Artur Wachowicz, Institute of Mathematics, Łódź Technical University, ul. Wólczańska 215, 93-005 Łódź, Poland. email: aw314@poczta.fm

MULTIPLYING BALLS IN $C^{(N)}[0,1]$

Abstract

Let $C^{(n)}[0,1]$ stand for the Banach space of functions $f:[0,1] \rightarrow \mathbb{R}$ with continuous n-th derivative. We prove that if B_{1}, B_{2} are open balls in $C^{(n)}[0,1]$ then the set $B_{1} \cdot B_{2}=\left\{f \cdot g: f \in B_{1}, g \in B_{2}\right\}$ has nonempty interior in $C^{(n)}[0,1]$. This extends the result of [1] dealing with the space of continuous functions on $[0,1]$.

For $n \in \mathbb{N}$, let $C^{(n)}=C^{(n)}[0,1]$ denote the Banach space of functions $f:[0,1] \rightarrow \mathbb{R}$ with continuous n-th derivative, equipped with the norm

$$
\|f\|=\max _{0 \leq i \leq n} \max _{x \in[0,1]}\left|f^{(i)}(x)\right|
$$

Let us recall that for $f, g \in C^{(n)}$ the inequality

$$
\|f \cdot g\| \leq 2^{n}\|f\| \cdot\|g\|
$$

holds. For $[a, b] \subset[0,1]$, we also consider the space $C^{(n)}[a, b]$ of all functions $f:[a, b] \rightarrow \mathbb{R}$ with continuous n-th derivative, equipped with an analogous norm (the interval $[0,1]$ is replaced by $[a, b]$), and we denote the norm in $C^{(n)}[a, b]$ by $\|\cdot\|_{[a, b]}$. Let $B(f, r)$ stand for an open ball in $C^{(n)}$ (with center f and radius r), then we denote $\left.B(f, r)\right|_{[a, b]}=\left\{g \in C^{(n)}[a, b]:\|g-f\|_{[a, b]}<r\right\}$. If $D, E \subset C^{(n)}$ we write $D \cdot E=\{f \cdot g: f \in D, g \in E\}$. Finally, let int denote the interior in $C^{(n)}$.

Observe that if $f(x)=x-1 / 2, x \in[0,1]$, then $f^{2} \notin \operatorname{int}\left(B\left(f, \frac{1}{2}\right) \cdot B\left(f, \frac{1}{2}\right)\right)$ (see [1]). So, analogously as in the space $C[0,1]$, the result of multiplication of two open balls in $C^{(n)}$ need not be an open set. Observe also that if B_{1}, B_{2} are open balls in $C^{(n)}$ and $\Phi: C^{(n)} \times C^{(n)} \rightarrow C^{(n)}$ is the operation

[^0]of multiplication, and (for example) there is a function $f \in B_{1}$ such that $f(x) \neq 0$ for any $x \in[0,1]$, then $\Phi\left(\{f\} \times B_{2}\right)$ is an open set in $C^{(n)}$ (a function $\Phi_{f}: C^{(n)} \rightarrow C^{(n)}$, defined by formula $\Phi_{f}(g)=f \cdot g, g \in C^{(n)}$, is a linear continuous bijection), and therefore $\Phi\left(B_{1} \times B_{2}\right)=B_{1} \cdot B_{2}$ is a set with nonempty interior. So, interesting considerations appear in the case when both balls B_{1} and B_{2} consist only of functions having zeros.

Our main goal is to show that if $B(f, r), B(g, r)$ are open balls in $C^{(n)}$ then $B(f, r) \cdot B(g, r)$ has non-empty interior in $C^{(n)}$. In [1] an analogous theorem was proved for open balls in the space $C[0,1]$ of continuous functions. Here we use a similar method, but the details are different and more difficult. Let us start from the following remark.

