”countable”. Namely, Corollary 3 (iv) states that the set of all
functions from C[0, 1], with countably many points at which the derivative
does not exist, is ΠΠΠ1

1–complete. Our basic construction which leads to Theo-
rem 1 mimics a technique contained in the proof of the Mazurkiewicz theorem
presented in Kechris’ monograph [3]. As corollaries, we will obtain the results
of Mazurkiewicz and Sofronidis. The modification of the construction from [3]
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consists in using an additional parameter d ∈ {0, 1}N. Thanks to this we can
generate appropriate perfect sets. By a perfect set in a metric space we mean
a non-empty, closed and dense-itself set.

We use standard notation. For the descriptive set–theoretical background
we refer the reader to [3]. Let X be a Polish space. A subset A of X is called
analytic if it is the projection of a Borel subset B of X×X onto the first factor.
A subset D of X is called coanalytic if X \ D is analytic. The pointclasses
of analytic and coanalytic sets are denoted by ΣΣΣ1

1 and ΠΠΠ1
1, respectively. A set

D ⊂ X is said to be ΠΠΠ1
1–hard if for every zero–dimensional Polish space Y and

every coanalytic set B ⊂ Y there is a continuous function f : Y → X such
that f−1(D) = B. A set is called ΠΠΠ1

1–complete if it is ΠΠΠ1
1–hard and coanalytic.

For a non-empty set A, by A<N we denote the set of all finite sequences
of elements of A together with the empty sequence ∅. For s = (a0, ..., an−1) ∈
A<N and m ∈ N such that m < n, let s|m = (a0, ..., am−1) and |s| = n
(additionally s|0 = ∅ and |∅| = 0). Analogously for an infinite sequence
α ∈ AN let α|m = (α(0), ..., α(m− 1)). A set T ⊂ A<N is called a tree on A if

∀s ∈ T∀m ∈ N(m < |s| ⇒ s|m ∈ T ).

For a tree T on A let [T ] = {α ∈ NN : ∀m ∈ N(α|m ∈ T )}. We say that T is
well-founded if [T ] = ∅. By Tr we denote the space of all trees on N, and by
WF we denote the set of all well founded trees in Tr. Identifying trees on N
with their characteristic functions we may treat Tr as a subspace of {0, 1}N<N

(this space is homeomorphic to the Cantor space {0, 1}N). It is known that
Tr is a closed subset of {0, 1}N<N

(cf. [3, 4.32]). Hence Tr is a Polish space.
In the sequel we will use the fact that WF is ΠΠΠ1

1–complete (cf. [3, 32.B]);
to prove the ΠΠΠ1

1–hardness of a set A ⊂ X we will define a continuous map
f : Tr → X such that f−1(A) = WF . This is the most common way to prove
ΠΠΠ1

1–hardness; a nontrivial part of such a proof is to find a suitable continuous
map.

Basic construction (cf. [3, pp. 248–251])
For an interval K = [u, v], by K(L) and K(R) we denote the left half and the

right half of K, respectively (i.e. K(L) = [u, 1
2 (u+v)] and K(R) = [ 12 (u+v), v]);

|J | is the length of the interval J ; if s is a finite sequence, denote by |s| the
length of s. Let Z = {(s, d) ∈ N<N × {0, 1}<N : |s| = |d|} and fix a bijection
(s, d) 7→ 〈(s, d)〉 between Z and N. For T ∈ Tr let Z(T ) = {(s, d) ∈ Z : s ∈
T}. For (s, d) ∈ Z by |(s, d)| we denote a common value of |s| and |d|. For
f ∈ C[0, 1] let ND(f) = {x ∈ [0, 1] : f ′(x) does not exist} (here “f ′(x) does
not exist” means that limy→x

f(x)−f(y)
x−y does not exist or is infinite).

Given a closed interval I = [a, b] ⊂ [0, 1], define ϕ(x, I) : [0, 1]→ R by the
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formula

ϕ(x, I) =

{
16(x−a)2(x−b)2

(b−a)3 , if x ∈ I,
0, otherwise.

Note that ϕ(x, I) is differentiable on [0, 1], and ϕ(x, I) ≤ (b − a) = |I|, for
every x ∈ [0, 1].

Now, for each (s, d) ∈ Z, define closed intervals J(s,d) and K(s,d) as follows:

i) K(s,d) ⊂ J(s,d) is concentric in J(s,d), and |K(s,d)| ≤ 2−〈(s,d)〉−1(|J(s,d)| −
|K(s,d)|);

ii) J(sˆn,dˆi) ⊂ K
(L)
(s,d) for each n ∈ N and i ∈ {0, 1};

iii) J(sˆn,dˆi) ∩ J(sˆm,dˆj) = ∅, if (n, i) 6= (m, j).

