Emma D'Aniello, Dipartimento di Matematica e Applicazioni R. Caccioppoli, Università degli Studi di Napoli "Federico II," Via Cintia, Complesso Monte S. Angelo, 80126 Napoli, Italy. e-mail: daniel@matna2.dma.unina.it

ON THE EXISTENCE OF VECTOR MEASURES WITH GIVEN MARGINALS

Abstract

A type of Strassen's Theorem for measures taking values in the positive cone of a Banach lattice is proved. We generalize a result of A. Hirshberg and R. M. Shortt and formulate a type of Strassen's Theorem in a topological context via closed sets.

1 Introduction

In joint work, M. März and R. M. Shortt [10, Theorem 3.7] generalize a version of the theorem known in probability theory as "Strassen's Theorem" (see [13], [6], [5, §11.6]) to the context of measures assuming values in a reflexive Banach lattice.

Continuing the line of inquiry of [12], in [8, Theorem 2] A. Hirshberg and R. M. Shortt prove a result of this type for measures taking values in Banach lattices of a certain type: the KB-spaces. Since reflexive \Rightarrow KB \Rightarrow order complete, their result is a generalization of [10, Theorem 3.7].

In this paper we give a formulation of Strassen's Theorem for measures taking values in Banach lattices with order continuous norm [Theorem 3.10]. These spaces occupy a position between the KB-spaces and the order complete Banach lattices (reflexive \Rightarrow KB \Rightarrow order continuous norm \Rightarrow order complete), hence our result is a generalization of [8, Theorem 2].

We also formulate a type of Strassen's Theorem in a topological context via closed sets [Theorem 3.15].

Key Words: Banach lattice, vector measure

Mathematical Reviews subject classification: Primary 28B05; Secondary 46B42

Received by the editors October 30, 1998

^{*}This research has been partially supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (Italy) and Programma di Ricerca e di Interesse Nazionale Analisi Reale.

⁴³⁷

2 Preliminaries

Let \mathcal{F} be a field of subsets of a set X. Let **B** be a Banach space and **B**^{*} its dual.

We remind that a vector measure $\mu : \mathcal{F} \to \mathbf{B}$ is an additive set function, i.e., $\mu(F_1 \cup F_2) = \mu(F_1) + \mu(F_2)$, for disjoint F_1 and F_2 in \mathcal{F} . We denote by $ca(\mathcal{F}, \mathbf{B})$ the vector space of all countably additive vector measures $\mu : \mathcal{F} \to \mathbf{B}$ and by $\|\mu\|$ the semivariation of μ [4].

A class \mathcal{K} of subsets of a set X is *compact* if it has the following property: given a sequence $(K_n)_{n \in N}$ drawn from \mathcal{K} such that $K_1 \cap \ldots \cap K_n \neq \emptyset$ for each $n \in N$, the intersection $\bigcap_{n=1}^{\infty} K_n$ is non-empty. Let \mathcal{F} be a field of subsets of X and let $\mu : \mathcal{F} \to \mathbf{B}$ be a vector measure taking values in a Banach space **B**. We say that μ is a *compact measure* if there exists a compact class \mathcal{K} of subsets of X such that, for every $F \in \mathcal{F}$ and $\epsilon > 0$, there are sets $F' \in \mathcal{F}$ and $K \in \mathcal{K}$ with $F' \subseteq K \subseteq F$ and $\|\mu\|(F - F') < \epsilon$. In this case we say that the class $\mathcal{K} \ \mu$ -approximates \mathcal{F} .

Now suppose that \mathcal{F} is a σ -field. We say that a vector measure $\mu : \mathcal{F} \to \mathbf{B}$ is *perfect* if the restriction of μ to every countably generated sub- σ -field of \mathcal{F} is compact.

Given a Hausdorff topological space X and its Borel σ -field $\mathcal{B}(X)$, a vector measure $\mu : \mathcal{B}(X) \to \mathbf{B}$ is *tight* if, for each $\epsilon > 0$ and set $B \in \mathcal{B}(X)$, there is some compact set $K \subseteq B$ such that $\|\mu\|(B-K) < \epsilon$. Clearly, every tight measure on the Borel σ -field of a metric space is compact.

A Banach lattice **B** is a *KB-space* if every increasing norm bounded sequence of its positive cone \mathbf{B}^+ is norm convergent [1, Definition 14.10].

A normed vector lattice **B** is said to have *order continuous norm* [11, Definition 5.12] if every order convergent filter in **B** norm converges. For information on these spaces, see ([1], [11]). In these sources are to be found the following results.

