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REPRESENTATION OF LINEAR
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FUNCTIONS

Abstract

We prove a representation theorem for bounded linear functionals
with domain the set of all real-valued, quasi-continuous functions defined
on a closed interval; thus, giving a characterization of a class of bounded
linear functionals.

1 Introduction.

In this paper, we use a modified mean Stieltjes integral defined on a dense
subset of a closed interval whose end points belong to the dense subset. Ulti-
mately, we prove a representation theorem for bounded linear functionals with
domain the set of quasi-continuous functions with domain this dense subset.
Quasi-continuous functions are also known as regulated functions. In 1934,
H.S. Kaltenborn [12] characterized all the bounded linear functionals from the
set of quasi-continuous on [a, b] into a subset of the numbers in integral form
but with remainder terms. In 1960, J.R. Webb [32] did the same using a
single Hellinger integral without remainder terms. Baker [1], Priest [20] and
Reneke [21] studied representation theorems for linear functionals for modified
Stieltjes integrals with Baker and Reneke using quasi-continuous functions as
the domain. See Fraikova [10], Pelant [19], Schwabik [22], and Tvrdy [26],
[27], [28], [29]. Priest and Reneke use the mean Stieltjes integral, one of the
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subjects of this paper. R. E. Lane [14], [15] did extensive work on the mean
Stieltjes integral.

Modified Stieltjes integrals defined on arbitrary number sets have been
studied extensively. Coppin and Muth [6] studied an integral defined on sub-
sets of a closed interval that were not necessarily dense in the closed interval.
A special case of this integral was first defined by Coppin [3] and Vance [31]
where the integral was defined over dense subsets of an interval containing the
end points of that interval. Coppin [4], [5] studied additional properties of
this particular modified integral. Coppin and Vance [7] showed necessary and
sufficient conditions for f to be g-integrable on a dense subset of [a, b] where
fIM and g|M do not have common points of discontinuity.

The Riemann-Stieltjes integral remains a topic of significant interest. See,
for example, D’yachkov [9], Kats [13], Liu and Zhao [17], and Tseytlin [25].
Modifications of the Stieltjes integral abound. One only has to sample some
of the most recent papers. For some interesting results, see B. Bongiorno and
L. Di Piazza [2], A.G. Das and Gokul Sahu [8], Ch. S. Honig [11], Supriya
Pal, D.K. Ganguly and Lee Peng Yee [18], S. Schwabik, M. Tvrdy, and O.
Vejvoda [23], Swapan Kumar Ray and A.G. Das [24] and Ju Han Yoon and
Byung Moo Kim [33].

2 Preliminary Definitions and Properties.

Throughout this paper, [a, b] will denote a closed number interval and M will
denote a dense subset of [a, b] containing ¢ and b. In general, an interval (or
an interval of M) is a set [c,d]p = [¢,d] N M where ¢ and d belong to M and
¢ < d. Two intervals, A and B, are said to be nonoverlapping if and only if
AN B does not contain an interval. A nonempty collection of intervals is said
to be nonoverlapping if and only if each two distinct members of the collection
are nonoverlapping.

Definition 2.1. The collection D is said to be a partition of M if and only
if D is a finite collection of non-overlapping subintervals of M whose union is
M. E(D) denotes the set of end points of members of D.

Definition 2.2. The partition D’ of M is said to be a refinement of D if and
only if each end point of a member of D is an end point of a member of D’,
that is, E(D) C E(D").

Definition 2.3. If D is a partition of M, and f and g are functions with
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domain including M, then

Su(f D)= S LDEIE oy ) 1)

2
[p,qlm €D

Right sums, 3,(f, g, D), are easily defined by replacing (f(q) + f(p))/2 in (1)
with f(g). Similarly, left sums are defined by replacing (f(q) + f(p))/2 in (1)
with f(p) to create X;(f, g, D).

