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ON THE EXISTENCE OF VECTOR
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Abstract

A type of Strassen’s Theorem for measures taking values in the pos-
itive cone of a Banach lattice is proved. We generalize a result of A.
Hirshberg and R. M. Shortt and formulate a type of Strassen’s Theorem
in a topological context via closed sets.

1 Introduction

In joint work, M. März and R. M. Shortt [10, Theorem 3.7] generalize a version
of the theorem known in probability theory as “Strassen’s Theorem” (see [13],
[6], [5, §11.6]) to the context of measures assuming values in a reflexive Banach
lattice.

Continuing the line of inquiry of [12], in [8, Theorem 2] A. Hirshberg and
R. M. Shortt prove a result of this type for measures taking values in Banach
lattices of a certain type: the KB-spaces. Since reflexive ⇒ KB ⇒ order
complete, their result is a generalization of [10, Theorem 3.7].

In this paper we give a formulation of Strassen’s Theorem for measures
taking values in Banach lattices with order continuous norm [Theorem 3.10].
These spaces occupy a position between the KB-spaces and the order complete
Banach lattices (reflexive⇒ KB⇒ order continuous norm⇒ order complete),
hence our result is a generalization of [8, Theorem 2].

We also formulate a type of Strassen’s Theorem in a topological context
via closed sets [Theorem 3.15].
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Scientifica e Tecnologica (Italy) and Programma di Ricerca e di Interesse Nazionale Analisi
Reale.

437



438 Emma D’Aniello

2 Preliminaries

Let F be a field of subsets of a set X. Let B be a Banach space and B∗ its
dual.

We remind that a vector measure µ : F → B is an additive set function,
i.e., µ(F1 ∪ F2) = µ(F1) + µ(F2), for disjoint F1 and F2 in F . We denote by
ca(F ,B) the vector space of all countably additive vector measures µ : F → B
and by ‖µ‖ the semivariation of µ [4].

A class K of subsets of a set X is compact if it has the following property:
given a sequence (Kn)n∈N drawn from K such that K1 ∩ . . . ∩Kn 6= ∅ for each
n ∈ N , the intersection ∩∞n=1 Kn is non-empty. Let F be a field of subsets of
X and let µ : F → B be a vector measure taking values in a Banach space
B. We say that µ is a compact measure if there exists a compact class K of
subsets of X such that, for every F ∈ F and ε > 0, there are sets F

′ ∈ F and
K ∈ K with F

′ ⊆ K ⊆ F and ‖µ‖(F − F
′
) < ε. In this case we say that the

class K µ-approximates F .
Now suppose that F is a σ-field. We say that a vector measure µ : F → B

is perfect if the restriction of µ to every countably generated sub-σ-field of F
is compact.

Given a Hausdorff topological space X and its Borel σ-field B(X), a vector
measure µ : B(X) → B is tight if, for each ε > 0 and set B ∈ B(X), there
is some compact set K ⊆ B such that ‖µ‖(B −K) < ε. Clearly, every tight
measure on the Borel σ-field of a metric space is compact.

A Banach lattice B is a KB-space if every increasing norm bounded se-
quence of its positive cone B+ is norm convergent [1, Definition 14.10].

A normed vector lattice B is said to have order continuous norm [11,
Definition 5.12] if every order convergent filter in B norm converges. For
information on these spaces, see ([1], [11]). In these sources are to be found
the following results.

1. A countably order complete Banach lattice B has order continuous norm
iff no Banach sublattice of B is vector lattice isomorphic to l∞ [11,
Theorem 5.14].

2. Every KB-space has order continuous norm [11, page 92]. The converse is
not true: the vector lattice c0 of real null sequences under the supremum
norm is an important example of a Banach lattice with order continuous
norm, but it is not KB.

3. Every Banach lattice having order continuous norm is order complete
[11, page 92]. The converse is not true: l∞ is order complete, but it has
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not order continuous norm.