- 1. A countably order complete Banach lattice **B** has order continuous norm iff no Banach sublattice of **B** is vector lattice isomorphic to l^{∞} [11, Theorem 5.14].
- 2. Every KB-space has order continuous norm [11, page 92]. The converse is not true: the vector lattice c_0 of real null sequences under the supremum norm is an important example of a Banach lattice with order continuous norm, but it is not KB.
- 3. Every Banach lattice having order continuous norm is order complete [11, page 92]. The converse is not true: l^{∞} is order complete, but it has

not order continuous norm.

3 Strassen's Theorem

Without further notice, in this section, for two sets X_1 and X_2 ,

- 1. $\mathcal{P}(X_1 \times X_2)$ is the power set of $X_1 \times X_2$,
- 2. for every $F \in \mathcal{P}(X_1 \times X_2), \chi_F$ is the indicator function of F,
- 3. $\pi_1 : X_1 \times X_2 \to X_1$ and $\pi_2 : X_1 \times X_2 \to X_2$ are the projections of the product space $X_1 \times X_2$,
- 4. if X_1 and X_2 are Hausdorff topological spaces, by $\mathcal{B}(X_1)$, $\mathcal{B}(X_2)$ and $\mathcal{B}(X_1 \times X_2)$ we denote the Borel σ -fields of X_1 , X_2 and $X_1 \times X_2$, respectively.

Definition 3.1. Let X_1 and X_2 be Hausdorff topological spaces and let μ_1 and μ_2 be tight elements of $ca(\mathcal{B}(X_1), \mathbf{B}^+)$ and of $ca(\mathcal{B}(X_2), \mathbf{B}^+)$, respectively, such that $\mu_1(X_1) = \mu_2(X_2) = \alpha$, where \mathbf{B}^+ is the positive cone of an order complete Banach lattice \mathbf{B} . Let $M = \{\mu \in ca(\mathcal{B}(X_1 \times X_2), \mathbf{B}^+) : \mu \text{ is tight and } \mu \circ \pi_1^{-1} = \mu_1 \text{ and } \mu \circ \pi_2^{-1} = \mu_2\}$ (i.e. $M = \{\mu \in ca(\mathcal{B}(X_1 \times X_2), \mathbf{B}^+) : \mu \text{ is tight and has marginals } \mu_1 \text{ and } \mu_2\}$). For every $F \in \mathcal{P}(X_1 \times X_2)$ we define

$$S(F) = \begin{cases} 0 & \text{if } M = \emptyset \\ \bigvee \{ \mu^*(F) : \mu \in M \} & \text{otherwise}, \end{cases}$$

where 0 is the zero element of **B** and $\mu^*(F)$ is the outer measure of F,

and

$$I(F) = \bigwedge \{ \sum_{i=1}^{2} \mu_i(B_i) : B_i \in \mathcal{B}(X_i) \text{ and } F \subseteq \bigcup_{i=1}^{2} \pi_i^{-1}(B_i) \}.$$

For the properties of I and S see [3] and [9].

Theorem 3.2. Let $C \in \mathcal{B}(X_1 \times X_2)$ be a closed set. Then

$$I(C) = \bigwedge \{ \sum_{i=1}^{2} \mu_{i}(C_{i}) : C_{i} \text{ closed set in } \mathcal{B}(X_{i}) \text{ and } C \subseteq \bigcup_{i=1}^{2} \pi_{i}^{-1}(C_{i}) \}.$$

PROOF. The proof consists of four steps.

1. First we shall prove that, for every $F \in \mathcal{B}(X_1 \times X_2)$,

$$(*) \qquad I(F) = \bigwedge \{\sum_{i=1}^2 \int f_i d\mu_i : f_i \in \mathcal{L}(X_i) \text{ and } \chi_F \leq \sum_{i=1}^2 f_i \circ \pi_i\},$$

where $\mathcal{L}(X_1)$ is the family of all μ_1 -integrable Borel measurable functions defined on X_1 , with values in [0, 1], and $\mathcal{L}(X_2)$ is the family of all μ_2 -integrable Borel measurable functions defined on X_2 , with values in [0, 1].

Notice that if $B_i \in \mathcal{B}(X_i)$ with $F \subseteq \bigcup_{i=1}^2 \pi_i^{-1}(B_i)$ then $\chi_F \leq \sum_{i=1}^2 \chi_{B_i} \circ \pi_i$, where χ_{B_i} is the indicator function of B_i .