Let J(∅,∅) = [0, 1] and the further construction of the above intervals is easy
to obtain by induction with respect to the length |(s, d)|. Given a tree T on
N, let

FT (x) =
∑

(s,d)∈Z(T )

ϕ(x,K(R)
(s,d)), x ∈ [0, 1].

Since 0 ≤ ϕ(x,K(R)
(s,d)) ≤ |K

(R)
(s,d)| ≤ 2−〈(s,d)〉, then FT ∈ C[0, 1]. We will show

that T 7→ FT is a continuous mapping from Tr to C[0, 1]. Let ε > 0 and let
N ∈ N be such that 2−(N−2) < ε. Fix T ∈ Tr and let S ∈ Tr be any tree such
that

T ∩ {s ∈ N<N : ∀d ∈ {0, 1}<N(|d| = |s| ⇒ 〈(s, d)〉 < N)} =

S ∩ {s ∈ N<N : ∀d ∈ {0, 1}<N(|d| = |s| ⇒ 〈(s, d)〉 < N}.
Then for any x ∈ [0, 1] we have

|FT (x)− FS(x)| ≤
∑

(s,d)∈Z(T ),〈(s,d)〉≥N

ϕ(x,K(R)
(s,d))

+
∑

(s,d)∈Z(S),〈(s,d)〉≥N

ϕ(x,K(R)
(s,d))

≤
∑
i≥N

(2−i + 2−i) =
1

2N−2
< ε.

Let
GT =

⋃
y∈[T ]

⋂
n

⋃
d∈{0,1}n

J(y|n,d), T ∈ Tr.

Note that for every y ∈ NN the set
⋂
n

⋃
d∈2n J(y|n,d) is a homeomorphic image

of the Cantor set. Hence for every T ∈ Tr we have
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(∗) (T ∈ WF ⇐⇒ GT = ∅) and (T /∈ WF ⇐⇒ GT contains a perfect
set).

Theorem 1. The function T 7→ FT has the following properties:

1) T ∈WF ⇐⇒ ND(FT ) = ∅;

2) T /∈WF ⇐⇒ ND(FT ) contains a nonempty perfect set.

Proof. By (∗) it suffices to prove that for each x ∈ [0, 1] we have

x /∈ GT ⇐⇒ F ′T (x) exists.

If x ∈ GT , then there are y ∈ [T ] and z ∈ {0, 1}ω such that x ∈ K(L)
(y|n,d|n)

for all n ∈ N. Let cn be the centre of K(R)
(y|n,d|n) and let ln = |K(R)

(y|n,d|n)|/2.
Then FT (x) = 0 and FT (cn + ln) = 0 for every n ∈ N, so

∀n ∈ N
FT (cn + ln)− FT (x)

cn + ln − x
= 0.

On the other hand,

∀n ∈ N
FT (cn)− FT (x)

cn − x
≥ 2ln

3ln
=

2
3
.

Since cn → x, cn + ln → x, then F ′T (x) does not exist.
If x /∈ GT , then x is an element of at most finitely many intervals of type

J(s,d), so there is N ∈ N such that

∀(s, d) ∈ Z(T )(〈(s, d)〉 ≥ N ⇒ x /∈ J(s,d)).

Let a pair (s, d) ∈ Z(T ) be such that 〈(s, d)〉 ≥ N and let h ∈ R \ {0}.
Since x /∈ J(s,d), then ϕ(x,K(R)

(s,d)) = 0. If |h| < 1
2

(
|J(s,d)| − |K(s,d)|

)
, then

x+ h /∈ K(R)
(s,d), so ϕ(x+ h,K

(R)
(s,d)) = 0. If |h| ≥ 1

2

(
|J(s,d)| − |K(s,d)|

)
, then∣∣∣∣∣∣ϕ(x+ h,K

(R)
(s,d))− ϕ(x,K(R)

(s,d))

h

∣∣∣∣∣∣ =
ϕ(x+ h,K

(R)
(s,d))

|h|

≤
2|K(R)

(s,d)|
|J(s,d)| − |K(s,d)|

≤ 2−〈(s,d)〉.
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For n ≥ N let

F
(n)
T (x) =

∑
(s,d)∈Z(T ),〈(s,d)〉≤n

ϕ(x,K(R)
(s,d)).

We show that F ′T (x) exists. Let ε > 0 and let n ≥ N be such that 2−n < ε/2.
Let k = min{|(s, d)| : (s, d) ∈ Z(T ) and 〈(s, d)〉 ≥ n} and fix a pair (s, d) ∈
Z(T ) such that |(s, d)| = k. Put δ = |J(s,d)| − |K(s,d)|. Let |h| ∈ (0, δ). Then
we have∣∣∣∣∣FT (x+ h)− FT (x)

h
−
F

(n)
T (x+ h)− F (n)

T (x)
h

∣∣∣∣∣ ≤
∑

(s,d)∈Z(T ),〈(s,d)〉>n

∣∣∣∣∣∣ϕ(x+ h,K
(R)
(s,d))− ϕ(x,K(R)

(s,d))

h

∣∣∣∣∣∣ ≤
∞∑

j=n+1

2−j = 2−n <
ε

2
.