Definition 2.4. Suppose that f and g are functions with domain including
M. Then f is said to be mean g-integrable on M if and only if there exists a
number W (called “the mean integral of f with respect to g” and denoted by
(m) [, f dg) such that for each € > 0, there is a partition D of M such that

|W72m(fagvD/)|<€ (2)

for each refinement D’ of D. Right integrals and left integrals are defined by
replacing 3, (f, g, D’) in (2) with X,.(f, g, D’) and X;(f, g, D) and denoted by
() [o fdg and (1) [,, f dg, respectively.

Note. All three integrals, (m)(l)(r) [,, f dg, are linear. Moreover,

(m)()(r) | fdg| <IfII-Vig 3)
e [, s

where the bounded function f is left, right, mean g-integrable on [a,b] and g
is of bounded variation on [a, b].

By QC we mean the set of all real-valued quasi-continuous functions (both
left and right hand limits exist) with domain M. Let G be the set of all
characteristic functions z;” = 1(; yjnas and zt = 1y,5)nas Where t € [a,b]. We
let S denote the set of all functions f with domain M where (m) [ 1 f dg exists
for each g € G and || f|| = sup|f(z)].

reM

We show that each L : & — R (the set of real numbers) is a bounded,
linear functional if and only if for each function f € S, there are functions, «
and 3, of bounded variation on [a, b] such that

L(f) = (1) /M frda+ (r) /M fudp

where each of fr and fi, is a quasi-continuous function with domain M such
that fr is continuous on the right at each of its points, fr(b) = 0, fr is
continuous on the left at each of its points, fr(a) =0, and f = fr + fL.
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3 Properties of S.

Theorem 3.1. S is a linear space.

Theorem 3.2. Fach member of S is bounded.

PROOF. Suppose f € S. Let t € [a,b] and let g € G where g = 2, or
g = 2. Then, by definition of S, (m) fM f dg exists. By Definition 2.4, for
both choices of g, we can infer that there is a partition D of M such that if
D' is a refinement of D, then

|2m(fagaD)72m(fagaD/)|<1' (4)
Consider [u,v]p € D where u < t < v. With the goal of showing f is bounded

on (u,v)NM,let x € (u,v)NM. Define D’ = (D\ [u, v]ar) U{[u, | pr, [, v]ar}-
Then, (4) reduces to

f(uw) + f(v)

5 l9(v) = g(u)]
- {2 ; 1) g(a) - gy - 12 ;—f(v) l9(v) —g(@)]| <1

which, in turn, reduces to

[f(@)] - 19(v) = g(u)] <2+ |f ()] - [g(v) = g(@)[ + [f(v)] - [9(x) = g(u)|. (5)

In case u < t < v, because of the definition of G (9 = 14}, g = 1) and
that u < ¢ < v, we know that |g(v) — g(u)| = 1. Moreover, |g(v) — g(x)| <1
and |g(z) — g(u)| < 1. As a result, (5) yields |f(z)| < 2+ |f(u)] + |f(v)]. In
case t = u, since (5) holds for g = 1(; 4], we can still conclude that |f(z)| <
2+ [f(u)] + |f(v)|. For t = v, choose g = 1 4. From (5), we have |f(z)| <
2+ |fu)l+f(v)]-

In summary, for each ¢ € [a, b], there is an open interval (u,v) containing ¢
such that |f(z)| <2+ |f(uw)| + |f(v)] for each = € (u,v) N M. Therefore, f is
bounded on (u,v) N M. By the Heine-Borel Theorem, there are finitely many
of these open intervals H covering [a, b].

.. f is bounded.
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4 Lemmas Concerning Quasi-Continuous Functions.

The following results will be used later. Theorem 4.1, Definition 4.2, Def-
inition 4.1, and Definition 4.3 are repeated here from Coppin and Muth [6]
wherein we studied a Stieltjes integral defined over arbitrary subsets of a closed
interval not just a dense subset such as M of this paper. The functions in that
paper were assumed to be bounded.

Theorem 4.1. If f is a function with domain H C [a,b], z is a member of
[a,b]— H which is a limit point of the domain of f|[a, 2], then there is a number
¢ such that (z,c) is a limit point of the graph of flla,z]. Similarly, if z is a
limit point of the domain of f|[z,b], then there is a number ¢ such that (z,c)
is a limit point of the graph of f|[z,b].

