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MULTIPLYING BALLS IN C(N)[0, 1]

Abstract

Let C(n)[0, 1] stand for the Banach space of functions f : [0, 1]→ R
with continuous n-th derivative. We prove that if B1, B2 are open balls
in C(n)[0, 1] then the set B1 · B2 = {f · g : f ∈ B1, g ∈ B2} has non-
empty interior in C(n)[0, 1]. This extends the result of [1] dealing with
the space of continuous functions on [0, 1].

For n ∈ N, let C(n) = C(n)[0, 1] denote the Banach space of functions
f : [0, 1]→ R with continuous n-th derivative, equipped with the norm

||f || = max
0≤i≤n

max
x∈[0,1]

|f (i)(x)|.

Let us recall that for f, g ∈ C(n) the inequality

||f · g|| ≤ 2n||f || · ||g||

holds. For [a, b] ⊂ [0, 1], we also consider the space C(n)[a, b] of all functions
f : [a, b] → R with continuous n-th derivative, equipped with an analogous
norm (the interval [0, 1] is replaced by [a, b]), and we denote the norm in
C(n)[a, b] by || · ||[a,b]. Let B(f, r) stand for an open ball in C(n) (with center f
and radius r), then we denote B(f, r)|[a,b] = {g ∈ C(n)[a, b] : ||g− f ||[a,b] < r}.
If D,E ⊂ C(n) we write D ·E = {f · g : f ∈ D, g ∈ E}. Finally, let int denote
the interior in C(n).

Observe that if f(x) = x− 1/2, x ∈ [0, 1], then f2 /∈ int(B(f, 1
2 ) ·B(f, 1

2 ))
(see [1]). So, analogously as in the space C[0, 1], the result of multiplication
of two open balls in C(n) need not be an open set. Observe also that if
B1, B2 are open balls in C(n) and Φ : C(n) × C(n) → C(n) is the operation
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of multiplication, and (for example) there is a function f ∈ B1 such that
f(x) 6= 0 for any x ∈ [0, 1], then Φ({f}×B2) is an open set in C(n) (a function
Φf : C(n) → C(n), defined by formula Φf (g) = f · g, g ∈ C(n), is a linear
continuous bijection), and therefore Φ(B1 × B2) = B1 · B2 is a set with non-
empty interior. So, interesting considerations appear in the case when both
balls B1 and B2 consist only of functions having zeros.

Our main goal is to show that if B(f, r), B(g, r) are open balls in C(n) then
B(f, r) · B(g, r) has non-empty interior in C(n). In [1] an analogous theorem
was proved for open balls in the space C[0, 1] of continuous functions. Here
we use a similar method, but the details are different and more difficult. Let
us start from the following remark.

Remark 1. Without loss of generality we may assume that functions f, g are
polynomials with disjoint non-empty sets of zeros, and that there is a partition
x0 = 0 < x1 < · · · < xm = 1 of [0, 1] such that

(∀k ∈ {1, . . . ,m}) (k is odd ⇒ (∀x ∈ [xk−1, xk]) f(x) 6= 0) (1)

and

(∀k ∈ {1, . . . ,m}) (k is even ⇒ (∀x ∈ [xk−1, xk]) g(x) 6= 0) . (2)

In our further considerations we will need the following:

Lemma 1. Let ϕ, h ∈ Cn, x0 ∈ [0, 1], ε > 0 and |ϕ(j)(x0)− h(j)(x0)| < ε for
j = 0, 1, . . . , n. Then the function k : [0, 1]→ R defined by the formula

(∀x ∈ [0, 1]) k(x) = h(x) +
n∑
j=0

(ϕ(j)(x0)− h(j)(x0))
(x− x0)j

j!

fulfills the following two conditions:

(i) k(j)(x0) = ϕ(j)(x0) for j = 0, 1, . . . , n;
(ii) k ∈ B(h, eε).

Proof. Condition (i) is easy to check. We will prove only (ii). Fix x ∈ [0, 1].
Then |x− x0| ≤ 1, hence we have

|k(x)− h(x)| ≤
n∑
j=0

|ϕ(j)(x0)− h(j)(x0)| |x− x0|j

j!
< ε

n∑
j=0

1
j!
< εe.
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Fix p ∈ {1, . . . , n}. Then we have

|k(p)(x)− h(p)(x)| =

∣∣∣∣∣∣
n∑
j=p

(ϕ(j)(x0)− h(j)(x0))
(x− x0)j−p

(j − p)!

∣∣∣∣∣∣ ≤ ε
n∑
j=p

1
(j − p)!

< εe.