Let f_1 and f_2 be any two elements of $\mathcal{L}(X_1)$ and of $\mathcal{L}(X_2)$, respectively, satisfying $\chi_F \leq \sum_{i=1}^2 f_i \circ \pi_i$. Then this inequality leads to the relation

$$F \subseteq (\{y \in X_1 : f_1(y) \ge s\} \times X_2) \cup (X_1 \times \{z \in X_2 : f_2(z) \ge 1 - s\}) \text{ for } 0 \le s \le 1.$$

Let x^* be a nonnegative element of \mathbf{B}^* . Then, since $x^* \circ \mu_1$ and $x^* \circ \mu_2$ are real-valued measures, as in Proposition 3.3 of [9],

$$\begin{split} &\sum_{i=1}^{2} \int f_{i} d(x^{*} \circ \mu_{i}) = \int_{0}^{1} (x^{*} \circ \mu_{1}) (\{y \in X_{1} : f_{1}(y) \geq s\}) ds + \\ &\int_{0}^{1} (x^{*} \circ \mu_{2}) (\{z \in X_{2} : f_{2}(z) \geq 1 - s\}) ds \\ &\geq \inf_{0 \leq s \leq 1} x^{*} (\mu_{1}(\{y \in X_{1} : f_{1}(y) \geq s\}) + \mu_{2}(\{z \in X_{2} : f_{2}(z) \geq 1 - s\})). \end{split}$$

Therefore, for every nonnegative element x^* of \mathbf{B}^* ,

$$\begin{aligned} x^* (\sum_{i=1}^2 \int f_i d\mu_i) &= \sum_{i=1}^2 \int f_i d(x^* \circ \mu_i) \\ &\geq \inf_{0 \le s \le 1} x^* (\mu_1(\{y \in X_1 : f_1(y) \ge s\}) + \mu_2(\{z \in X_2 : f_2(z) \ge 1 - s\})) \\ &\geq x^* (\bigwedge_{0 \le s \le 1} (\mu_1(\{y \in X_1 : f_1(y) \ge s\}) + \mu_2(\{z \in X_2 : f_2(z) \ge 1 - s\})). \end{aligned}$$

Hence, for every $f_i \in \mathcal{L}(X_i)$ such that $\chi_F \leq \sum_{i=1}^2 f_i \circ \pi_i$,

$$\sum_{i=1}^{2} \int f_{i} d\mu_{i} \geq \bigwedge_{0 \leq s \leq 1} (\mu_{1}(\{y \in X_{1} : f_{1}(y) \geq s\}) + \mu_{2}(\{z \in X_{2} : f_{2}(z) \geq 1 - s\})).$$

Taking into account that

$$I(F) = \bigwedge \{ \sum_{i=1}^2 \int \chi_{B_i} d\mu_i : B_i \in \mathcal{B}(X_i) \text{ and } \chi_F \leq \sum_{i=1}^2 \chi_{B_i} \circ \pi_i \},$$

since for every $f_i \in \mathcal{L}(X_i)$, for every $t \in [0, 1]$, the set $\{x \in X_i : f_i(x) \ge t\}$ is a Borel subset of X_i , it follows that

$$\begin{split} I(F) &\geq \bigwedge \{ \sum_{i=1}^{2} \int f_{i} d\mu_{i} : f_{i} \in \mathcal{L}(X_{i}) \text{ and } \chi_{F} \leq \sum_{i=1}^{2} f_{i} \circ \pi_{i} \} \\ &\geq \bigwedge \{ \bigwedge_{0 \leq s \leq 1} (\mu_{1}(\{x \in X_{1} : f_{1}(x) \geq s\}) + \mu_{2}(\{z \in X_{2} : f_{2}(z) \geq 1 - s\})) : \\ & f_{i} \in \mathcal{L}(X_{i}) \text{ and } \chi_{F} \leq \sum_{i=1}^{2} f_{i} \circ \pi_{i} \} \\ &\geq I(F). \end{split}$$

So (*) holds.

2. In this step we prove that, for every closed set $C \in \mathcal{B}(X_1 \times X_2)$,

$$(**) \quad \bigwedge \{\sum_{i=1}^{2} \int f_{i} d\mu_{i} : f_{i} \in \mathcal{L}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} f_{i} \circ \pi_{i} \}$$
$$= \bigwedge \{\sum_{i=1}^{2} \int h_{i} d\mu_{i} : h_{i} \in \mathcal{U}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} h_{i} \circ \pi_{i} \},$$

where $\mathcal{U}(X_i)$ is the family of all upper semicontinuous elements of $\mathcal{L}(X_i)$. Let x^* be a nonnegative element of \mathbf{B}^* . By Proposition 1.31 of [9], for the real valued tight measures $x^* \circ \mu_1$ and $x^* \circ \mu_2$, the following equality holds

$$\inf\{\sum_{i=1}^{2} \int f_i d(x^* \circ \mu_i) : f_i \in \mathcal{L}(X_i) \text{ and } \chi_C \leq \sum_{i=1}^{2} f_i \circ \pi_i\}$$
$$= \inf\{\sum_{i=1}^{2} \int h_i d(x^* \circ \mu_i) : h_i \in \mathcal{U}(X_i) \text{ and } \chi_C \leq \sum_{i=1}^{2} h_i \circ \pi_i\}.$$