Definition 4.1. In Theorem 4.1, ¢ is said to be a quasi-end value.

Definition 4.2. Suppose H C [a,b]. Then a gap G in H (or gap G if no mis-
understanding occurs) is a maximal connected subset of (a,b) which contains
no points of H.

Definition 4.3. Suppose f is a function with domain H C [a,b]. By f*, we
mean a function such that

(a) f*(x) = f(x) for each x € H, and

(b) if € [a,b] — H and G is a gap containing z, then f*(x) is equal to a
quasi-end value of f with respect to G. It is understood that when there
is more than one choice for f*(x) then only one choice is made and is
the same for each value in G. We repeat this process for each gap in H;
therefore, f* has domain [a, b].

Theorem 4.2. f € S if and only if f* is quasi-continuous.

PROOF OF NECESSITY. Suppose f € §. Assume that f* is not quasi-continuous
at some t € [a,b]. For the sake of argument, let a < ¢ and f* is not quasi-
continuous on the left at ¢t. This implies that for some k£ > 0 there is an
increasing sequence {x,} in M convergent to ¢ such that

for each positive integer m and n. (Remember that for each = € [a,b], x € M
or z € [a,b] — M and (w, f*(x)) is a limit point of the graph of f for some w
in some gap.)
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Let g € G where g = 1p,). By definition, (m) [,, f dg exists. As was
done in the preceding proof, by Definition 2.4, for k, we know that there is a
partition D of M such that if D’ and D" are refinements of D, then

|Em(fagvD/)_Em(f,gaD//)| <k/4 (7)

Let [u,t]ps be the member of D for which ¢ is the right hand end point.
Let D’ be a refinement of D where D' = (D \ [u,t]ar) U {[w, @n]ar, [0, t]ar }
for some positive integer n. Similarly, let D” be a refinement of D where
D" = (D\ [u, t]p) U{[w, Tm]ar, [Tm, t]ar } for some positive integer m. Because
g is 0 or is a constant on all members of D’ and D", except [z,,t]n and
[, t]ar, we conclude that

[+ flen)

5 [o(0) — g(@)] - F(t) + fom)

L) g (t) — gl < B2 (9)

By definition of g, |g(t) — g(z,)| = 1 and |g(t) — g(x,)] = 1. Thus, (8) reduces
to

which contradicts (6). Therefore, f* is quasi-continuous. O

PROOF OF SUFFICIENCY. Suppose f* is a quasi-continuous function. Clearly,
f is also quasi-continuous. To show that f € S, let t € [a, b].

Case 1. t € M. For the sake of argument, let a < ¢ < b and g = 1;4). Let
e > 0. Since, f is quasi-continuous at t, there is a positive number §
such that |f(z) — f(y)| < /2 for each x,y € (t—9§/2,t)N M and for each
x,y € (t,t 4+ 6/2) N M. Let D be a partition of M such that for some
[w,t]ar, [t 0] € D, |[v —u| < 6. Let D' be any refinement of D where
[r,t]ar, [t, s]ar € D', and, of course, |s —r| < §. Then

|Em(fagvD) - Em(fvgvD/” =

TOLTW ) — gy~ LI pg(0) — gy =
[f(u) = f(v)] <e.

Summarizing, we have

|Em(fvg7D) - Em(fag,D/M < €.

The proof of case g; = 1(; ;) would develop in a similar manner as would
t = a and t = b. Thus, we conclude that f is mean g-integrable on M.
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Case 2. t ¢ M. With minor changes, this case can be argued very much
like Case 1. In the interest of space, we omit the proof that f is mean
g-integrable on M.

Therefore, if f* is quasi-continuous, then f € S. O

Lemma 4.2.1. If f € S, then f* is unique and is quasi-continuous.

Lemma 4.2.2. If g € S, then

g=9gr+9L

where gr is continuous on the right, gr(b) = 0, g is continuous on the left
and gr.(a) = 0.