Since F (n)
T is differentiable, there is δ ∈ (0, δ] such that∣∣∣∣∣F (n)

T (x+ h)− F (n)
T (x)

h
−
F

(n)
T (x+ h′)− F (n)

T (x)
h′

∣∣∣∣∣ < ε

2

for every h, h′ such that |h|, |h′| ∈ (0, δ). From this and the previous estima-
tions we obtain∣∣∣∣FT (x+ h)− FT (x)

h
− FT (x+ h′)− FT (x)

h′

∣∣∣∣ < ε

for every h, h′ such that |h|, |h′| ∈ (0, δ). Hence F ′T (x) exists and is finite.

Corollary 2. Let R be a family of countable subsets of [0, 1] such that ∅ ∈ R.
Then a set {f ∈ C[0, 1] : ND(f) ∈ R} is ΠΠΠ1

1–hard. In particular, if this set is
coanalytic, then it is ΠΠΠ1

1–complete.

Corollary 3. (i) {f ∈ C[0, 1] : ND(f) = ∅} is ΠΠΠ1
1–complete (Mazurkiewicz

[3, 33.9]);

(ii) {f ∈ C[0, 1] : ND(f) is finite} is ΠΠΠ1
1–complete (Sofronidis [6]);

(iii) {f ∈ C[0, 1] : ND(f) is countable} is ΠΠΠ1
1–complete;

(iv) {f ∈ C[0, 1] : ND(f) is countable Gδ} is ΠΠΠ1
1–complete.
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Proof. By Corollary 2 the sets in (i)–(iv) are ΠΠΠ1
1–hard. It remains to prove

that they are coanalytic.
Let E = {(f, x) ∈ C[0, 1] × [0, 1] : f ′(x) does not exist}. It is known that

E is ΣΣΣ0
3 ([3, 23.23]). The set in (i) is the complement of the projection of E

onto the first axis.
The set in (ii) is the complement of the projection of a Borel set

{(f, (xn)) ∈ C[0, 1]× [0, 1]ω : (∀i 6= j)xi 6= xj and ∀n(f ′(xn) does not exist)}

onto the first axis.
Let Ef = {x ∈ [0, 1] : (x, f) ∈ E}. We have {f ∈ C[0, 1] : ND(f) is

countable} = {f ∈ C[0, 1] : Ef is countable}. By the Mazurkiewicz–Sierpiński
theorem [3, 29.19], the set in (iii) is coanalytic.

To prove (iv) note that a countable set A ⊂ [0, 1] is Gδ if and only if it
does not contain a non-empty and dense-in-itself set (see [4, pages 78, 252,
259, 417]). Moreover for every A ⊂ [0, 1] we have

A contains a non-empty and dense-in-itself set ⇔

∃{an : n ∈ N} ⊂ A∀n, r ∈ N∃k ∈ N(0 < |an − ak| <
1

r + 1
).

See that the set

{(f, (xn)) ∈ C[0, 1]× [0, 1]N :

∀n, r ∈ N∃k ∈ N(0 < |xn − xk| <
1

r + 1
∧ (f, xn) /∈ E)}

is Borel. Hence the set

{f ∈ C[0, 1] : ND(f) contains a non-empty and dense-in-itself set } =

{f ∈ C[0, 1] : ∃(xn) ∈ [0, 1]N :

∀n, r ∈ N ∃k ∈ N(0 < |xn − xk| <
1

r + 1
∧ (f, xn) /∈ E)}

is analytic. From this and (iii) we obtain that the set in (iv) is coanalytic.

Now we will describe the idea of another proof of Theorem 1. To do this we
define a special class of trees on N. For s, t ∈ N<N such that |s| = |t| and for
n ∈ N we define s+t and ns in the following natural way: (s+t)(k) = s(k)+t(k)
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and (ns)(k) = ns(k) for k ∈ N, k < |s|. Analogously we define α + β and nα
for infinite sequences α, β ∈ NN. Then we define H : Tr → Tr by

H(T ) = {2s+ ε : s ∈ T and ε ∈ {0, 1}|s|}, T ∈ Tr.

Put Tr∗ = H(Tr). Since T ∈ Tr∗ if and only if ∀s ∈ N<N [2s ∈ T ⇒ ∀ε ∈
{0, 1}|s| (2s+ ε ∈ T )], then Tr∗ is a closed subset of Tr. Hence it is a Polish
subspace of Tr and the trees from Tr∗ have the property

[T ] 6= ∅ ⇐⇒ [T ] contains a perfect set.

