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POROSITY AND THE DARBOUX
PROPERTY OF FRECHET DERIVATIVES

Abstract

We study a relation between the porosity of sets in Euclidean spaces
and the Darboux property of (relative) Fréchet derivatives.

1 Introduction and Main Result.

A set A in a real Banach space X is said to be porous at a € X if there are
¢>0and x, € X, x, # a, with ,, — a such that « ¢ A whenever n € N and
|z — zn|| < c|la — x,||. Let B C X be non-empty without isolated points and
f: B — Rbe given. We say that g : B — X* is a (relative) Fréchet derivative
of f on B if

e J@) = (@)~ gla)w— )

=0
r—a,xEB ||:L'7aH

for each a € B.
The following two results have appeared in [1].
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Lemma 1.1. Let X be a real Banach space, G C X open, a € G and let
X \ G be porous at a. Let M := G U {a} and suppose that g : M — X* is
a Fréchet derivative of a function f: M — R on M. Then (a,g(a)) belongs
to the closure of the graph of glg in X x X*. In particular, g(a) € g(QG).

Theorem 1.2. Let X be a real Banach space and B C X be non-empty such
that the interior of B is connected and X \ B is porous at every a € BN OB.
Let g : B — X* be a Fréchet derivative of a function f : B — R on B.
Then the graph of g is a connected subset of X x X*. In particular, g(B) is
connected in X*.

In this paper, we prove converses of these results in the case of Euclidean
spaces. Proposition 4.2 below corresponds with Lemma 1.1, while the following
theorem corresponds with Theorem 1.2.

Theorem 1.3. Let B C R? be non-empty without isolated points such that
the interior of B is connected. Then the following assertions are equivalent:

(i) R4\ B is porous at every a € BN OB.

(ii) The graph of g is connected whenever g is a Fréchet derivative of a func-
tion f: B — R on B.

(iii) g(B) is connected whenever g is a Fréchet derivative of a function
f:B—RonB.

PROOF. (i) = (ii) follows from Theorem 1.2 and (ii) = (iii) is clear. Suppose
(i) does not hold. There is a € B such that R? \ B is not porous at a.
By Proposition 4.2 below, there is f : R* — R, Fréchet differentiable on B,
such that f’(a) = 0 and |f’(u)] > 1 for any u € B\ {a}. Then g = f’|p is
a Fréchet derivative of f|p on B and 0 is an isolated point of g(B). Thus (iii)
does not hold, and the remaining (iii) = (i) is proved. O

2 Preliminaries.

Let d € N be fixed throughout the whole paper. We denote by |z| the Euclidean
norm of x € R? and by B(z,r) the open ball around z with radius » > 0. We
fix 9 a mollification kernel; i.e. a function with properties
1) ¢ € C®(RY),

2) ¢ >0 on B(0,1) and 1 = 0 on R%\ B(0, 1),

3) () = p(y) if x| = |yl

4) fga=1.
Lemma 2.1. Let @ C R? be open and p : Q — (0,00) be a continuous

function. Let ¢ > 0. Then there is 6 € C1(Q) satisfying 0 < § < p on Q,
Lipschitz with the constant ¢ on 2.
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PROOF. Let {By}ren be a covering of € by open balls such that By C
for each k € N. Put my, = min, 5 p(x). Then the desired function is

oo

Z %\pkv

k=1
where Uy : Q — [0,1) is a continuously differentiable function such that
Uy >0on By, ¥y, =0o0n Q\ By and |V} | < ¢/my on Q. O

Lemma 2.2. Let Q C R? be open, p € LL _(R?) and let § € C*(Q) be positive

loc

on Q. Then, for the function F : Q) — R defined as
Fo) = [ el 8@m)oty) du
R L

we have F € C1(Q).
PROOF. We note first that F' can be equivalently expressed as

G(x)

F(‘/L.) = 5(17)(17

where

G(x):/Rdcp(t)Ht(x)dt and Ht(x):@z;(fs(;;).