3 Strassen’s Theorem

Without further notice, in this section, for two sets X1 and X2,

1. P(X1 ×X2) is the power set of X1 ×X2,

2. for every F ∈ P(X1 ×X2), χF is the indicator function of F ,

3. π1 : X1 ×X2 → X1 and π2 : X1 ×X2 → X2 are the projections of the
product space X1 ×X2,

4. if X1 and X2 are Hausdorff topological spaces, by B(X1), B(X2) and
B(X1×X2) we denote the Borel σ-fields of X1, X2 and X1×X2, respec-
tively.

Definition 3.1. Let X1 and X2 be Hausdorff topological spaces and let µ1

and µ2 be tight elements of ca(B(X1),B+) and of ca(B(X2),B+), respec-
tively, such that µ1 (X1 ) = µ2 (X2 ) = α, where B+ is the positive cone of
an order complete Banach lattice B. Let M = {µ ∈ ca(B(X1 × X2),B+) :
µ is tight and µ ◦ π−1

1 = µ1 and µ ◦ π−1
2 = µ2} (i.e. M = {µ ∈ ca(B(X1 ×

X2),B+) : µ is tight and has marginals µ1and µ2}). For every F ∈ P(X1 ×
X2) we define

S(F ) =
{ 0 if M = ∅∨

{µ∗(F ) : µ ∈M} otherwise,

where 0 is the zero element of B and µ∗(F ) is the outer measure of F ,

and

I (F ) =
∧
{

2∑
i=1

µi(Bi) : Bi ∈ B(Xi) and F ⊆ ∪2
i=1πi

−1 (Bi)}.

For the properties of I and S see [3] and [9].

Theorem 3.2. Let C ∈ B(X1 ×X2) be a closed set. Then

I(C) =
∧
{

2∑
i=1

µi(Ci) : Ci closed set in B(Xi) and C ⊆ ∪2
i=1πi

−1(Ci)}.
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Proof. The proof consists of four steps.
1. First we shall prove that, for every F ∈ B(X1 ×X2),

(∗) I(F ) =
∧
{

2∑
i=1

∫
fidµi : fi ∈ L(Xi) and χF ≤

2∑
i=1

fi ◦ πi},

where L(X1) is the family of all µ1-integrable Borel measurable functions
defined on X1, with values in [0, 1], and L(X2) is the family of all µ2-integrable
Borel measurable functions defined on X2, with values in [0, 1].

Notice that if Bi ∈ B(Xi) with F ⊆ ∪2
i=1πi

−1(Bi) then χF ≤
∑2

i=1 χBi
◦πi,

where χBi
is the indicator function of Bi.

Let f1 and f2 be any two elements of L(X1) and of L(X2), respectively,
satisfying χF ≤

∑2
i=1 fi ◦ πi. Then this inequality leads to the relation

F ⊆ ({y ∈ X1 : f1(y) ≥ s}×X2)∪(X1×{z ∈ X2 : f2(z) ≥ 1−s}) for 0 ≤ s ≤ 1.

Let x∗ be a nonnegative element of B∗. Then, since x∗ ◦ µ1 and x∗ ◦ µ2 are
real-valued measures, as in Proposition 3.3 of [9],

2∑
i=1

∫
fid(x∗ ◦ µi) =

∫ 1

0

(x∗ ◦ µ1)({y ∈ X1 : f1(y) ≥ s})ds+

∫ 1

0

(x∗ ◦ µ2)({z ∈ X2 : f2(z) ≥ 1− s})ds

≥ inf
0≤s≤1

x∗(µ1({y ∈ X1 : f1(y) ≥ s}) + µ2({z ∈ X2 : f2(z) ≥ 1− s})).

Therefore, for every nonnegative element x∗ of B∗,

x∗(
2∑

i=1

∫
fidµi) =

2∑
i=1

∫
fid(x∗ ◦ µi)

≥ inf
0≤s≤1

x∗(µ1({y ∈ X1 : f1(y) ≥ s}) + µ2({z ∈ X2 : f2(z) ≥ 1− s}))

≥ x∗(
∧

0≤s≤1

(µ1({y ∈ X1 : f1(y) ≥ s}) + µ2({z ∈ X2 : f2(z) ≥ 1− s})).

