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THE OSCILLATION FUNCTION ON
METRIC SPACES

Abstract

For each metric space (X, ξ) and each bounded function f : X → R
the family of the sets Ωf (y) = {x ∈ X : ωf (x) ≥ y} (ωf (x) is the
oscillation of f) has some well known properties. In this paper it is
constructively shown that for each family {Ω(y)}y∈[0,1] of subsets of X
(separable and c-dense in itself) having similar properties there exists a
function f : X → [0, 1] such that Ωf (y) = Ω(y) for each y ∈ [0, 1].

Let X be any separable metric space of one’s choice and f : X → R an arbi-
trary function (R denotes the set of all real numbers). We will use the following
description of the set of limit points of f at x0 denoted by L(f, x0) : L(f, x0)
is the set of all points y ∈ R such that there exists a sequence {xn} ⊂ X
with limxn = x0, xn 6= x0 (n = 1, 2, . . .) and lim f(xn) = y. It is well
known that L(f, x) is closed in R for each x ∈ X. Let us recall the natu-
ral definition of the function of oscillation for f : X → [0, 1] : ωf (x) : =
max[L(f, x) ∪ {f(x)}]−min[L(f, x) ∪ {f(x)}]. For each y ∈ [0, 1] let

Ωf (y) : = {x ∈ X : ωf (x) ≥ y}.

It is not difficult to see that the following facts hold for every function
f : X → [0, 1].

1) The set Ωf (y) is closed in (X, τX), where the distance function on X
defines the topology τX in a standard way,

2) If y1 < y2 then Ωf (y2) ⊂ Ωf (y1),
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3) The set
⋃

y∈[0,1]

(
Ωf (y)× {y}

)
is τX × τ–closed (τ — natural topology on

R).

Now let us take an arbitrary family {Ω(y)}y∈[0,1] of nonempty subsets of X
such that:

1◦) The set Ω(y) is τX–closed for each y ∈ [0, 1],

2◦) If y1 < y2 then Ω(y2) ⊂ Ω(y1),

3◦) The set
⋃

y∈[0,1]

(
Ω(y)× {y}

)
is τX × τ–closed,

4◦) Ω(0) = X

The main result of this paper is the following,

Theorem 1. Let X be an arbitrary c-dense (c = card(R)) in itself and separa-
ble metric space. For each family {Ω(y)}y∈[0,1] that fulfills conditions 1◦)−4◦)
above, there exists a function f : X → [0, 1] such that for every y ∈ [0, 1] we
have

0◦) Ω(y) = Ωf (y).

Proof. In this proof we use the well known Cantor-Bendixson Theorem: each
τX–closed subset A of separable metric space X can be represented as a sum
of two disjoint subsets A1 and A2, the first of which is a set of all points of
condensation of A, and the second is denumerable. For each y ∈ [0, 1], let
Ω(y) = A(y) ∪ B(y) (note thatA(y) ∩ B(y) = g

�) where, from the Cantor-
Bendixson Theorem, A(y) is τX–perfect and B(y) is denumerable. Let Ba ≡
{y ∈ [0, 1] : a ∈ B(y)} for each a ∈ X. The set F of all points a of X for
which Ba 6= g� is at most denumerable. Proof of this fact is analogous to the
proof of the lemma in [1], where the notions of condensation and closure are
taken in the sense of τX .

For each y ∈ [0, 1], let A′(y) denote a denumerable and dense set in Ω(y)
and U := Q∩ [0, 1] where Q is the set of all rational numbers. Our function f
we define as follows:

f(x) =

{
sup{y ∈ U : x ∈ A′(y)} for x ∈

⋃
y∈U

A′(y)

0 otherwise

First we shall prove the inclusion
[A] Ωf (y) ⊂ Ω(y).
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A.1 Let us take an arbitrary point y0 ∈ [0, 1] and x ∈ Ωf (y0).

A.1.1 If f(x) ≥ y0 then the definition of f and condition 3◦) imply that there
exists y1 ∈ U such that x ∈ A′(y1) and y1 ≥ y0. Since Ω(y1) ⊂ Ω(y0),
then x ∈ Ω(y0).