Fix z € Q and a direction v € R%. We will prove that
L %—f(m) exists and

S = [ et

II. the mapping
OH,
— t)—(s)dt
s [ o056

is continuous at z.
Choose € > 0 such that B(z,e) C 2 and put

I = UiB(s,é(s)).

s€B(x,e)

Note that, for s € B(z,¢) and ¢t € RY\ T', we have 2
OH,

(s) = 0. Moreover,

the function (s,t) — %5t (s) is continuous on the compact set B(z,¢) x I', and
so there is a constant C' > 0 with \%(sﬂ < C for (s,t) € B(z,e) xTI'. So

o022 ()] < Cxe®le(o)
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for s € B(z,¢) and t € R, where xr is the characteristic function of the set T.
Now, since xr|¢| € L1(R?), T and IT are consequences of the standard theorems
on integral depending on parameter.

We proved, in particular, that the partial derivatives of G are continuous
on , and so G € C1(Q2). Immediately, F € C*(9) as well. O

Lemma 2.3. Let L,K > 0. Let ¢ : R? — R be a function which is Lipschitz
with the constant L, let @ C R? be an open set and let § € C(2) be positive
and Lipschitz with the constant K/L. Suppose that, for each x € ), there is
vy € R |u,| = 1, such that (%i(y) > 2K for almost every y € B(z,d(x)).
Then the function

Fa) = [ ol +8@mvt) dy

belongs to C1(Q) and |F'(z)| > K for each x € Q). Moreover, F is Lipschitz.

PrOOF. First, note that F' € C!(Q2) due to Lemma 2.2. Now, choose z €
and a sequence {\,} of non-zero real numbers with \,, — 0. Since F € C*(Q),
it is sufficient to write

(% (@)= tim. Flz + An;:) — F(z)
- i [ P + Anva +6(x + izvm)y) — @+ 0@)Y) ) ay
> 1iggicgf /Rd o(x+ Ay +6(z + )\nz/w)?i/) — (T + Ay +6(2)y) oly) dy
n linrgi(gf ) o(x+ Apvg + 5(:6/\)3) —p(x+ 5(x)y)w(y) dy
>tinint [ A 00 ) g
n /Rd hnnigf o(x 4+ Apvz + 5(x)\)::/) —p(z+ 6<x)y)¢(y) dy

K Op
—L— d ) d
> [ rpiwdrs [ S e o) dy

K d Ky(y)d
Z/B(OJ) lylv(y) y+/ 2K(y) dy

B(0,1)\N

> / K(y)dy = K,
B(0,1)
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where N has measure 0. We could use the Fatou lemma because

P&+ Anve +0(2)y) — p(z + 6(2)y)
An

Y(y) > —L(y)

for n € N and y € R?
To prove that F' is Lipschitz, we write

F(0) = PO < [ et 8u) = ¢(0+ 60)0() d

< / L(Ju — o] + [6(u) — ()| [y (y) dy
R4

< [ (@hu=vl+ Kl = vllshoto) dy

- / (Llu— o] + Klu — olly))(y) dy
B(0,1)

s/ (L + K)|u — v|(y) dy = (L + K)[u —v].
B(0,1)

O

Lemma 2.4. Let (P, o) be a metric space and functions s,t : P — R be
bounded by My, M; on P. Then the function st is Lipschitz with the constant
MLy + M Lg in the case that s,t are Lipschitz with the constants Lg, L;.