Hence, for every fi ∈ L(Xi) such that χF ≤
∑2

i=1 fi ◦ πi,

2∑
i=1

∫
fidµi ≥

∧
0≤s≤1

(µ1({y ∈ X1 : f1(y) ≥ s})+µ2({z ∈ X2 : f2(z) ≥ 1−s})).
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Taking into account that

I(F ) =
∧
{

2∑
i=1

∫
χBi

dµi : Bi ∈ B(Xi) and χF ≤
2∑

i=1

χBi
◦ πi},

since for every fi ∈ L(Xi), for every t ∈ [0, 1], the set {x ∈ Xi : fi(x) ≥ t} is
a Borel subset of Xi, it follows that

I(F ) ≥
∧
{

2∑
i=1

∫
fidµi : fi ∈ L(Xi) and χF ≤

2∑
i=1

fi ◦ πi}

≥
∧
{

∧
0≤s≤1

(µ1({x ∈ X1 : f1(x) ≥ s}) + µ2({z ∈ X2 : f2(z) ≥ 1− s})) :

fi ∈ L(Xi) and χF ≤
2∑

i=1

fi ◦ πi}

≥ I(F ).

So (*) holds.
2. In this step we prove that, for every closed set C ∈ B(X1 ×X2),

(∗∗)
∧
{

2∑
i=1

∫
fidµi : fi ∈ L(Xi) and χC ≤

2∑
i=1

fi ◦ πi}

=
∧
{

2∑
i=1

∫
hidµi : hi ∈ U(Xi) and χC ≤

2∑
i=1

hi ◦ πi},

where U(Xi) is the family of all upper semicontinuous elements of L(Xi).
Let x∗ be a nonnegative element of B∗. By Proposition 1.31 of [9], for the real
valued tight measures x∗ ◦ µ1 and x∗ ◦ µ2, the following equality holds

inf{
2∑

i=1

∫
fid(x∗ ◦ µi) : fi ∈ L(Xi) and χC ≤

2∑
i=1

fi ◦ πi}

= inf{
2∑

i=1

∫
hid(x∗ ◦ µi) : hi ∈ U(Xi) and χC ≤

2∑
i=1

hi ◦ πi}.
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Hence, for every nonnegative element x∗ of B∗ and for every fi ∈ L(Xi)
such that χC ≤

∑2
i=1 fi ◦ πi,

x∗(
2∑

i=1

∫
fidµi) =

2∑
i=1

∫
fid(x∗ ◦ µi)

≥ inf{
2∑

i=1

∫
hid(x∗ ◦ µi) : hi ∈ U(Xi) and χC ≤

2∑
i=1

hi ◦ πi}

= inf{x∗(
2∑

i=1

∫
hidµi) : hi ∈ U(Xi) and χC ≤

2∑
i=1

hi ◦ πi}

≥ x∗(
∧
{

2∑
i=1

∫
hidµi : hi ∈ U(Xi) and χC ≤

2∑
i=1

hi ◦ πi}).

Therefore, for every fi ∈ L(Xi) such that χC ≤
∑2

i=1 fi ◦ πi,

2∑
i=1

∫
fidµi ≥

∧
{

2∑
i=1

∫
hidµi : hi ∈ U(Xi) and χC ≤

2∑
i=1

hi ◦ πi}.

So we obtain that∧
{

2∑
i=1

∫
fidµi : fi ∈ L(Xi) and χC ≤

2∑
i=1

fi ◦ πi}

≥
∧
{

2∑
i=1

∫
hidµi : hi ∈ U(Xi) and χC ≤

2∑
i=1

hi ◦ πi}

≥
∧
{

2∑
i=1

∫
fidµi : fi ∈ L(Xi) and χC ≤

2∑
i=1

fi ◦ πi}.

3. Now we show that, for every closed set C ∈ B(X1 ×X2),

(∗ ∗ ∗)
∧
{

2∑
i=1

µi(Ci) : Ci closed set in B(Xi) and C ⊆ ∪2
i=1πi

−1(Ci)}

=
∧
{

2∑
i=1

∫
hidµi : hi ∈ U(Xi) and χC ≤

2∑
i=1

hi ◦ πi}.
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We only have to notice that, for every hi ∈ U(Xi), for every t ∈ [0, 1], the set
{x ∈ Xi : hi(x) ≥ t} is a closed subset of Xi, and to argue as in step 1.