PROOF. Suppose g € S. By Theorem 4.2, g* is quasi-continuous. From
Lane [16], page 380, we know that the quasi-continuous function g* with do-
main [a, b] can be written

g =fr+fr

where fg is continuous on the right and f;, is continuous on the left.

Define hg(z) = fr(z) for each z € [a,b), hgr(b) = 0, hp(z) = fr(x) for
each z € (a,b], and hp(a) = 0. Because our modifications to fr and f to
create hr and hj, respectively do not influence right and left continuity, hgr
remains continuous on the right and hy remains continuous on the left. Now,
since g = g*| M, we define gr = hr|M and g, = h|M to yield

g=9gr+ 9L

where gr is continuous on the right, gr(b) = 0, g1, is continuous on the left
and gr(a) =0 U

Notation. When we say P(g, gr,gr.) we mean the proposition “gg is con-
tinuous on the right, gr(b) = 0, g1, is continuous on the left, g (a) = 0 and

g=9gr+gr.”

5 A Representation Theorem.

Theorem 5.1. A function L : S — R is a bounded, linear functional if and
only if there are functions a and B of bounded variation on [a,b] such that

LA =0 [ frdas () /M fud3

for each f € S where P(f, fr, fL)-
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PROOF OF SUFFICIENCY. Suppose L : & — R is defined for functions « and
B of bounded variation on [a, b] such that

L(f) = (1) /M frda+ (1) /M fudp

for each f € S where P(f, fr, fL)-
Let f € S and k € R. We know that

LD =) [ ko rdas ) [ ke puas
where P(f, fr, fr). Clearly, P(k- f,k- fr,k- fr). Therefore,
Lk 1) =0 [ k- rdat ) [ k- puds

S L(k-f) =k- L(f) for each f € S and each k € R.
Let f,g € S. We know that

L(f) = (1) /M frda+ (r) /M fodp (9)
where P(f, fr, fr). Moreover,
L(f+9)=(0) /M hpda+ (r) /M hydf (10)

where P(f + g,hgr,hr).
Since f+ g = hr + hr, we have g = (hg — fr) + (hr — fr). Clearly,
P(g,hr — fr,hr — fz) and

Lg) = (1) /Mam — fr)da+ (1) /Mm ) ds. (11)

Using the linearity of the left and right integrals and combining (9), (10),
and (11), we obtain

L(f+g)=L(f) + L(g)

for each f,g € S.

Therefore, L : § — R is a linear functional.

In preparation for the remainder of the proof, we refer to a result on page
380 of R.E. Lane [16], which when applied here states that || f5|| < (1.5)-]]f*||
and ||f7|] < (1.5) - ||f*|| which, in turn, gives us

IFrll < (1.5) - | f]] and [[fL]] < (1.5) - [[f]] (12)
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where P(f, fr, fL)-
Now, consider

L(f) = (1) /M frda+ (r) /M f1d3

where P(f, fr, fr). Applying the triangle inequality, from (3) and (12), we
have

IL(f)]

IN

+

|<Z> [ ndel <[ [ 2 dﬂ‘
< (L5)- Il - VPt (15) - |- V2B

= 15) - |Ifll - (Vi +V2B).

We conclude that L is bounded. O

PROOF OF NECESSITY. Suppose that L : S — R is a bounded, linear func-
tional. Define

;= Lig), Bt = g, 20 = 19| M, 1 = 1\ 5} | M, Bo = 1oy | M, B1 = 1p| M.

Moreover, remembering that 1 ,|M € S,t € [a,b] and 1, y)|M € S,t € [a, b],
define the functions aw € S and § € § as follows:

aft) = L(1p | M), t € M;3(t) = L(1 4| M), t € M.

Note that o and 3 are real-valued functions with domain M.

For the purpose of showing that « and § are of bounded variation on [a, b],
let D be any partition of M. Since L is a bounded linear functional, there is
a k > 0 such that ||[L(f)|| < k- | f|| for each f € S. Define ¢}, 4 to be 1, if
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a(q) — a(p) > 0 and to be —1, otherwise, for each [p,g|p € D.