PrOOF. We have

[s(@)t(x) = s(y)t(y)] <|s(x)t(z) = s(x)t(y)] + [s(2)t(y) — s(y)t(y)]
|s(@)[[t(z) = t(y)| + [E()]]s(x) = s(y)]

o(x,y) + M;Lso(z,y)

for z,y € P. O

(x
(x

)t
)
L

IN

M

3 Functions on Special Domains.
Let r;,8; € R, p; € N for i € N satisfying
ey >rog> >0,

e p <py <

e r; — 0,
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° T‘iﬁ.—l N 1’

Ti

e 3 (),
T

.pi—)OO

Si—Sit1 | -1
Ti—Tit1 ’

rg 1
Ti—Tit1 Di

<2,
be fixed throughout this section. We put

D, = {(xh...,xd) € 8([—1,1]d) 2 2pxq, ..., 2pxg € Z}7 p €N,

D= U 7Dy, .
ieN
In this section, we denote
[z = lzlloo = max{[21],. .., |zal}

for x = (x1,...,24) € R%

Lemma 3.1. There is a Lipschitz function F : R? — R with properties
1. F'(0) =0,
2. F'(z) exists and |F'(z)| > 1/(4V/d) whenever x € R?\ (D U {0}).

The whole section is dedicated to the proof of this lemma.
Define

h(z) = dist(z,Z), ho(z) = dist(z,{—p1,...,0,...,p1}), z€R,

d d

g(.’L‘l,...,xd)ZZh(fL'j), 90($17~--7$d)zzh0($j); (1'17...7.’)351)6Rd,

=1 =1
gi(x) =t g(tx), gro(x) = tgo(tx), =€ R?, ¢t > 0.
Put C =1+ 4d. For z € R?, define

Oa T = 0’
o) = | P (C8t g (@)
+:Z:7“|:r‘|1 (Csi""l + Ipiv1/riv1 (x)), Tiy1 < ||$|| <7y,

Csy +gp1/r1,0(x)a r1 < lz].
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Claim 3.2. p(z)/||z]] — 0 as 2 — 0.

PrOOF. For z € R? and i € N with 7,41 < ||lz|| < r;, we obtain

|| — Ti41
o) < =T log g, @)
Ty —Ti41
T — ||z
%7”_”“051#1 + 9pit1/rist (Z‘)‘
Ty — Tit1

S C|Sl‘ + |gpz'/m (‘I>| + C\1|57L"!‘1| + |gp7;+1/7"7;+1 (I)|
riy1d

Pig1 2’

S; 1 r d 1 d
SARS ’ + = +—.

Tid
< Clsil + —5 + Clsipa +
pi 2

8

Ti

ri

()] < ()| <C
[l Tit1

+C

DiTig1 2 Dit1

Tit1 Tit1

The properties of the sequences r;,s; and p; guarantee that the right side
converges to 0 as ¢ tends to co. [

Claim 3.3. ¢ is Lipschitz.

PROOF. Obviously, h is Lipschitz with the constant 1 and g, g; are Lipschitz
with the constant d on R? (all the Lipschitz constants in the proof are with re-
spect to || - ||). Fixi € Nand put U = {z € R% : r;yy < [|z|| < 7;}. We will
investigate separately the functions

x| —r; r; — ||z
p1(z) = 2] s + <] Csiy1,
Ti = Tit1 Ti = Tit1
[zl = rita
@2(x) = r, — 7”‘:_1 gpi/m (37)7
(2 7
ri — |||
‘PS(*T) = e — ri+1gpz+1/7”z‘+1 (x)v

which satisfy that ¢1 + @2 + @3 =@ on U. For x,y € U, we have

Si — Si41
Ty — Tit1

p1(z) — p1(y) = C(llzll = llyll)

)

and thus |p1(x) — v1(y)] < C|lz — y||. It follows from Lemma 2.4 that 2, @3
are Lipschitz with the constants

i d 1 it d 1
d+ 08— gyt
Di 27 — Tip1 Dit1 27T — Tig1
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on U. Together, we get that ¢ is Lipschitz with the constant C' + 4d on U.
Even, ¢ is Lipschitz with this constant on U = {z € R? : ;41 < ||z| < r}
because lim, .. zcv p(v) = Cs; + gp, /r, (2) = ©(2) whenever ||z]| = r;.