A.1.2 Let y′ = maxL(f, x) ≥ y0. Therefore, there exists a sequence
{xn} ⊂ X such that xn ∈

⋃
y∈U

A′(y) (xn 6= x, n ∈ N), limxn = x,

lim f(xn) = y′ and y′ ≥ y0.

From the definition of f we infer that f(xn) = sup{y ∈ U : xn ∈ A′(y)}.
Consider two cases:

(a) Presume that y′ > y0. Then there exists the subsequence {xnm} of {xn}
such that f(xnm

) = ynm
> y0. Then Ω(ynm

) ⊂ Ω(y0) and xnm
∈ Ω(y0).

Since xnm

m→∞
−−−−→ x and Ω(y0) is τX–closed we obtain that x ∈ Ω(y0).

(b) Suppose that y′ = y0, i.e. max L(f, x) = y0 and for the sequence {xn}
we have lim f(xn) = y0. There are two cases:

(b’) If for infinite number of points of {xn} the value of f is greater
than y0, then there exists the subsequence {xnk

} of {xn} such that

f(xnk
) = ynk

> y0. Therefore, as in (a), we have xnk

k→∞
−−−→ x,

xnk
∈ Ω(y0) and since Ω(y0) is closed x ∈ Ω(y0).

(b”) If there are only a finite number of elements of the subsequence {xn}
whose values of f are greater than y0, then without loss of gener-
ality, we can assume that for each n ∈ N f(xn) = sup{y ∈ U :
x ∈ A′(y)} ≤ y0. If x /∈ Ω(y0), then for a certain n0, points xn
with n ≥ n0 also do not belong to Ω(y0). This means that for a
sufficiently small number δ > 0

x ∈
⋃
y∈U

y≤y0−δ

A′(y) for each n > n0.

Hence lim f(xn) ≤ y0 − δ < y0 i.e. lim f(xn) < y0, a contradiction.

[B] Ω(y) ⊂ Ωf (y).

B.1 Let y0 be an arbitrary point point from U \ {0}.

B.1.1 Let x ∈ A′(y0). From the definition of f we have ωf (x) ≥ y0 and hence
x ∈ Ωf (y0).
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B.1.2 Let x ∈ A(y0)\A′(y0). Then there exists a sequence {xn} such that xn ∈
A′(y0) (xn 6= x, n ∈ N) and limxn = x. From the formula for f we infer
that f(xn) ≥ y0 (n ∈ N). Since max[L(f, x) ∪ {f(x)}] ≥ lim f(xn) ≥ y0
then again ωf (x) ≥ y0. Therefore x ∈ Ωf (y0).

B.2 Let y0 ∈ [0, 1]\U be an arbitrary fixed point. Let us take the sequence
{ym} ⊂ U such that ym < y0 (m ∈ N) and lim ym = y0.

B.2.1 Let x ∈ A(y0), then for every m ∈ N x ∈ A(ym). Simultaneously
for each m ∈ N there exists a sequence {x(m)

n } such that x(m)
n 6= x,

x
(m)
n → x and x(m)

n ∈ A′(ym). Let us take an open ball V1 with center at
x and choose x(1)

n1 6= x belonging to V1. Next, for m = 2 let us take the
ball V2 with center at x such that x(1)

n1 /∈ V2 and choose x(2)
n2 ∈ V2, x

(2)
n2 6=

x. Proceeding by induction and having chosen for some k a point
x

(k)
nk ∈ Vk, let us take the ball Vk+1 (with center x) such that x(k)

nk /∈ Vk+1

and choose a point x(k+1)
nk+1 6= x. Denote x(m)

nm = tm, m ∈ N. Finally, we
obtain the inductively defined sequence {tm} ⊂X such that tm 6= tm′

for m 6= m′, tm 6= x, tm ∈ A′(ym) and lim tm = x. From the definition of
f we obtain f(tm) ≥ ym. Since max[L(f, x) ∪ {f(x)}] ≥ lim f(tm) ≥ y0,
then x ∈ Ωf (y0).

B.2.2 For x ∈ B(y0) the proof is obvious.

B.3 For y0 = 0 the proof is also obvious.

Corollary 1. The function f defined above is of the second class of Baire.
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