
Real Analysis Exchange
Vol. (), , pp. 429–436

Vasile Ene∗, Quellenstraße 18, 63571 Gelnhausen, Germany. e-mail:
gabrielaene@hotmail.com

AN IMPROVEMENT OF A RECENT
RESULT OF THOMSON

Abstract

In [5], Brian S. Thomson proved the following result: Let f be AC∗G
on an interval [a, b]. Then the total variation measure µ = µf associated
with f has the following properties: a) µ is a σ-finite Borel measure on
[a, b]; b) µ is absolutely continuous with respect to Lebesgue measure;
c) There is a sequence of closed sets Fn whose union is all of [a, b] such
that µ(Fn) < ∞ for each n; d) µ(B) = µf (B) =

R
B
|f ′(x)| dx for every

Borel set B ⊂ [a, b]. Conversely, if a measure µ satisfies conditions
a)–c) then there exists an AC∗G function f for which the representation
d) is valid. In this paper we improve Thomson’s theorem as follows: in
the first part we ask f to be only V B∗G∩(N) on a Lebesgue measurable
subset P of [a, b] and continuous at each point of P ; the converse is also
true even for µ defined on the Lebesgue measurable subsets of P (see
Theorem 2 and the two examples in Remark 1).

In [5] Brian S. Thomson proved a theorem that can be written in the
following form:

Theorem A.

I. If F : [a, b]→ R is AC∗G on [a, b] then µ∗F : P([a, b])→ [0,+∞] has the
following properties:

1) µ∗F � m;

2) there is a sequence of closed sets {Pn} such that ∪∞n=1Pn = [a, b] and
µ∗F (Pn) < +∞ for each n.

3) (µ∗F )|Bor([a,b]) is a measure (see [4, p. 40]);

4) µ∗F (B) = (L)
∫
B
|F ′(t)| dt whenever B is a Borel subset of [a, b].
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II. Conversely, let µ : Bor([a, b])→ [0,+∞] be a measure such that:

1′) µ� m;

2′) there is a sequence of closed sets {Pn} such that ∪∞n=1Pn = [a, b] and
µ(Pn) < +∞ for each n;

Then there exists a continuous function F : [a, b] → R, F ∈ AC∗G on
[a, b], such that (µ∗F )|Bor([a,b]) = µ.

In this paper we shall improve Theorem A as it will be shown in Theorem 2
(see also the two examples given in Remark 1).

We denote by m the Lebesgue measure in R. By O(f ;X) we shall mean
the oscillation of the function f on the set X, and by f|X the restriction of
the function f on the set X. The conditions AC, ACG, AC∗ AC∗G, V B∗,
V B∗G and Lusin’s condition (N) are defined as in [3].

Definition 1. Let P ⊂ R, A ⊆ P(P ) = {E : E ⊂ P} and α : A → [0,+∞].

• We say that α is absolutely continuous with respect to m and write
α� m if α(Z) = 0 whenever Z ∈ A and m(Z) = 0.

• For P a Lebesgue measurable subset of R, we put Leb(P ) = {E ⊂ P : E
is Lebesgue measurable}.

• For P a Borel measurable subset of R, we put Bor(P ) = {E ⊂ P : E is
Borel measurable}.

Definition 2. For x, y ∈ R, x 6= y, let 〈x, y〉 denote the closed interval with
the endpoints x and y. Let E ⊂ R, δ : E → (0,+∞),

β∗(E; δ) =
{(
〈x, y〉, x

)
: x ∈ E, y ∈

(
x− δ(x), x+ δ(x)

)}
.

The finite set π =
{(
〈xi, yi〉, xi

)}n
i=1
⊂ β∗(E; δ) is said to be a partition if

{〈xi, yi〉}ni=1 is a set of nonoverlapping closed intervals. Let f : R→ R,

V ∗δ (f ;E) = sup
{ ∑

(〈x,y〉,x)∈π

∣∣f(y)− f(x)
∣∣ : π ⊂ β∗(E; δ) is a partition

}
,

and
µ∗f (E) = inf

δ
V ∗δ (f ;E) .