Hence, for every nonnegative element x^* of \mathbf{B}^* and for every $f_i \in \mathcal{L}(X_i)$ such that $\chi_C \leq \sum_{i=1}^2 f_i \circ \pi_i$,

$$x^{*}(\sum_{i=1}^{2} \int f_{i} d\mu_{i}) = \sum_{i=1}^{2} \int f_{i} d(x^{*} \circ \mu_{i})$$

$$\geq \inf\{\sum_{i=1}^{2} \int h_{i} d(x^{*} \circ \mu_{i}) : h_{i} \in \mathcal{U}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} h_{i} \circ \pi_{i}\}$$

$$= \inf\{x^{*}(\sum_{i=1}^{2} \int h_{i} d\mu_{i}) : h_{i} \in \mathcal{U}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} h_{i} \circ \pi_{i}\}$$

$$\geq x^{*}(\bigwedge\{\sum_{i=1}^{2} \int h_{i} d\mu_{i} : h_{i} \in \mathcal{U}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} h_{i} \circ \pi_{i}\}).$$

Therefore, for every $f_i \in \mathcal{L}(X_i)$ such that $\chi_C \leq \sum_{i=1}^2 f_i \circ \pi_i$,

$$\sum_{i=1}^2 \int f_i d\mu_i \ge \bigwedge \{\sum_{i=1}^2 \int h_i d\mu_i : h_i \in \mathcal{U}(X_i) \text{ and } \chi_C \le \sum_{i=1}^2 h_i \circ \pi_i \}.$$

So we obtain that

$$\bigwedge \{\sum_{i=1}^{2} \int f_{i} d\mu_{i} : f_{i} \in \mathcal{L}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} f_{i} \circ \pi_{i} \}$$
$$\geq \bigwedge \{\sum_{i=1}^{2} \int h_{i} d\mu_{i} : h_{i} \in \mathcal{U}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} h_{i} \circ \pi_{i} \}$$
$$\geq \bigwedge \{\sum_{i=1}^{2} \int f_{i} d\mu_{i} : f_{i} \in \mathcal{L}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} f_{i} \circ \pi_{i} \}.$$

3. Now we show that, for every closed set $C \in \mathcal{B}(X_1 \times X_2)$,

$$(***) \qquad \bigwedge \{\sum_{i=1}^{2} \mu_i(C_i) : C_i \text{ closed set in } \mathcal{B}(X_i) \text{ and } C \subseteq \bigcup_{i=1}^{2} \pi_i^{-1}(C_i)\}$$
$$= \bigwedge \{\sum_{i=1}^{2} \int h_i d\mu_i : h_i \in \mathcal{U}(X_i) \text{ and } \chi_C \leq \sum_{i=1}^{2} h_i \circ \pi_i\}.$$

We only have to notice that, for every $h_i \in \mathcal{U}(X_i)$, for every $t \in [0, 1]$, the set $\{x \in X_i : h_i(x) \ge t\}$ is a closed subset of X_i , and to argue as in step 1.

4. Conclusion. By the previous steps,

$$I(C) = \bigwedge \{\sum_{i=1}^{2} \int f_{i} d\mu_{i} : f_{i} \in \mathcal{L}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} f_{i} \circ \pi_{i} \}$$
$$= \bigwedge \{\sum_{i=1}^{2} \int h_{i} d\mu_{i} : h_{i} \in \mathcal{U}(X_{i}) \text{ and } \chi_{C} \leq \sum_{i=1}^{2} h_{i} \circ \pi_{i} \}$$
$$= \bigwedge \{\sum_{i=1}^{2} \mu_{i}(C_{i}) : C_{i} \text{ closed set in } \mathcal{B}(X_{i}) \text{ and } C \subseteq \bigcup_{i=1}^{2} \pi_{i}^{-1}(C_{i}) \}.$$

So the theorem is proved.

Proposition 3.3. For each $F \in \mathcal{P}(X_1 \times X_2)$, $S(F) \leq I(F)$.