We have proved that ¢ is Lipschitz with the constant C + 4d on {z €
RY : 741 < |lz|| < 7y} for every i € N. It is also Lipschitz with this constant
(in fact, Lipschitz with the constant d) on {z € R? : r; < ||z||}. Considering
the continuity of ¢ at 0 (Claim 3.2), we see that ¢ is Lipschitz with the constant
C + 4d on R4, O

Fix k € {1,...,d} and i € N and differentiate ¢ on the set {x € R :
rig1 < ||z|| < 74, |jz]| = 2 > |x;] for j # k}:

o(z) = M(C n Q (&m)) n M(C&,+1 n ”ig(pilx))’

Ty — Tit1 i Ty —Tit+1 Pi+1 Tit1

ai(x) = S (Bly) + S (P, Ak,

Ox;j TP —Tig1 Ty Ti = Tit1  Titl
dp Tk — Tit1 Pi T — Tk Pi+1
—(z) = 7h’(—:z:k) + I zk)
Oxy, TP —Tig1 Ty Ti = Titl  Titl
8i — Sit1 1 i Di 1 Tit1 (Ditl
+C + —g(Zz) - x
Ty — Tit+1 i =Tit1DPi Ty Ty = Ti+1 Pi+1 Ti+1

(if the derivatives of h exist). For almost every x with r; 11 < ||z|| < r; and
|lz|| =z > |z;| for j # k, we obtain

00 (g » 2o 02 Z! ol
vy Tory — T 8xk (935]
1 T (D ’
ZLg(E2)| -
Ti = Tiv1Pi Ty

Tk — rl—‘rl 7 )
_Z i h( J)

—Tit1 T
> C—4d: 1,

>C

1 Titl (Ditl
1+ 1+ " ‘
Ti = Tit1 Pi+1 Tit1

i — Tk i+1
i ' Di+ $j)

i R
where v, denotes (((s; — si+1)/(ri — rix1))/l|z]]) .

Claim 3.4. For every x € R?\ (DU{0}), there is a direction v € R, ||y = 1,
and a neighborhood U, of x such that g—f(y) > 1/2 for almost every y € U,.

PrOOF. Due to the symmetry, we may suppose that z; > 0,5 =1,...,d.
Consider cases:
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(1) Let ||z|| = r; for some i € N,i > 2. Asx ¢ r;D,,, thereis j € {1,...,d}
such that 2p;x;/r; ¢ Z. Denote 7 = h/(p;z;/r;) € {—1,1} and choose € > 0
such that ¢ < (1/4) min{r; — riy1,7i—1 — i },2e <r; —x; and b (pia/r;) =7
whenever |z; —a| < e. Put v =r71e; and U, = {y € R? : |ly — 2| < €}
For almost every y = (y1,...,y4) € U, there is k € {1,...,d} such that
Iyl =y > lyy| for j* # k and the derivatives A'(7*1y;) and h'(2=1y;)
exist (in such a case, k # j because yp > ||| —e =ri—e > x;+€ > y;
by the choice of €). So, for almost every y = (y1,...,yq) € U, with |ly]| < r;,
we have (for some k)

0 0 — I % i 7
Soly) = T () = TR (B 4 Ty (B

=T
ov Oz i —Tiy1 O Ti Ti = Tigl Titl
_ Yk T T g i — Yk ! Pi+1yj)
T = Tit1 Ti = Tit1 Tigl
> Ye T Tk T T Yk
TOTi = Tipl T~ Tig
Ty = Tit1 T = Tit1
while, for almost every y = (y1,...,yq4) € U, with ||y|| > r;, we have (for some
k)
%(y) _ Ta—(p(y) - Y — T X Pi—1 ) _H_?“i—l _ykh’(&y»)
v c'hj Ti—1 —T; Ti—1 J i1 — 715 T J
_ YT ' Pi—1 i)+ Ti—1 — Yk
Tic1 =T Tl Ti—1 =T
S Ti-1=Y Y —Ti
Tl T Tie1 Ty
:1_2M21_2;21/2.
Ti1 =T Ti—1 =Ty
(2) Let ||z|| = r1. In this case, the procedure is similar to the procedure