The implication ”⇐” is obvious. To prove ”⇒” suppose that T ∈ Tr∗ is
such that [T ] 6= ∅. Then there exists a tree S ∈ Tr such that T = H(S).
Let x ∈ [T ]. Then x|n = 2s(n) + ε(n) where s(n) ∈ S and ε(n) ∈ {0, 1}n for
every n ∈ N. Let y ∈ NN be such that y|n = s(n) for each n ∈ N. Then
y ∈ [S] and for every z ∈ {0, 1}N we have 2y + z ∈ [T ]. This shows that [T ]
is a perfect set, since it is closed (see [3, 2.4]) and for every n ∈ N the set
[T ] contains, together with a point x, a point 2x + z such that z|n = ε(n),
z(n) = 1− ε(n+1)(n). Let WF ∗ = WF ∩Tr∗. Clearly H is a continuous map.
Hence WF ∗ is ΠΠΠ1

1–complete.
Now we modify a little bit the proof of the Mazurkiewicz theorem from [3]

to obtain Theorem 1. Let T 7→ ΦT be a continuous map from Tr to C[0, 1]
described in [3, 33.9] which witnesses that DIFF is ΠΠΠ1

1–complete (this map
is similar to our function T 7→ FT defined above, but in its construction we
do not use a parameter d). Let T ∈ Tr. With every sequence α ∈ [T ] there is
attached a point xα such that there is no finite derivative Φ′T (xα). Moreover,
for distinct sequences α, β ∈ [T ] we have xα 6= xβ . On the other hand if
[T ] = ∅, then ΦT has a derivative at every point. Then for T ∈ Tr∗ we have

[T ] 6= ∅ ⇐⇒ |{x ∈ [0, 1] : Φ′T (x) does not exist}| > ω.

Hence the function T 7→ ΦT on Tr∗ has the same properties as the function
T 7→ FT from Theorem 1.

Many examples of ΠΠΠ1
1–complete sets (included the most of such examples

from [3]) have the following form:

{objects with no singularity points}

(cf [1]). Examples of objects are the following: continuous functions on [0, 1],
continuous function on T (where T = R/Z) or homeomorphisms of a com-
pact space, and singularity points can be respectively: points with no finite
derivative (cf. the Mazurkiewicz theorem), points at which Fourier series are
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not convergent (cf. [3, 33.13]) or points with infinite orbits (cf. [3, 33.20]).
The standard way of proving the ΠΠΠ1

1-completeness of coanalytic sets of this
type is to find a suitable map G from Tr to a given space with the following
properties:

(a) if [T ] = ∅, then G(T ) has no singularity points;

(b) if α ∈ [T ], then there is xα such that it is a singularity point of G(T );

(c) if α, β ∈ [T ] are distinct sequences, then xα and xβ are also distinct.

Note that the condition (c) is not necessary for proving ΠΠΠ1
1–completeness,

but if it holds, then G has the property

∀T ∈ Tr∗([T ] 6= ∅ ⇔ G(T ) has uncountably many singularity points).

At the end we give one application of this reasoning. The analysis of the
proof of Theorem [3, 33.11] gives us the following

Corollary 4. The set {(fn) ∈ (C[0, 1])N : (fn) converges pointwise on co-
countable subset of [0, 1]} is ΠΠΠ1

1–complete.

Proof. It is enough to see that the given set is coanalytic. It is known [3,
23.18] that the set

E = {((fn), x) ∈ (C[0, 1])N × [0, 1] : (fn(x)) is not pointwise convergent}

is Borel. Let E(fn) = {x ∈ [0, 1] : ((fn), x) ∈ E}. Then by the Mazurkiewicz–
Sierpiński theorem [3, 29.19], the set

{(fn) ∈ (C[0, 1])N : (fn) converges pointwise on cocountable subset of [0, 1]}

= {(fn) ∈ (C[0, 1])N : E(fn) is countable}

is coanalytic.

Finally, we want to mention some other remarkable results on ΠΠΠ1
1–complete

subsets of C[0, 1]. In [5], it is shown that the set of all continuous functions
which do not have a finite derivative anywhere is a ΠΠΠ1

1–complete set (a differ-
ent proof due to Kechris can be found in [3]). Mauldin also proved (see [3,
Remark on page 255], this is an unpublished note) that the set of all Besicov-
itch functions, i.e. those continuous functions which have neither finite nor
infinite one-sided derivative at any point, is a ΠΠΠ1

1–complete set. It would be
interesting to find out if, the set of continuous functions which do not have
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a finite derivative anywhere except for a countable set, and the set of contin-
uous functions that are Besicovitch ones except for a countable set, are also
ΠΠΠ1

1–complete. Unfortunately, the technique of proving the ΠΠΠ1
1–completeness

used by Mauldin (and Kechris) is not that of finding a reduction to the set of
well-founded trees and we cannot use our general argument.
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