Note that this µ∗f is the same as that of Thomson [5, p. 186], and it is also
identical with Thomson’s So-µF of [4].
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Lemma 1. Let F : [a, b]→ R, E ⊂ P ⊂ [a, b], F ∈ V B∗ on E, F continuous
at each point of P . Then µ∗F (E ∩ P ) 6= +∞.

Proof. By Theorem 7.1 of [3, p. 229], F is V B∗ on E ∩ P . Let X = E ∩ P
and Y = {x ∈ X : x is isolated at least at one side in X}. Since Y is at most
countable [3, p. 260], and F is continuous at each point of P , it follows that
µ∗F (Y ) = 0. Thomson shows in [4, p. 34] that µ∗F (X \Y ) ≤ 2V ∗(F ;X). Hence
µ∗F (X) ≤ 2V ∗(F ;X) 6= +∞.

Theorem 1. Let F : [a, b]→ R, and let P be a Lebesgue measurable subset of
[a, b]. Let µ∗F : P(P )→ [0,+∞]. The following assertions are equivalent:

(i) µ∗F � m;

(ii) F is V B∗G ∩ (N) on P and F is continuous at each point of P ;

(iii) F is continuous at each point of P , derivable a.e. on P , and

µ∗F (E) = (L)
∫
E

∣∣F ′(t)∣∣ dt ,
whenever E is a Lebesgue measurable subset of P ;

Moreover, each of the three equivalences implies that there exists a sequence
of sets Pn such that ∪nPn = P and µ∗F (Pn ∩ P ) 6= +∞.

Proof. The three equivalences follow from [2, Theorem 13, (ii), (iii), (vii)]
(because So-µF = µ∗F ). The second part follows by Lemma 1 and (ii).

Lemma 2. Let f : [a, b]→ [0,+∞) a Lebesgue integrable function, P a closed
subset of [a, b], {(ai, bi)}i the intervals continuous to P ∪ {a, b}, and let {αi}i
be a sequence of positive numbers. Then there is a function G : [a, b] → R
such that:

a) G(t) = 0 for t ∈ P ∪ {a, b};

b) G ∈ AC on [a, b];

c) |G′(t)| = f(t) a.e. on ∪∞i=1(ai, bi);

d) G(t) ∈ [0, αi) for t ∈ [ai, bi], i = 1, 2, . . .;

e) G′(t) = 0 a.e. on P .
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Proof. We shall use a technique of Thomson [5, p. 190]. For each i, let ni
be a positive integer, and let

ai = ai,0 < ai,1 < ai,2 < . . . < ai,2ni−1 < ai,2ni
= bi

be such that
ai,k+1∫
ai,k

f(t) dt =
1

2ni

bi∫
ai

f(t) dt < αi .

Let g : [a, b]→ R,

g(t) =


0 if t ∈ P ∪ {a, b}

f(t) if t ∈ [ai,2k, ai,2k+1], k = 0, ni − 1, i = 1,∞

−f(t) if t ∈ (ai,2k−1, ai,2k), k = 1, ni, i = 1,∞ .

Then G : [a, b]→ R, G(x) =
∫ x
a
g(t) dt satisfies our lemma.

Lemma 3. Let f, fn : [a, b] → R be such that the series
∑∞
n=1 fn(x) = f(x)

for x ∈ [a, b]. Then

O
(
f ; [a, b]

)
≤
∞∑
n=1

O
(
fn; [a, b]

)
. (1)

Proof. Let x, y ∈ [a, b]. Then

∣∣f(y)− f(x)
∣∣ =

∣∣∣ ∞∑
n=1

(
fn(y)− fn(x)

)∣∣∣ ≤ ∞∑
n=1

∣∣fn(y)− fn(x)
∣∣ ≤ ∞∑

n=1

O
(
fn; [a, b]

)
.

Thus we have (1).

Theorem 2. Let P be a Lebesgue measurable subset of [a, b].

I. If F : [a, b] → R is V B∗G ∩ (N) (particularly F ∈ AC∗G) on P and
F is continuous at each point of P , then µ∗F : P(P ) → [0,+∞] has the
following properties:

1) µ∗F � m;

2) there is a a sequence of sets Pn such that ∪nPn = P and for each n,
µ∗F (Pn ∩ P ) 6= +∞;

3) (µ∗F )|Leb(P ) is a measure;
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4) µ∗F (B) = (L)
∫
B
|F ′(t)| dt whenever B ⊂ Leb(P ).