4. Conclusion. By the previous steps,

I(C) =
∧
{

2∑
i=1

∫
fidµi : fi ∈ L(Xi) and χC ≤

2∑
i=1

fi ◦ πi}

=
∧
{

2∑
i=1

∫
hidµi : hi ∈ U(Xi) and χC ≤

2∑
i=1

hi ◦ πi}

=
∧
{

2∑
i=1

µi(Ci) : Ci closed set in B(Xi) and C ⊆ ∪2
i=1πi

−1(Ci)}.

So the theorem is proved.

Proposition 3.3. For each F ∈ P(X1 ×X2), S(F ) ≤ I(F ).

Proof. For any F ∈ P(X1 × X2), 0 ≤ I(F ), therefore the case M = ∅ is
obvious. Otherwise it is enough to notice that, for every µ with marginals µ1

and µ2 and for every (B1, B2) ∈ B(X1)× B(X2) with F ⊆ ∪2
i=1πi

−1(Bi),

µ∗(F ) ≤ µ∗(∪2
i=1πi

−1(Bi)) = µ(∪2
i=1πi

−1(Bi))

≤
2∑

i=1

µ(πi
−1(Bi)) =

2∑
i=1

µi(Bi).

Definition 3.4. [4, Definition 14, page 7] Let F be a field of subsets of a set
X and let µ : F → B be a vector measure with values in a Banach space B.
The vector measure µ is said to be strongly additive whenever given a sequence
(Fn)n∈N of pairwise disjoint members of F , the series

∑∞
n=1 µ(Fn) converges

in norm.

Theorem 3.5. Let F be a field of subsets of a set X. Then every vector
measure µ : F → B+ taking values in the positive cone of a Banach lattice
with order continuous norm is strongly additive.

Proof. If (Fn)n∈N is a sequence of pairwise disjoint sets in F , then the
sequence of partial sums sn =

∑n
i=1 µ(Fi) is increasing and it is bounded above

by µ(X), hence it is directed (≤) and majorized. Thus, by [11, Theorem 5.10],
the infinite series

∑∞
n=1 µ(Fn) converges weakly. Therefore, by [11, Corollary,

page 89], it norm converges.
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Definition 3.6. Let A and B be fields of subsets of a set X1 and a set X2,
respectively. Henceforward by A×B we denote the field on X1×X2 generated
by all rectangles A×B for A ∈ A and B ∈ B. By A⊗B we denote the σ-field
on X1 ×X2 generated by A× B.

Given a non-empty set X and a subset F of X by F c we denote the
complement X − F of F .

Theorem 3.7. Let A and B be fields of subsets of a set X1 and a set X2,
respectively, and let µ1 : A → B+ and µ2 : B → B+ be vector measures taking
values in the positive cone of an order complete Banach lattice B. We assume
that µ1(X1) = µ2(X2) = α, for some α ∈ B+. Let F be an arbitrary set in
A×B and let C be the field on X1×X2 generated by F and the sets in A×B.
For an element v ∈ B, with 0 ≤ v ≤ α, we consider the following conditions:

(i) There is a vector measure µ : C → B+ such that µ(A×X2) = µ1(A) and
µ(X1 × B) = µ2(B) for all A ∈ A and B ∈ B (i.e. µ has marginals µ1

and µ2) and such that µ(F ) = v.

(ii) Whenever A×B ⊆ F for A ∈ A and B ∈ B, then µ1(A)+µ2(B) ≤ α+v.

(iii) Whenever A × B ⊆ F c for A ∈ A and B ∈ B, then µ1(A) + µ2(B) ≤
2α− v.

Then (i) is equivalent to the conjunction of (ii) and (iii).

Proof. This follows from Theorem 2.1 in [7].