of (1) (choosing j, 7, e, v and U, asin (1), we have g—f(y) > 1/2 for almost every
y = (y1,...,yq) € Uy with ||y|| < r1 and we can easily check that g—f(y) =1

for every y = (y1,...,yq) € Uy with ||y|| > r1).
(3) Let r;y1 < ||z|| < r; for some i € N. We define

V={yeR:rip1 <yl <rillyll =y > max [y for some k}.

We supposed that z; > 0,5 = 1,...,d. Therefore, V is a neighborhood of z.
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We have

dp
vy

<w=§z@+¢@w@ﬂmz1—wwm%—w

for almost every y € V, where v, and v, denote (((s;—si+1)/(ri—rix1))/||z])z
and (((s; — si+1)/(ri — ri+1))/|ly|])y, as above. Now, the existence of an ap-
propriate U, follows from the continuity of y — v, and from Claim 3.3.

(4) Let ||z|| > r1. We choose a k with z, > r; and take U, = {(y1,...,%4) €
R?: g5, > 1 }. If v denotes ey, then

dp _ 89101/“70 41 (D1 -
g(y) = Tzk(y) = hO(Eyk) =1

for every y € U,. [

Now, for every z € R4\ (DU{0}), we define p(z) as the supremum of num-
bers r < |z| for which there is v € R¢, |v| = 1, such that g—f(y) > 1/(2V/d)
for almost every y € B(x,r). By Claim 3.4, p > 0 on R?\ (DU{0}). Obviously,
p is Lipschitz (with the constant 1 with respect to |- |). By Claim 3.3, we can
take L > 0 such that ¢ is Lipschitz with the constant L (with respect to |- |).
By Lemma 2.1, there is 6 € C*(R?\ (D U {0})) satisfying 0 < § < p, Lipschitz
with the constant 1/(4v/dL). We define F on R\ (D U {0}) first by

F@) = [ ola+d@mit) di. o eRI\ (DU ).

By Lemma 2.3 (applied on K = 1/(4V/d)), F is Lipschitz and differentiable
on R%\ (DU {0}) and Property 2 from Lemma 3.1 is satisfied. We extend F
on R? to be Lipschitz. Property 1 follows now from Claim 3.2 and from

sup |F(2)] < sup sup  |p(t)] < sup  [o(t)]

z€B(0,r) z€B(0,7)\(DU{0}) teB(z,5(x)) te B(0,2r)

for 7 > 0. This completes the proof of Lemma 3.1.

4 General Case.

Lemma 4.1. Let 7 > 0 and =,y € R? be such that |z — y| < r/2. Then there
is a diffeomorphism U : R? — R?, Lipschitz with the constant 2, such that
VU(u) =u foru e R\ B(z,r), ¥(y) =z and [vo V' (u)| > 2|v| for any u € R?
and v € (RY)*.
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PRrOOF. Without loss of generality z =0, y = (]y|,0,0,...,0) and r = 1. Let
¢ :[0,00) — R be a function which is differentiable everywhere in (0, c0) and
right differentiable at 0 such that ¢(0) = |y|, #(§) = 0 for £ > 1, ¢/, (0) =0
and |¢'(€)] < 1/2 for € > 0. Define ® : R? — R and © : R — R by

D(s) = ¢(|s]) and  O(s) = (s1 + B(s), 52, -, 84);

where s = (51, 82,...,54) € R Now, O is a diffeomorphism on R¢ which is
identity on R%\ B(0,1) and ©(0) = y. Put ¥ = ©~!. For s € R? and t € (R9)*,

we have

3
[to®'(s)] = |t +t(e1)P(s)] < §|t|
Moreover, for s,s’ € R?, we have
1
©(s) = O(s) = |5 = &' = [(s) = D(s)] = S ls = .