II. Conversely, let µ : Leb(P )→ [0,+∞] be a measure such that:

1′) µ� m;

2′) there is a sequence of sets Pn such that ∪nPn = P and for each n,
µ(Pn ∩ P ) 6= +∞.

Then there exists a continuous function F : [a, b] → R, F ∈ AC∗G on
P , such that (µ∗F )|Leb(P ) = µ.

Proof. I. 1) follows by Theorem 1, (i), (ii).
2) follows by the last part of Theorem 1.
3) Let {En}n ⊂ Leb(P ) be a sequence of pairwise disjoint sets. Then each
En = An ∪ Bn, where An is a Borel set and m(Bn) = 0. By 1), µ∗F (Bn) = 0.
Since µ∗F is a metric outer measure it follows that µ∗F restricted to the Borel
subsets of [a, b] is a measure. Thus we obtain:

µ∗F
(
∪nEn

)
≤
∞∑
n

µ∗F (En) ≤
∞∑
n

(
µ∗F (An) + µ∗F (Bn)

)

=
∞∑
n

µ∗F (An) = µ∗F
(
∪nAn

)
≤ µ∗F

(
∪nEn

)
.

Thus (µ∗F )|Leb(P ) is a measure.
4) See Theorem 1, (ii), (iii).

II. Let Q0 = ∅ and Qn = ∪ni=1P i ∪ {a, b}, n = 1, 2, . . .. For n ≥ 1, let
{(anj , bnj)} be the intervals contiguous to Qn. Clearly µ(Qn ∩ P ) 6= +∞.
We shall use Thomson’s technique of [5, p. 189-190]. Since µ is absolutely
continuous on P ∩ (Qn \ Qn−1) and µ

(
P ∩ (Qn \ Qn−1)

)
6= +∞, by the

Radon-Nicodym Theorem, there exists a Lebesgue integrable function gn :
P ∩ (Qn \Qn−1)→ [0,+∞) such that

µ(B) = (L)
∫
B

gn(t) dt ,

whenever B is a Lebesgue measurable subset of P ∩ (Qn \ Qn−1). We may
consider gn : [a, b]→ R, if we put gn(x) = 0 for x ∈ [a, b] \

(
P ∩ (Qn \Qn−1)

)
.

Let

F1(x) = (L)
∫ x

a

g1(t) dt .
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Then F1 ∈ AC on [a, b] and F ′1 = g1 a.e. on [a, b]. Clearly F1 is constant on
each (a1j , b1j). Let {αnj}j be a sequence of positive numbers such that

∞∑
j=1

αnj <
1
2n

. (2)

By Lemma 2, there exists Fn+1 : [a, b]→
[
0, 1

2n

)
such that

a) Fn+1(t) = 0 for t ∈ Qn;

b) Fn+1 ∈ AC on [a, b];

c)
∣∣F ′n+1(t)

∣∣ = gn+1(t) a.e. on each (anj , bnj);

d) Fn+1(t) ∈ [0, αnj) on [anj , bnj ];

e) F ′n+1(t) = 0 a.e. on Qn.

Let F : [a, b] → R, F (x) =
∑∞
n=1 Fn(x). Then F is continuous on [a, b] (see

d), b) and (2)). Let Rn(x) =
∑∞
k=1 Fn+k(x). Since each(

anj , bnj
)
⊂ [a, b] \Qn ⊂ [a, b] \

(
P ∩ (Qn \Qn−1)

)
,

it follows that gn(t) = 0 on (anj , bnj). By c) we have that F ′n(t) = 0, so Fn is
constant on each (anj , bnj). Thus

F1(x) + . . .+ Fn(x) = constant on each (anj , bnj) (3)

(because Q1 ⊂ Q2 ⊂ . . .). Since Fn+k(t) = 0 on Qn+k−1 for k = 1,∞ (see
a)), and Qn ⊂ Qn+1 ⊂ Qn+2 ⊂ . . . it follows that Rn(t) = 0 on Qn. Thus
F (x) = F1(x) + . . .+ Fn(x) for x ∈ Qn. Hence F and Rn are AC on Qn. By
Lemma 3 and (3), we have∑
j

O
(
F ; [anj , bnj ]

)
=
∑
j

O
(
Rn; [anj , bnj ]

)
≤
∑
j

(
O
(
Fn+1; [anj , bnj ]

)
+O

(
Fn+2; [anj , bnj ]

)
+ . . .