Theorem 3.8. Let A and B be σ-fields of subsets of a set X1 and a set X2,
respectively, and let µ : A × B :→ B+ be a vector measure, where B+ is the
positive cone of a Banach lattice B. Define µ1 : A → B+ and µ2 : B → B+

by the rule µ1(A) = µ(A×X2) and µ2(B) = µ(X1 ×B).
If µ1 is compact and µ2 is countably additive, then µ is countably additive

on A× B.

Proof. This result is proved in the first part of the proof of Theorem 3.1 of
[12].

Theorem 3.9. Let A and B be σ-fields of subsets of a set X1 and a set X2,
respectively, and let µ1 ∈ ca(A,B+) and µ2 ∈ ca(B,B+), with µ1(X1) =
µ2(X2) = α, where B+ is the positive cone of a Banach lattice B with order
continuous norm. Suppose that µ1 is compact and that F ∈ A⊗B is a countable
intersection of sets in A× B. For any v ∈ B+, with v ≤ α, the following are
equivalent:
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(i) There is a vector measure µ ∈ ca(A⊗ B,B+) with µ ◦ π1
−1 = µ1 and

µ ◦ π2
−1 = µ2 such that µ(F ) ≥ v.

(ii) For all A ∈ A and B ∈ B, we have µ1(A) + µ2(B) ≤ 2α − v, whenever
A×B ⊆ F c.

Proof. (i)⇒ (ii) Since

A×B ⊆ F c ⇒ F ⊆ (Ac ×X2) ∪ (X1 ×Bc)
⇒ (A×X2) ∩ F ⊆ (A×X2) ∩ ((Ac ×X2) ∪ (X1 ×Bc))
⇒ (A×X2) ∩ F ⊆ A×Bc,

we calculate

µ1(A) = µ(A×X2) = µ((A×X2) ∩ F ) + µ((A×X2) ∩ F c)
≤ µ(X1 ×Bc) + µ((X1 ×X2)− F ) = µ2(Bc) + µ(X1 ×X2)− µ(F )
≤ 2α− µ2(B)− v.

(ii) ⇒ (i) As in the proof of Theorem 2 in [8], define I =
∧
{2α − µ1(A) −

µ2(B) : A × B ⊆ F c} and Σ =
∨
{µ1(A) + µ2(B) − α : A × B ⊆ F}. It is

straightforward that Σ ≤ I: suppose that A × B ⊆ F and A0 × B0 ⊆ F c.
Note that either A ∩ A0 = ∅ or B ∩ B0 = ∅. Therefore, µ1(A) + µ2(B) +
µ1(A0) +µ2(B0) ≤ 3α, and hence µ1(A) +µ2(B)−α ≤ 2α−µ1(A0)−µ2(B0),
as desired.

Let v0 = v ∨ Σ. Since, by (ii), whenever A × B ⊆ F c, we have v ≤
2α − µ1(A) − µ2(B), it is clear that Σ ≤ v0 ≤ I. Hence, (ii) and (iii) of
Theorem 3.7 hold with v0 in place of v. Let C be the field generated by A×B
and the set F . By Theorem 3.7, there exists a vector measure µ0 : C → B+

with marginals µ1 and µ2 and such that µ0(F ) = v0. By Theorem 3.8 µ0 is
countably additive on A×B, because it has countably additive marginals, one
of which is compact. Using Theorem 3.5 and Kluvanek’s Theorem [4, page
27], we find a countably additive vector measure µ : A ⊗ B → B+ such that
µ = µ0 on A × B. Choose a decreasing sequence of sets (Fn)n∈N in A × B
such that ∩n∈NFn = F . Then

µ(F ) = lim
n
µ(Fn) = lim

n
µ0(Fn) ≥ µ0(F ) = v0 ≥ v,

establishing the theorem.
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Theorem 3.10. Let A and B be σ-fields of subsets of a set X1 and a set X2,
respectively, and let µ1 ∈ ca(A,B+) and µ2 ∈ ca(B,B+), with µ1(X1) =
µ2(X2) = α, where B+ is the positive cone of a Banach lattice B with order
continuous norm. Suppose that µ1 is perfect and that F ∈ A⊗B is a countable
intersection of sets in A× B. For any v ∈ B+, with v ≤ α, the following are
equivalent:

(i) There is a vector measure µ ∈ ca(A⊗ B,B+) with µ ◦ π1
−1 = µ1 and

µ ◦ π2
−1 = µ2 such that µ(F ) ≥ v.