D @) —a) = Y |[L(QuylM) = L1y M)

[p,ql€eD [p,qleD
= > L@y M = 1p4(M))
[p,ql€D
= Z L(5[p,q]'1[p7Q)|M)
[p,ql€eD
=1L Z Olp.q] * l[p,q)|M
[p.q]€D
<k- (5[1,,,1] . 1[p,q)‘M < k.
[p,ql€D

Therefore, « is of bounded variation and, by similar argument, 3 can be shown
to be of bounded variation.
Suppose f € S. By Lemma 4.2.2, there are functions fr and fr such that

f=fr+fL
where P(f, fr, fL)-

Since L is a bounded, linear function functional, L is continuous. Suppose
e > 0. Note that f, fr, fr are members of S, the domain of L. Since L is
continuous, there is a common positive number ¢ such that
geSand |f —gll <6 —[L(f) — L(g)| <&/16
g€ Sand |fr—ygll <d—|L(fr) — L(g)| <&/16 (13)
geSand ||fr —gll <d—|L(fr) — L(g)| < e/16.
Since fg is continuous on the right and f;, is quasi-continuous on the left;
thus, each is quasi-continuous on M, and each of a and [ is of bounded

variation on M, we know that each of (1) [,, frda and (r) [,, fr d3 exists.
Then, there exists a partition D; of M such that

() | frda—3%(fr,a,D")| <e/16 (14)
M

for each refinement D’ of D; and there exists a partition D, of M such that

(") /M fodB—S.(f1, 8, D)| < £/16 (15)
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for each refinement D’ of D,.. Since each of fr and f;, is quasi-continuous and
continuous on the right and left, respectively, there exists a partition E, of M
and a partition Ej of M such that for each [p,¢|r € Ei,

z,y € [p,g) "M — |fr(z) — fr(y)| < 6/16 (16)
and for each [p, gy € E,,
2,y € (p,q) "M — |fr(z) — fr(y)| < §/16. (17)

Now, let D’ be a partition of M where E(D') = E(D,)UE(D;)UE(E,)UE(E;).
Define two functions in S as follows:

gr(@) = > fr(p)log(z) — ap(@)],x € M (18)
[p,qlm €D’

gu(@) = > f(@)[By(x) = Bp(x)),x € M. (19)
[p,gmED’

Consider x € M. Let [u,v]p be the member of D’ that contains z. Keeping in
mind that ag—a, = 1 4),, and, thus, o, (t) —a,(t) # 0 when [p, ¢lar = [u, v]ar
and u =p <t < g = v, we see that

|fr(x) — gr(x)| < |fr(x) — frR(W)|

From (16), we see that |fr(z) — fr(u)| < §/16. We can conclude at this point
that |fr(z) — gr(z)| < 6/16 for each x € M, implying that

|fr — grl < 6/16 (20)
and, using a similar argument,

Ifr —grl < 6/16. (21)
Combining (20) and (21), we have

If = (gr + gu)ll = (fr + fr) = (9r + gL)] < 0.

As a result, from (13), we obtain

|L(f) — L(gr + g1)| < €/16.
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Using the fact that L is linear, we are allowed to perform the following oper-
ations where each sum is taken over all [p,g|y € D"

IL(f) — L(gr + g1)| = |L(f) — L(9r) — L(gL)|

= 1L(H) — L (Y ) lag(w) - ay(@)])
— L (3 £@)1Ba(@) = Bp(@)) |

= [L(f) = 3 F0)[L(eg(@)) = Lioy(@))])
=" F@L(By()) = L(By())]|

= 1L(f) = > f()laa) - alp)]
> F(@B(g) - B

Therefore,
|L(f) — %i(fr, o, D) = 2.(fr, B, D")| < /16. (22)

Combining (14) and (15) with the preceding, we have

L) - () /M frda— (r) /M fodf| <.

Therefore, giving us the desired conclusion

L) =) [ frdat) /M f1 dB.
O
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