Remark 1. Without loss of generality we may assume that functions f, g are polynomials with disjoint non-empty sets of zeros, and that there is a partition $x_{0}=0<x_{1}<\cdots<x_{m}=1$ of $[0,1]$ such that

$$
\begin{equation*}
(\forall k \in\{1, \ldots, m\})\left(k \text { is odd } \Rightarrow\left(\forall x \in\left[x_{k-1}, x_{k}\right]\right) \quad f(x) \neq 0\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(\forall k \in\{1, \ldots, m\})\left(k \text { is even } \Rightarrow\left(\forall x \in\left[x_{k-1}, x_{k}\right]\right) \quad g(x) \neq 0\right) \tag{2}
\end{equation*}
$$

In our further considerations we will need the following:
Lemma 1. Let $\varphi, h \in C^{n}, x_{0} \in[0,1], \varepsilon>0$ and $\left|\varphi^{(j)}\left(x_{0}\right)-h^{(j)}\left(x_{0}\right)\right|<\varepsilon$ for $j=0,1, \ldots, n$. Then the function $k:[0,1] \rightarrow \mathbb{R}$ defined by the formula

$$
(\forall x \in[0,1]) \quad k(x)=h(x)+\sum_{j=0}^{n}\left(\varphi^{(j)}\left(x_{0}\right)-h^{(j)}\left(x_{0}\right)\right) \frac{\left(x-x_{0}\right)^{j}}{j!}
$$

fulfills the following two conditions:
(i) $k^{(j)}\left(x_{0}\right)=\varphi^{(j)}\left(x_{0}\right)$ for $j=0,1, \ldots, n$;
(ii) $k \in B(h, e \varepsilon)$.

Proof. Condition (i) is easy to check. We will prove only (ii). Fix $x \in[0,1]$. Then $\left|x-x_{0}\right| \leq 1$, hence we have

$$
|k(x)-h(x)| \leq \sum_{j=0}^{n}\left|\varphi^{(j)}\left(x_{0}\right)-h^{(j)}\left(x_{0}\right)\right| \frac{\left|x-x_{0}\right|^{j}}{j!}<\varepsilon \sum_{j=0}^{n} \frac{1}{j!}<\varepsilon e .
$$

Fix $p \in\{1, \ldots, n\}$. Then we have

$$
\begin{aligned}
\left|k^{(p)}(x)-h^{(p)}(x)\right|=\left|\sum_{j=p}^{n}\left(\varphi^{(j)}\left(x_{0}\right)-h^{(j)}\left(x_{0}\right)\right) \frac{\left(x-x_{0}\right)^{j-p}}{(j-p)!}\right| & \leq \varepsilon \sum_{j=p}^{n} \frac{1}{(j-p)!} \\
& <\varepsilon e
\end{aligned}
$$

Therefore $\|k-h\|<e \varepsilon$.

Remark 2. In particular, if $0<x_{0}<y_{0} \leq 1$ and $\left.\varphi \in B(h, \varepsilon)\right|_{\left[0, x_{0}\right]}$ then there exists a function $\left.k \in B(h, e \varepsilon)\right|_{\left[x_{0}, y_{0}\right]}$ which fulfills condition (i) from Lemma 1. Such a function k will be called an extension of φ to the interval $\left[x_{0}, y_{0}\right]$.

Now we prove a basic lemma used in the proof of our main theorem (compare with Lemma 8 from [1]). By $f\left(x^{+}\right), f\left(x^{-}\right)$we denote the respective one-sided limits of a function f at a point x.

Lemma 2. For functions f, g fulfilling conditions (1) and (2) (respectively) from Remark 1, the following condition holds:

$$
\begin{aligned}
& \left.(\underset{\mu>0}{\exists})\left(\underset{\beta_{1}, \ldots, \beta_{m}>0}{\exists}\right)(\underset{\varepsilon \in(0, \mu]}{\forall})(\underset{i=1, \ldots, m}{\forall})\left(\|f-\xi\|_{i}<\beta_{i} \varepsilon,\|g-\psi\|_{i}<\beta_{i} \varepsilon\right)\right),
\end{aligned}
$$

where $\|h\|_{i}=\|h\|_{\left[x_{i-1}, x_{i}\right]}$ for $h \in C^{(n)}$ and $i=1, \ldots, m$.
Proof. Our reasoning is divided into m steps. In the i-th step $(i=1, \ldots, m)$ we define $\beta_{i}>0$ and $\mu_{i}>0$. The numbers μ_{i} will fulfill $\mu_{1}>\mu_{2}>\cdots>\mu_{m}$. Finally, we will set $\mu=\mu_{m}$.