Therefore ||k − h|| < eε.

Remark 2. In particular, if 0 < x0 < y0 ≤ 1 and ϕ ∈ B(h, ε)|[0,x0] then there
exists a function k ∈ B(h, eε)|[x0,y0] which fulfills condition (i) from Lemma
1. Such a function k will be called an extension of ϕ to the interval [x0, y0].

Now we prove a basic lemma used in the proof of our main theorem (com-
pare with Lemma 8 from [1]). By f(x+), f(x−) we denote the respective
one-sided limits of a function f at a point x.

Lemma 2. For functions f, g fulfilling conditions (1) and (2) (respectively)
from Remark 1, the following condition holds:

(
∃
µ>0

)(
∃

β1,...,βm>0

)(
∀

ε∈(0,µ]

)(
∀

ϕ∈B(f ·g,ε)

)(
∃

ξ,ψ∈C(n)

)
(
ϕ = ξ · ψ, ∀

i=1,...,m
(||f − ξ||i < βiε, ||g − ψ||i < βiε)

)
,

where ||h||i = ||h||[xi−1,xi] for h ∈ C(n) and i = 1, . . . ,m.

Proof. Our reasoning is divided into m steps. In the i-th step (i = 1, . . . ,m)
we define βi > 0 and µi > 0. The numbers µi will fulfill µ1 > µ2 > · · · > µm.
Finally, we will set µ = µm.

Step 1. Let µ1 > 0. Define β1 = 2n||1/f ||1 (by assumption f 6= 0 on
[0, x1]). If ε ∈ (0, µ1] and ϕ ∈ B(f · g, ε) then for f1 = f, g1 = ϕ/f on [0, x1]
we have

||f − f1||1 = 0, ||g − g1||1 = ||g − ϕ/f ||1 ≤ 2n||1/f ||1||f · g − ϕ||1 < β1ε. (3)

Of course f1 · g1 = ϕ|[0,x1].
Step 2. Observe that for the function ϕ from step 1, we have

g1 =
ϕ

f
|[0,x1] ∈ B(g, β1µ1)[0,x1],
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so, to extend our consideration to [x1, x2] we have to modify µ1 as follows:

eβ1µ1 < min
x∈[x1,x2]

|g(x)|. (4)

Let µ2 ∈ (0, µ1), where µ1 fulfills condition (4) (by assumption, g 6= 0 on
[x1, x2]). Fix ε ∈ (0, µ2] and ϕ ∈ B(f · g, ε). Analogous to step 1, define
functions f1, g1. Of course, condition (3) holds. By Lemma 1 and Remark
2 there exists an extension g2 of the function g1 to the interval [x1, x2] such
that ||g − g2||2 < eβ1ε. Moreover, by (4) we have also that g2 6= 0 on [x1, x2].
Now define f2 = ϕ/g2 on [x1, x2]. One can easily check that f1(x1) = f2(x1),
f

(j)
1 (x−1 ) = f

(j)
2 (x+

1 ) for j = 1, . . . , n. Observe that

||f2 − f ||2 ≤ 2n||1/g2||2 · ||ϕ− f · g2||2
≤ 2n||1/g2||2 · ||ϕ− f · g + f · g − f · g2||2 (5)
< 2n||1/g2||2 · (ε+ 2n||f || · eβ1ε)
= 2n||1/g2||2 · ε(1 + 2neβ1||f ||).

Since g2 ∈ B(g, eβ1µ2)[x1,x2], there exists a number M2 = M2(f, g) (de-
pending only on functions f, g) such that ||1/g2||2 ≤M2. So, we have

||f2 − f ||2 < 2nM2ε(1 + 2neβ1||f ||). (6)

Observe that our estimation is independent of ϕ. Define

β2 = max{eβ1, 2nM2(1 + 2neβ1||f ||}.

Then we get ||g2−g||2 < β2ε, ||f2−f ||2 < β2ε and of course ϕ|[xi−1,xi] = fi ·gi
for i = 1, 2.

Step 3. For the function ϕ from step 2, we have

f2 =
ϕ

g2
|[x1,x2] ∈ B(f, β2µ2)[x1,x2].