PROOF. For any $F \in \mathcal{P}(X_1 \times X_2)$, $0 \leq I(F)$, therefore the case $M = \emptyset$ is obvious. Otherwise it is enough to notice that, for every μ with marginals μ_1 and μ_2 and for every $(B_1, B_2) \in \mathcal{B}(X_1) \times \mathcal{B}(X_2)$ with $F \subseteq \bigcup_{i=1}^2 \pi_i^{-1}(B_i)$,

$$\mu^{*}(F) \leq \mu^{*}(\bigcup_{i=1}^{2} \pi_{i}^{-1}(B_{i})) = \mu(\bigcup_{i=1}^{2} \pi_{i}^{-1}(B_{i}))$$
$$\leq \sum_{i=1}^{2} \mu(\pi_{i}^{-1}(B_{i})) = \sum_{i=1}^{2} \mu_{i}(B_{i}).$$

Definition 3.4. [4, Definition 14, page 7] Let \mathcal{F} be a field of subsets of a set X and let $\mu : \mathcal{F} \to \mathbf{B}$ be a vector measure with values in a Banach space \mathbf{B} . The vector measure μ is said to be strongly additive whenever given a sequence $(F_n)_{n\in\mathbb{N}}$ of pairwise disjoint members of \mathcal{F} , the series $\sum_{n=1}^{\infty} \mu(F_n)$ converges in norm.

Theorem 3.5. Let \mathcal{F} be a field of subsets of a set X. Then every vector measure $\mu : \mathcal{F} \to \mathbf{B}^+$ taking values in the positive cone of a Banach lattice with order continuous norm is strongly additive.

PROOF. If $(F_n)_{n \in N}$ is a sequence of pairwise disjoint sets in \mathcal{F} , then the sequence of partial sums $s_n = \sum_{i=1}^n \mu(F_i)$ is increasing and it is bounded above by $\mu(X)$, hence it is directed (\leq) and majorized. Thus, by [11, Theorem 5.10], the infinite series $\sum_{n=1}^{\infty} \mu(F_n)$ converges weakly. Therefore, by [11, Corollary, page 89], it norm converges.

Definition 3.6. Let \mathcal{A} and \mathcal{B} be fields of subsets of a set X_1 and a set X_2 , respectively. Henceforward by $\mathcal{A} \times \mathcal{B}$ we denote the field on $X_1 \times X_2$ generated by all rectangles $\mathcal{A} \times \mathcal{B}$ for $\mathcal{A} \in \mathcal{A}$ and $\mathcal{B} \in \mathcal{B}$. By $\mathcal{A} \otimes \mathcal{B}$ we denote the σ -field on $X_1 \times X_2$ generated by $\mathcal{A} \times \mathcal{B}$.

Given a non-empty set X and a subset F of X by F^c we denote the complement X - F of F.

Theorem 3.7. Let \mathcal{A} and \mathcal{B} be fields of subsets of a set X_1 and a set X_2 , respectively, and let $\mu_1 : \mathcal{A} \to \mathbf{B}^+$ and $\mu_2 : \mathcal{B} \to \mathbf{B}^+$ be vector measures taking values in the positive cone of an order complete Banach lattice \mathbf{B} . We assume that $\mu_1(X_1) = \mu_2(X_2) = \alpha$, for some $\alpha \in \mathbf{B}^+$. Let F be an arbitrary set in $\mathcal{A} \times \mathcal{B}$ and let \mathcal{C} be the field on $X_1 \times X_2$ generated by F and the sets in $\mathcal{A} \times \mathcal{B}$. For an element $v \in \mathbf{B}$, with $0 \leq v \leq \alpha$, we consider the following conditions:

- (i) There is a vector measure $\mu : \mathcal{C} \to \mathbf{B}^+$ such that $\mu(A \times X_2) = \mu_1(A)$ and $\mu(X_1 \times B) = \mu_2(B)$ for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$ (i.e. μ has marginals μ_1 and μ_2) and such that $\mu(F) = v$.
- (ii) Whenever $A \times B \subseteq F$ for $A \in \mathcal{A}$ and $B \in \mathcal{B}$, then $\mu_1(A) + \mu_2(B) \leq \alpha + v$.
- (iii) Whenever $A \times B \subseteq F^c$ for $A \in \mathcal{A}$ and $B \in \mathcal{B}$, then $\mu_1(A) + \mu_2(B) \leq 2\alpha v$.

Then (i) is equivalent to the conjunction of (ii) and (iii).

PROOF. This follows from Theorem 2.1 in [7].