Step 1. Let $\mu_{1}>0$. Define $\beta_{1}=2^{n}\|1 / f\|_{1}$ (by assumption $f \neq 0$ on $\left.\left[0, x_{1}\right]\right)$. If $\varepsilon \in\left(0, \mu_{1}\right]$ and $\varphi \in B(f \cdot g, \varepsilon)$ then for $f_{1}=f, g_{1}=\varphi / f$ on $\left[0, x_{1}\right]$ we have

$$
\begin{equation*}
\left\|f-f_{1}\right\|_{1}=0,\left\|g-g_{1}\right\|_{1}=\|g-\varphi / f\|_{1} \leq 2^{n}\|1 / f\|_{1}\|f \cdot g-\varphi\|_{1}<\beta_{1} \varepsilon \tag{3}
\end{equation*}
$$

Of course $f_{1} \cdot g_{1}=\left.\varphi\right|_{\left[0, x_{1}\right]}$.
Step 2. Observe that for the function φ from step 1, we have

$$
g_{1}=\left.\frac{\varphi}{f}\right|_{\left[0, x_{1}\right]} \in B\left(g, \beta_{1} \mu_{1}\right)_{\left[0, x_{1}\right]}
$$

so, to extend our consideration to $\left[x_{1}, x_{2}\right]$ we have to modify μ_{1} as follows:

$$
\begin{equation*}
e \beta_{1} \mu_{1}<\min _{x \in\left[x_{1}, x_{2}\right]}|g(x)| . \tag{4}
\end{equation*}
$$

Let $\mu_{2} \in\left(0, \mu_{1}\right)$, where μ_{1} fulfills condition (4) (by assumption, $g \neq 0$ on $\left.\left[x_{1}, x_{2}\right]\right)$. Fix $\varepsilon \in\left(0, \mu_{2}\right]$ and $\varphi \in B(f \cdot g, \varepsilon)$. Analogous to step 1 , define functions f_{1}, g_{1}. Of course, condition (3) holds. By Lemma 1 and Remark 2 there exists an extension g_{2} of the function g_{1} to the interval [x_{1}, x_{2}] such that $\left\|g-g_{2}\right\|_{2}<e \beta_{1} \varepsilon$. Moreover, by (4) we have also that $g_{2} \neq 0$ on $\left[x_{1}, x_{2}\right]$. Now define $f_{2}=\varphi / g_{2}$ on $\left[x_{1}, x_{2}\right]$. One can easily check that $f_{1}\left(x_{1}\right)=f_{2}\left(x_{1}\right)$, $f_{1}^{(j)}\left(x_{1}^{-}\right)=f_{2}^{(j)}\left(x_{1}^{+}\right)$for $j=1, \ldots, n$. Observe that

$$
\begin{align*}
\left\|f_{2}-f\right\|_{2} & \leq 2^{n}\left\|1 / g_{2}\right\|_{2} \cdot\left\|\varphi-f \cdot g_{2}\right\|_{2} \\
& \leq 2^{n}\left\|1 / g_{2}\right\|_{2} \cdot\left\|\varphi-f \cdot g+f \cdot g-f \cdot g_{2}\right\|_{2} \tag{5}\\
& <2^{n}\left\|1 / g_{2}\right\|_{2} \cdot\left(\varepsilon+2^{n}\|f\| \cdot e \beta_{1} \varepsilon\right) \\
& =2^{n}\left\|1 / g_{2}\right\|_{2} \cdot \varepsilon\left(1+2^{n} e \beta_{1}\|f\|\right) .
\end{align*}
$$

Since $g_{2} \in B\left(g, e \beta_{1} \mu_{2}\right)_{\left[x_{1}, x_{2}\right]}$, there exists a number $M_{2}=M_{2}(f, g)$ (depending only on functions f, g) such that $\left\|1 / g_{2}\right\|_{2} \leq M_{2}$. So, we have

$$
\begin{equation*}
\left\|f_{2}-f\right\|_{2}<2^{n} M_{2} \varepsilon\left(1+2^{n} e \beta_{1}\|f\|\right) . \tag{6}
\end{equation*}
$$

Observe that our estimation is independent of φ. Define

$$
\beta_{2}=\max \left\{e \beta_{1}, 2^{n} M_{2}\left(1+2^{n} e \beta_{1}\|f\|\right\} .\right.
$$

Then we get $\left\|g_{2}-g\right\|_{2}<\beta_{2} \varepsilon,\left\|f_{2}-f\right\|_{2}<\beta_{2} \varepsilon$ and of course $\left.\varphi\right|_{\left[x_{i-1}, x_{i}\right]}=f_{i} \cdot g_{i}$ for $i=1,2$.