)
=
∑
j

O
(
Fn+1; [anj , bnj ]

)
+
∑
j

O
(
Fn+2; [anj , bnj ]

)
+ . . .

<
1
2n

+
∑
j

O
(
Fn+2; [an+1,j , bn+1,j ]

)
+ . . .

<
1
2n

+
1

2n+1
+ . . . =

1
2n−1

.
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(see a), d) and (2)). By [3, p. 232], F and Rn are AC∗ on Qn. Clearly
R′n(x) = 0 a.e. on Qn and F is AC∗G (⊂ V B∗G∩ (N)) on P . It follows that

F ′(x) = F ′1(x) + . . .+ F ′n(x) +R′n(x) = F ′1(x) + . . .+ F ′n(x) a.e. on Qn.

Thus F ′(x) = F ′1(x) = g1(x) on Q1 and∣∣F ′(x)
∣∣ =

∣∣F ′1(x) + F ′2(x)
∣∣ =

∣∣F ′2(x)
∣∣ = g2(x) on Q2 \Q1

(because F1 is constant on each (a1j , b1j)). Continuing, it follows that∣∣F ′(x)
∣∣ =

∣∣F ′1(x) + . . .+ F ′n−1(x) + F ′n(x)
∣∣ =

∣∣F ′n(x)
∣∣ = gn(x) on Qn \Qn−1

(because F1, . . . , Fn−1 are constant on each (an−1,j , bn−1,j)). By 3), for any
Lebesgue measurable subset B of P , we have

µ∗F (B) =
∞∑
n=1

µ∗F
(
B ∩ (Qn \Qn−1)

)
=
∞∑
n=1

(L)
∫

B∩(Qn\Qn−1)

∣∣F ′(t)∣∣ dt =

=
∞∑
n=1

(L)
∫

B∩(Qn\Qn−1)

gn(t) dt =
∞∑
n=0

µ
(
B ∩ (Qn \Qn−1)

)
= µ(B) .

Thus µ∗F (B) = µ(B).

Remark 1.

• Theorem 2 contains Theorem A of Thomson.

• We recall the following example of [2]:

Let C be the Cantor ternary set and ϕ : [0, 1]→ [0, 1] the Cantor ternary
function (see for example [1], pp. 213-214). Then C contains a Gδ-set B
such that m∗(ϕ(B)) = 0, hence ϕ ∈ V B∗G ∩ (N) on B. But ϕ /∈ ACG
on B, so ϕ /∈ AC∗G on B.

From this example it follows that AC∗G ( V B∗G∩(N), so in Theorem 2,
I., the particular case with AC∗G is genuine. Moreover µ∗ϕ = µ∗f = 0 on
Leb(B) whenever f : [0, 1]→ R is V B∗G ∩ (N) on B and continuous at
each point of B (see Theorem 1).

• We consider the following example:
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Let C be the Cantor ternary set. Let {(ani, bni)}, n = 1, 2, . . ., i =
1, 2, . . . , 2n−1, be the intervals contiguous to C of length 1

3n , and let
cni = ani+bni

2 . Let F : [0, 1]→ [0, 1],

F (x) =


0 if x ∈ C
1
n if x = cni

linear on each [ani, cni] and [cni, bni]

Let P = ∪∞n=1 ∪2n−1

i=1

(
ani, bni

)
. Clearly F is continuous on [a, b], F is

AC∗G on P , but F is not AC∗G on [0, 1].

This example shows that the particular case of Theorem 2, I., also strictly
contains Thomson’s Theorem A, I. because our theorem holds for the
function F , but Thomson’s theorem doesn’t.
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