Theorem 3.8. Let \mathcal{A} and \mathcal{B} be σ -fields of subsets of a set X_1 and a set X_2 , respectively, and let $\mu : \mathcal{A} \times \mathcal{B} :\to \mathbf{B}^+$ be a vector measure, where \mathbf{B}^+ is the positive cone of a Banach lattice \mathbf{B} . Define $\mu_1 : \mathcal{A} \to \mathbf{B}^+$ and $\mu_2 : \mathcal{B} \to \mathbf{B}^+$ by the rule $\mu_1(\mathcal{A}) = \mu(\mathcal{A} \times X_2)$ and $\mu_2(\mathcal{B}) = \mu(X_1 \times \mathcal{B})$.

If μ_1 is compact and μ_2 is countably additive, then μ is countably additive on $\mathcal{A} \times \mathcal{B}$.

PROOF. This result is proved in the first part of the proof of Theorem 3.1 of [12]. $\hfill \Box$

Theorem 3.9. Let \mathcal{A} and \mathcal{B} be σ -fields of subsets of a set X_1 and a set X_2 , respectively, and let $\mu_1 \in ca(\mathcal{A}, \mathbf{B}^+)$ and $\mu_2 \in ca(\mathcal{B}, \mathbf{B}^+)$, with $\mu_1(X_1) = \mu_2(X_2) = \alpha$, where \mathbf{B}^+ is the positive cone of a Banach lattice \mathbf{B} with order continuous norm. Suppose that μ_1 is compact and that $F \in \mathcal{A} \otimes \mathcal{B}$ is a countable intersection of sets in $\mathcal{A} \times \mathcal{B}$. For any $v \in \mathbf{B}^+$, with $v \leq \alpha$, the following are equivalent:

- (i) There is a vector measure $\mu \in ca(\mathcal{A} \otimes \mathcal{B}, \mathbf{B}^+)$ with $\mu \circ \pi_1^{-1} = \mu_1$ and $\mu \circ \pi_2^{-1} = \mu_2$ such that $\mu(F) \ge v$.
- (ii) For all $A \in \mathcal{A}$ and $B \in \mathcal{B}$, we have $\mu_1(A) + \mu_2(B) \leq 2\alpha v$, whenever $A \times B \subseteq F^c$.

PROOF. $(i) \Rightarrow (ii)$ Since

$$A \times B \subseteq F^c \Rightarrow F \subseteq (A^c \times X_2) \cup (X_1 \times B^c)$$

$$\Rightarrow (A \times X_2) \cap F \subseteq (A \times X_2) \cap ((A^c \times X_2) \cup (X_1 \times B^c))$$

$$\Rightarrow (A \times X_2) \cap F \subseteq A \times B^c,$$

we calculate

$$\mu_1(A) = \mu(A \times X_2) = \mu((A \times X_2) \cap F) + \mu((A \times X_2) \cap F^c)$$

$$\leq \mu(X_1 \times B^c) + \mu((X_1 \times X_2) - F) = \mu_2(B^c) + \mu(X_1 \times X_2) - \mu(F)$$

$$\leq 2\alpha - \mu_2(B) - v.$$

 $(ii) \Rightarrow (i)$ As in the proof of Theorem 2 in [8], define $I = \bigwedge \{2\alpha - \mu_1(A) - \mu_2(B) : A \times B \subseteq F^c\}$ and $\Sigma = \bigvee \{\mu_1(A) + \mu_2(B) - \alpha : A \times B \subseteq F\}$. It is straightforward that $\Sigma \leq I$: suppose that $A \times B \subseteq F$ and $A_0 \times B_0 \subseteq F^c$. Note that either $A \cap A_0 = \emptyset$ or $B \cap B_0 = \emptyset$. Therefore, $\mu_1(A) + \mu_2(B) + \mu_1(A_0) + \mu_2(B_0) \leq 3\alpha$, and hence $\mu_1(A) + \mu_2(B) - \alpha \leq 2\alpha - \mu_1(A_0) - \mu_2(B_0)$, as desired.

Let $v_0 = v \vee \Sigma$. Since, by (ii), whenever $A \times B \subseteq F^c$, we have $v \leq 2\alpha - \mu_1(A) - \mu_2(B)$, it is clear that $\Sigma \leq v_0 \leq I$. Hence, (ii) and (iii) of Theorem 3.7 hold with v_0 in place of v. Let C be the field generated by $\mathcal{A} \times \mathcal{B}$ and the set F. By Theorem 3.7, there exists a vector measure $\mu_0 : C \to \mathbf{B}^+$ with marginals μ_1 and μ_2 and such that $\mu_0(F) = v_0$. By Theorem 3.8 μ_0 is countably additive on $\mathcal{A} \times \mathcal{B}$, because it has countably additive marginals, one of which is compact. Using Theorem 3.5 and Kluvanek's Theorem [4, page 27], we find a countably additive vector measure $\mu : \mathcal{A} \otimes \mathcal{B} \to \mathbf{B}^+$ such that $\mu = \mu_0$ on $\mathcal{A} \times \mathcal{B}$. Choose a decreasing sequence of sets $(F_n)_{n \in N}$ in $\mathcal{A} \times \mathcal{B}$ such that $\cap_{n \in N} F_n = F$. Then