Step 3. For the function φ from step 2, we have

$$
f_{2}=\left.\frac{\varphi}{g_{2}}\right|_{\left[x_{1}, x_{2}\right]} \in B\left(f, \beta_{2} \mu_{2}\right)_{\left[x_{1}, x_{2}\right]} .
$$

We want to extend our consideration to $\left[x_{2}, x_{3}\right]$, so we have to modify μ_{2} as follows:

$$
\begin{equation*}
e \beta_{2} \mu_{2}<\min _{x \in\left[x_{2}, x_{3}\right]}|f(x)| . \tag{7}
\end{equation*}
$$

Let $\mu_{3} \in\left(0, \mu_{2}\right)$, where μ_{2} fulfills the condition (7) (by assumption we have $f \neq 0$ on $\left[x_{2}, x_{3}\right]$). Once more fix $\varepsilon \in\left(0, \mu_{2}\right]$ and $\varphi \in B(f \cdot g, \varepsilon)$. Analogous to steps 1 and 2 , define functions $f_{1}, g_{1}, f_{2}, g_{2}$. Of course, conditions (3), (5), (6) hold. By Lemma 1 and Remark 2, there exists an extension f_{3} of the function
f_{2} to the interval $\left[x_{2}, x_{3}\right]$ such that $\left\|f-f_{3}\right\|_{3}<e \beta_{2} \varepsilon$. Moreover, by (7) we have also that $f_{3} \neq 0$ on $\left[x_{2}, x_{3}\right]$. Now define $g_{3}=\varphi / f_{3}$ on $\left[x_{2}, x_{3}\right]$. One can easily check that $g_{2}\left(x_{2}\right)=g_{3}\left(x_{2}\right), g_{2}^{(j)}\left(x_{2}^{-}\right)=g_{3}^{(j)}\left(x_{2}^{+}\right)$for $j=1, \ldots, n$. Analogous to step 2 we get the following estimation:

$$
\left\|g_{3}-g\right\|_{3}<2^{n}\left\|1 / f_{3}\right\|_{3} \cdot \varepsilon\left(1+2^{n}\|g\| e \beta_{2}\right)
$$

Observe that the estimation is independent of φ. In a similar fashion, since $f_{3} \in$ $B\left(f, \beta_{2} \mu_{3}\right)_{\left[x_{2}, x_{3}\right]}$ there exists a number $M_{3}=M_{3}(f, g)$ (M_{3} depends only on functions f, g) such that $\left\|1 / f_{3}\right\|_{3} \leq M_{3}$. Define now $\beta_{3}=\max \left\{e \beta_{2}, 2^{n} M_{3}(1+\right.$ $\left.\left.2^{n}\|g\| e \beta_{2}\right)\right\}$. Then we have $\left\|f-f_{3}\right\|_{3}<\beta_{3} \varepsilon,\left\|g-g_{3}\right\|_{3}<\beta_{3} \varepsilon$ and of course $\left.\varphi\right|_{\left[x_{i-1}, x_{i}\right]}=f_{i} \cdot g_{i}$ for $i=1,2,3$.

The next steps are analogous. Continuing in this way we can define the required numbers μ_{1}, \ldots, μ_{m} (finally, we put $\mu=\mu_{m}$), $\beta_{1}, \ldots, \beta_{m}, M_{2}, \ldots, M_{m}$, and functions $f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{m}$. More precisely, for numbers $\beta_{1}, \ldots, \beta_{m}$ we have

$$
\beta_{1}=2^{n}\|1 / f\|_{1} \text { and } \beta_{i}=\max \left\{e \beta_{i-1}, 2^{n} M_{i}\left(1+2^{n}\|g\| e \beta_{i-1}\right)\right\}
$$

if $i \in\{3, \ldots, m\}$ is odd, and

$$
\beta_{i}=\max \left\{e \beta_{i-1}, 2^{n} M_{i}\left(1+2^{n}\|f\| e \beta_{i-1}\right)\right\}
$$

if $i \in\{1, \ldots, m\}$ is even. We define functions ξ, ψ in an obvious way:

$$
\xi=f_{i} \text { on }\left[x_{i-1}, x_{i}\right] \text { for } i=1, \ldots, m
$$

and

$$
\psi=g_{i} \text { on }\left[x_{i-1}, x_{i}\right] \text { for } i=1, \ldots, m
$$

Then $\xi, \psi \in C^{(n)}, \varphi=\xi \cdot \psi$ on $[0,1]$ and $\|f-\xi\|_{i}<\beta_{i} \varepsilon,\|g-\psi\|_{i}<\beta_{i} \varepsilon$ for $i=1, \ldots, m$.