We want to extend our consideration to [x2, x3], so we have to modify µ2 as
follows:

eβ2µ2 < min
x∈[x2,x3]

|f(x)|. (7)

Let µ3 ∈ (0, µ2), where µ2 fulfills the condition (7) (by assumption we have
f 6= 0 on [x2, x3]). Once more fix ε ∈ (0, µ2] and ϕ ∈ B(f · g, ε). Analogous to
steps 1 and 2, define functions f1, g1, f2, g2. Of course, conditions (3), (5), (6)
hold. By Lemma 1 and Remark 2, there exists an extension f3 of the function
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f2 to the interval [x2, x3] such that ||f−f3||3 < eβ2ε. Moreover, by (7) we have
also that f3 6= 0 on [x2, x3]. Now define g3 = ϕ/f3 on [x2, x3]. One can easily
check that g2(x2) = g3(x2), g(j)

2 (x−2 ) = g
(j)
3 (x+

2 ) for j = 1, . . . , n. Analogous
to step 2 we get the following estimation:

||g3 − g||3 < 2n||1/f3||3 · ε(1 + 2n||g||eβ2).

Observe that the estimation is independent of ϕ. In a similar fashion, since f3 ∈
B(f, β2µ3)[x2,x3] there exists a number M3 = M3(f, g) (M3 depends only on
functions f, g) such that ||1/f3||3 ≤M3. Define now β3 = max{eβ2, 2nM3(1 +
2n||g||eβ2)}. Then we have ||f − f3||3 < β3ε, ||g − g3||3 < β3ε and of course
ϕ|[xi−1,xi] = fi · gi for i = 1, 2, 3.

The next steps are analogous. Continuing in this way we can define the re-
quired numbers µ1, . . . , µm (finally, we put µ = µm), β1, . . . , βm, M2, . . . ,Mm,
and functions f1, . . . , fm, g1, . . . , gm. More precisely, for numbers β1, . . . , βm
we have

β1 = 2n||1/f ||1 and βi = max{eβi−1, 2nMi(1 + 2n||g||eβi−1)}

if i ∈ {3, . . . ,m} is odd, and

βi = max{eβi−1, 2nMi(1 + 2n||f ||eβi−1)}

if i ∈ {1, . . . ,m} is even. We define functions ξ, ψ in an obvious way:

ξ = fi on [xi−1, xi] for i = 1, . . . ,m

and
ψ = gi on [xi−1, xi] for i = 1, . . . ,m.

Then ξ, ψ ∈ C(n), ϕ = ξ · ψ on [0, 1] and ||f − ξ||i < βiε, ||g − ψ||i < βiε for
i = 1, . . . ,m.

Theorem 1. If B(f, r) and B(g, r) are open balls in C(n) then their algebraic
product B(f, r) ·B(g, r) has non-empty interior in C(n).

Proof. We may assume that f, g are such functions as in Remark 1. By
Lemma 2 there exist positive numbers µ, β1, . . . , βm corresponding to f, g. For

ε = min
{
µ,

r

max{β1, . . . , βm}

}
we shall prove that B(f · g, ε) ⊂ B(f, r) · B(g, r). Fix ϕ ∈ B(f · g, ε). Since
ε ≤ µ then by Lemma 2 there exist ξ, ψ ∈ C(n) such that ϕ = ξ · ψ and
||f − ξ||i < βiε, ||g−ψ||i < βiε for i = 1, . . . ,m. Since ε ·max{β1, . . . , βm} ≤ r
then ||f − ξ||i < r and ||g − ψ||i < r.
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In [4, Prop. 1] (see also [3, Th. 3]) we proved the following

Theorem 2. Let X,Z be topological spaces and let E ⊂ X be a residual set. If
Φ : Z → X is a continuous mapping such that the image Φ(U) is not nowhere
dense for any nonempty open set U ⊂ Z, then Φ−1(E) is a residual set.

Theorems 1 and 2 immediately imply the following corollary.

Corollary 1. If Φ : C(n) × C(n) → C(n) is the operation of multiplication,
then Φ−1(E) is a residual set in C(n) × C(n) whenever E ⊂ C(n) is residual.

Remark 3. It is also worth reminding the reader that Theorem 1 does not
hold if we replace the space C(n) by C(n)([−1, 1]2) of all functions f : [−1, 1]×
[−1, 1]→ R with continuous all partial derivatives of n-th order. For example,
if we define f(x, y) = x, g(x, y) = y, (x, y) ∈ [−1, 1]2, then B(f, 1) · B(g, 1)
is a nowhere dense set in C(n)([−1, 1]2) (see [2, Th. 2]). We obtain an
analogous result replacing the square [−1, 1]2 by k-dimensional cube [−1, 1]k

(k > 2) or even by the Hilbert cube [−1, 1]∞, and using analogous functions
f, g-projections on first and second coordinates, respectively.

The interval [−1, 1] is used here only for simplicity of definitions of f and
g. One can give analogous examples for any nondegenerate interval [a, b].
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