So [vo W' (u)| > 2|v| for u € RY, v € (R?)*, and ¥ is Lipschitz with the constant
2. O

Proposition 4.2. Let a € R? and E C R%\ {a} be a set which is not porous
at a. Then there is a Lipschitz function f : R — R, Fréchet differentiable
on R4\ E, such that f'(a) =0 and |f'(u)| > 1 for any u € R4\ (E U {a}).

PrOOF. Without loss of generality a = 0. Put I = [~1,1]%. Since E is not
porous at 0, there is, for any k& € N, some minimal n; € N such that, for any
r € (0,27"], rI C E+ B(0,7/10%). Put

k(n) = max k for n > nq,
nE<n

1 101

g*m and Pn, = 102]9(”)71 forl = 0, ey 102’6(”)7171.

Tn,l =

Rearrange 7, into the decreasing sequence {r;}3°, and {p;}2; be the se-
quence of the corresponding p,, ;’s. Put

s1=0 and s;41=s;+ (—1)”1(7"1- —riy1) for i>1.
Note that s; = 0 and s;41 = r; — 141 if ¢ is odd. One can compute that

i 1 101 i 10
Ty — Tit1 Di 102k(n) T 102k(n)
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for the n € N and [ € {0,...,102*(™=1 _ 1} corresponding to i, and so

T 1 T
sup—————— <2 and lim L =1.
T = Ti41 Pi nTee T
Moreover,
S; — 84 Si 10
17%%1‘:1 and — < -—-— forall i €N,
Ti — Ti+1 Tri 10 (n)

and so s;/r; — 0 for i — co. Let F' be a function which Lemma 3.1 gives
for these r;’s and p;’s.

Now, choose x € ;D). There are some n and [ such that r; = r,; and
Di = Pn,. So there is some u, € F with |z — uz| < rn,l/l()%(”). Put B, =
B(x,2r,,/10%*(™)) and, by Lemma 4.1, choose a diffeomorphism ¥, : R? —
R?, Lipschitz with the constant 2, which is identity on R% \ B, and maps u,
onto z such that |v o W, (u)| > 2|v| for any u € R? and v € (R?)*. Let zy, 25
be distinct elements of D = J,cy i Dp, With the corresponding 7, 1, , Pny 1y,
Trng,ls a0d Pp, 1,. We may suppose that ry,, ;; > 7p,,1,- Then

> Tny,ly _ Tny,ly
=z 2pn1,l1 102k(n1)

|z1 — 22

if r, 1y = oy, and

10 "ny,0 Tny

— Tngly 2 oni+1 . 102k | °102k(n) = °7(2k(n1)

|z1 — z2| > 7y gy

if 7, 1, > Thy.,- In both cases,

Tny,ly 27"7%1,11 2rn2,12
102k(n1) 102k(n1) 102k(n2)

|£L’1 —ZL'Q| 25

So By, N By, = ) and we can define a one-to-one mapping ¥ : RY — R9,
differentiable on R¢\ {0} and Lipschitz with the constant 2, by

U(u) =

U, (u) if u e By,
u if ue R\ U,ep Be-

Put f = (6v/d)F o U. Since f is a composition of Lipschitz mappings, it is
Lipschitz. We have W=1(D) C E, and thus f is differentiable everywhere
in R4\ E. For u € R?\ (E U {0}), we have

/()] = (6VA)|F' (¥ (u)) 0 ¥'(u)| > g(ﬁﬁ)lF’(‘P(U))l >1
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by Property 2 of the function F. Finally, f'(0) = 0. It follows from Property 1
and from

F(B(0,7)) = (6VA)F(¥(B(0,r))) C (6vd)F(B(0,2r))

for every r > 0. O
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