Theorem 1. If $B(f, r)$ and $B(g, r)$ are open balls in $C^{(n)}$ then their algebraic product $B(f, r) \cdot B(g, r)$ has non-empty interior in $C^{(n)}$.

Proof. We may assume that f, g are such functions as in Remark 1. By Lemma 2 there exist positive numbers $\mu, \beta_{1}, \ldots, \beta_{m}$ corresponding to f, g. For

$$
\varepsilon=\min \left\{\mu, \frac{r}{\max \left\{\beta_{1}, \ldots, \beta_{m}\right\}}\right\}
$$

we shall prove that $B(f \cdot g, \varepsilon) \subset B(f, r) \cdot B(g, r)$. Fix $\varphi \in B(f \cdot g, \varepsilon)$. Since $\varepsilon \leq \mu$ then by Lemma 2 there exist $\xi, \psi \in C^{(n)}$ such that $\varphi=\xi \cdot \psi$ and $\|f-\xi\|_{i}<\beta_{i} \varepsilon,\|g-\psi\|_{i}<\beta_{i} \varepsilon$ for $i=1, \ldots, m$. Since $\varepsilon \cdot \max \left\{\beta_{1}, \ldots, \beta_{m}\right\} \leq r$ then $\|f-\xi\|_{i}<r$ and $\|g-\psi\|_{i}<r$.

In [4, Prop. 1] (see also [3, Th. 3]) we proved the following
Theorem 2. Let X, Z be topological spaces and let $E \subset X$ be a residual set. If $\Phi: Z \rightarrow X$ is a continuous mapping such that the image $\Phi(U)$ is not nowhere dense for any nonempty open set $U \subset Z$, then $\Phi^{-1}(E)$ is a residual set.

Theorems 1 and 2 immediately imply the following corollary.
Corollary 1. If $\Phi: C^{(n)} \times C^{(n)} \rightarrow C^{(n)}$ is the operation of multiplication, then $\Phi^{-1}(E)$ is a residual set in $C^{(n)} \times C^{(n)}$ whenever $E \subset C^{(n)}$ is residual.

Remark 3. It is also worth reminding the reader that Theorem 1 does not hold if we replace the space $C^{(n)}$ by $C^{(n)}\left([-1,1]^{2}\right)$ of all functions $f:[-1,1] \times$ $[-1,1] \rightarrow \mathbb{R}$ with continuous all partial derivatives of n-th order. For example, if we define $f(x, y)=x, g(x, y)=y,(x, y) \in[-1,1]^{2}$, then $B(f, 1) \cdot B(g, 1)$ is a nowhere dense set in $C^{(n)}\left([-1,1]^{2}\right)$ (see [2, Th. 2]). We obtain an analogous result replacing the square $[-1,1]^{2}$ by k-dimensional cube $[-1,1]^{k}$ $(k>2)$ or even by the Hilbert cube $[-1,1]^{\infty}$, and using analogous functions f, g-projections on first and second coordinates, respectively.

The interval $[-1,1]$ is used here only for simplicity of definitions of f and g. One can give analogous examples for any nondegenerate interval $[a, b]$.

Acknowledgment. The author would like to thank M. Balcerzak and J. Jachymski for their valuable comments.

References

[1] M. Balcerzak, A. Wachowicz, W. Wilczyński, Multiplying balls in the space of continuous functions on $[0,1]$, Studia Math., 170 (2) (2005), 203-209.
[2] A. Komisarski, A connection between multiplication in $C(X)$ and the dimension of X, Fund. Math., 189(2) (2006), 149-154.
[3] P. Maličký, Category version of the Poincaré recurrence theorem, Topology Appl., 154(14) (2007), 2709-2713.
[4] A. Wachowicz, Preimages of residual sets of continuous functions under operation of superposition, Georgian Math. J., 12(4) (2005), 763-768.

[^0]: Mathematical Reviews subject classification: Primary: 46J10, 46B25; Secondary: 26A15
 Key words: Baire category, multiplication, residual set
 Received by the editors July 17, 2008
 Communicated by: Brian S. Thomson