$$\mu(F) = \lim_{n} \mu(F_n) = \lim_{n} \mu_0(F_n) \ge \mu_0(F) = v_0 \ge v,$$

establishing the theorem.

Theorem 3.10. Let \mathcal{A} and \mathcal{B} be σ -fields of subsets of a set X_1 and a set X_2 , respectively, and let $\mu_1 \in ca(\mathcal{A}, \mathbf{B}^+)$ and $\mu_2 \in ca(\mathcal{B}, \mathbf{B}^+)$, with $\mu_1(X_1) = \mu_2(X_2) = \alpha$, where \mathbf{B}^+ is the positive cone of a Banach lattice \mathbf{B} with order continuous norm. Suppose that μ_1 is perfect and that $F \in \mathcal{A} \otimes \mathcal{B}$ is a countable intersection of sets in $\mathcal{A} \times \mathcal{B}$. For any $v \in \mathbf{B}^+$, with $v \leq \alpha$, the following are equivalent:

- (i) There is a vector measure $\mu \in ca(\mathcal{A} \otimes \mathcal{B}, \mathbf{B}^+)$ with $\mu \circ \pi_1^{-1} = \mu_1$ and $\mu \circ \pi_2^{-1} = \mu_2$ such that $\mu(F) \ge v$.
- (ii) For all $A \in \mathcal{A}$ and $B \in \mathcal{B}$, we have $\mu_1(A) + \mu_2(B) \leq 2\alpha v$, whenever $A \times B \subseteq F^c$.

PROOF. The proof is the same as the one of Theorem 3.9. The only difference is the fact that instead of applying Theorem 3.8 we apply Theorem 3.1 of [12]. \Box

Proposition 3.11. [2, Proposition 8.1.5] Let $X_1 \ldots X_n \ldots$ be a (finite or infinite) sequence of separable metrizable spaces. Then $\mathcal{B}(\Pi_i X_i) = \bigotimes_i \mathcal{B}(X_i)$.

Theorem 3.12. Let X_1 and X_2 be Polish spaces and let μ_1 and μ_2 be elements of $ca(\mathcal{B}(X_1), \mathbf{B}^+)$ and of $ca(\mathcal{B}(X_2), \mathbf{B}^+)$, respectively, with $\mu_1(X_1) = \mu_2(X_2) = \alpha$, where \mathbf{B}^+ is the positive cone of a Banach lattice \mathbf{B} with order continuous norm. Let $F \in \mathcal{B}(X_1 \times X_2)$ be a countable intersection of sets in $\mathcal{B}(X_1) \times \mathcal{B}(X_2)$. For any $v \in \mathbf{B}^+$, $v \leq \alpha$, the following are equivalent:

- (1) There is a vector measure μ in $ca(\mathcal{B}(X_1 \times X_2), \mathbf{B}^+)$ with $\mu \circ \pi_1^{-1} = \mu_1$ and $\mu \circ \pi_2^{-1} = \mu_2$ such that $\mu(F) \ge v$.
- (2) $I(F) \ge v$.

PROOF. It is enough to observe that μ_1 and μ_2 are tight [10, Theorem 3.2] and that hypothesis (2) is equivalent to (*ii*) of Theorem 3.9.

Corollary 3.13. Let X_1 and X_2 be Polish spaces and let μ_1 and μ_2 be elements of $ca(\mathcal{B}(X_1), \mathbf{B}^+)$ and of $ca(\mathcal{B}(X_2), \mathbf{B}^+)$, respectively, with $\mu_1(X_1) = \mu_2(X_2) = \alpha$, where \mathbf{B}^+ is the positive cone of a Banach lattice \mathbf{B} with order continuous norm. Then there exists μ in $ca(\mathcal{B}(X_1 \times X_2), \mathbf{B}^+)$ with $\mu \circ \pi_1^{-1} = \mu_1$ and $\mu \circ \pi_2^{-1} = \mu_2$ (i.e., under these hypotheses, the set M of Definition 3.1 is non-empty).