(ii) For all A ∈ A and B ∈ B, we have µ1(A) + µ2(B) ≤ 2α − v, whenever
A×B ⊆ F c.

Proof. The proof is the same as the one of Theorem 3.9. The only difference
is the fact that instead of applying Theorem 3.8 we apply Theorem 3.1 of
[12].

Proposition 3.11. [2, Proposition 8.1.5] Let X1 . . . Xn . . . be a (finite or in-
finite) sequence of separable metrizable spaces. Then B(ΠiXi) = ⊗iB(Xi).

Theorem 3.12. Let X1 and X2 be Polish spaces and let µ1 and µ2 be elements
of ca(B(X1),B+) and of ca(B(X2),B+), respectively, with µ1(X1) = µ2(X2) =
α, where B+ is the positive cone of a Banach lattice B with order continuous
norm. Let F ∈ B(X1 × X2) be a countable intersection of sets in B(X1) ×
B(X2). For any v ∈ B+, v ≤ α, the following are equivalent:

(1) There is a vector measure µ in ca(B(X1 ×X2),B+) with µ ◦ π1
−1 = µ1

and µ ◦ π2
−1 = µ2 such that µ(F ) ≥ v.

(2) I(F ) ≥ v.

Proof. It is enough to observe that µ1 and µ2 are tight [10, Theorem 3.2]
and that hypothesis (2) is equivalent to (ii) of Theorem 3.9.

Corollary 3.13. Let X1 and X2 be Polish spaces and let µ1 and µ2 be elements
of ca(B(X1),B+) and of ca(B(X2),B+), respectively, with µ1(X1) = µ2(X2) =
α, where B+ is the positive cone of a Banach lattice B with order continuous
norm. Then there exists µ in ca(B(X1 × X2),B+) with µ ◦ π1

−1 = µ1 and
µ ◦ π2

−1 = µ2 (i.e., under these hypotheses, the set M of Definition 3.1 is
non-empty).

Proof. We only have to notice that I(X1 ×X2) = α and to apply Theorem
3.12 with X1 ×X2 in place of F and with v = α.
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Theorem 3.14. Duality Theorem. Let X1 and X2 be Polish spaces and let
µ1 ∈ ca(B(X1),B+) and µ2 ∈ ca(B(X2),B+), with µ1(X1) = µ2(X2) = α,
where B+ is the positive cone of a Banach lattice B with order continuous
norm. Let F ∈ B(X1 × X2) be a countable intersection of sets in B(X1) ×
B(X2). Then

I(F ) = S(F ).

Proof. Let v = I(F ). By Theorem 3.12, there exists µ in ca(B(X1×X2),B+)
with µ ◦ π1

−1 = µ1, µ ◦ π2
−1 = µ2 and µ(F ) ≥ v. Thus, S(F ) ≥ I(F ). This

inequality and Proposition 3.3 lead to the desired equality.
The next result extends Proposition 3.8 of [9] to the vector case.

Theorem 3.15. Let X1 and X2 be Polish spaces and let µ1 and µ2 be elements
of ca(B(X1),B+) and of ca(B(X2),B+), respectively, with µ1(X1) = µ2(X2) =
α, where B+ is the positive cone of a Banach lattice B with order continuous
norm. Let C be a closed subset of X1 × X2. Then, for any v ∈ B+, v ≤ α,
there exists a vector measure µ ∈ ca(B(X1×X2),B+) such that µ◦π1

−1 = µ1

and µ ◦ π2
−1 = µ2, with µ(C) ≥ v if and only if

2∑
i=1

µi(Ci) ≥ v, for all Ci closed sets in B(Xi) with C ⊆ ∪2
i=1πi

−1(Ci).

Proof. Since C = ∩j∈J(A1,j × A2,j)c, with Ai,j open subset of Xi, J finite
or countable, i = 1, 2, this follows at once from Theorem 3.2 and Theorem
3.12.
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