PROOF. We only have to notice that $I(X_1 \times X_2) = \alpha$ and to apply Theorem 3.12 with $X_1 \times X_2$ in place of F and with $v = \alpha$.

Theorem 3.14. Duality Theorem. Let X_1 and X_2 be Polish spaces and let $\mu_1 \in ca(\mathcal{B}(X_1), \mathbf{B}^+)$ and $\mu_2 \in ca(\mathcal{B}(X_2), \mathbf{B}^+)$, with $\mu_1(X_1) = \mu_2(X_2) = \alpha$, where \mathbf{B}^+ is the positive cone of a Banach lattice \mathbf{B} with order continuous norm. Let $F \in \mathcal{B}(X_1 \times X_2)$ be a countable intersection of sets in $\mathcal{B}(X_1) \times \mathcal{B}(X_2)$. Then

$$I(F) = S(F).$$

PROOF. Let v = I(F). By Theorem 3.12, there exists μ in $ca(\mathcal{B}(X_1 \times X_2), \mathbf{B}^+)$ with $\mu \circ \pi_1^{-1} = \mu_1$, $\mu \circ \pi_2^{-1} = \mu_2$ and $\mu(F) \ge v$. Thus, $S(F) \ge I(F)$. This inequality and Proposition 3.3 lead to the desired equality.

The next result extends Proposition 3.8 of [9] to the vector case.

Theorem 3.15. Let X_1 and X_2 be Polish spaces and let μ_1 and μ_2 be elements of $ca(\mathcal{B}(X_1), \mathbf{B}^+)$ and of $ca(\mathcal{B}(X_2), \mathbf{B}^+)$, respectively, with $\mu_1(X_1) = \mu_2(X_2) = \alpha$, where \mathbf{B}^+ is the positive cone of a Banach lattice \mathbf{B} with order continuous norm. Let C be a closed subset of $X_1 \times X_2$. Then, for any $v \in \mathbf{B}^+$, $v \leq \alpha$, there exists a vector measure $\mu \in ca(\mathcal{B}(X_1 \times X_2), \mathbf{B}^+)$ such that $\mu \circ \pi_1^{-1} = \mu_1$ and $\mu \circ \pi_2^{-1} = \mu_2$, with $\mu(C) \geq v$ if and only if

$$\sum_{i=1}^{2} \mu_i(C_i) \ge v, \text{ for all } C_i \text{ closed sets in } \mathcal{B}(X_i) \text{ with } C \subseteq \bigcup_{i=1}^{2} \pi_i^{-1}(C_i).$$

PROOF. Since $C = \bigcap_{j \in J} (A_{1,j} \times A_{2,j})^c$, with $A_{i,j}$ open subset of X_i , J finite or countable, i = 1, 2, this follows at once from Theorem 3.2 and Theorem 3.12.

References

- C. D. Aliprantis and O. Burkinshaw, *Positive Operators*, Pure and Applied Mathematics Series, Academic Press, New York and London, 1985.
- [2] D. I. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
- [3] E. D'Aniello and R. M. Shortt, Vector-valued Capacities, Rendiconti del Circolo Matematico di Palermo, Serie II, vol. XLVII (1998), 311–324.
- [4] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Mathematical Surveys and Monographs N. 15, Providence (RI), 1977.
- [5] R. M. Dudley, *Real Analysis and Probability*, Chapman and Hall Mathematics Series, New York and London, 1989.

- [6] D. A. Edwards, On the Existence of Probability Measures with Given Marginals, Ann. Inst. Fourier 28/4(1978), 53–78.
- [7] A. Hirshberg and R. M. Shortt, Strassen's Theorem for group-valued charges, Distributions with given Marginals and Moment Problems, V. Beneš and J. Štěpán, eds., Kluwer Academic Publishers, Dordrecht -Boston - London (1997), 173–178.
- [8] A. Hirshberg and R. M. Shortt, A Version of Strassen's Theorem for Vector-valued Measures, Proceedings of the Amer. Math. Soc. 126(1998), 1669–1671.
- [9] H. G. Kellerer, Duality Theorems for Marginal Problems, Z. Wahrscheinlichkeitstheor. Verw. Geb. 67(1984), 399–432.
- [10] M. März and R. M. Shortt, Weak Convergence of Vector Measures, Publ. Math. (Debrecen) vol. 45(1994), 71–92.
- [11] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag-Berlin, 1974.
- [12] R. M. Shortt, Strassen's Theorem for vector measures, Proc. Amer. Math. Soc. 122 6 (1994), 811–820.
- [13] V. Strassen, The Existence of Probability Measures with Given Marginals, Ann. Math. Statist. vol. 36 (1965), 423–439.