Vasile Ene, Quellenstraße 18, 63571 Gelnhausen, Germany. e-mail: gabrielaene@hotmail.com

AN IMPROVEMENT OF A RECENT RESULT OF THOMSON

Abstract

In [5], Brian S. Thomson proved the following result: Let f be AC^*G on an interval [a, b]. Then the total variation measure $\mu = \mu_f$ associated with f has the following properties: a) μ is a σ -finite Borel measure on [a, b]; b) μ is absolutely continuous with respect to Lebesgue measure; c) There is a sequence of closed sets F_n whose union is all of [a, b] such that $\mu(F_n) < \infty$ for each n; d) $\mu(B) = \mu_f(B) = \int_B |f'(x)| dx$ for every Borel set $B \subset [a, b]$. Conversely, if a measure μ satisfies conditions a)-c) then there exists an AC^*G function f for which the representation d) is valid. In this paper we improve Thomson's theorem as follows: in the first part we ask f to be only $VB^*G \cap (N)$ on a Lebesgue measurable subset P of [a, b] and continuous at each point of P; the converse is also true even for μ defined on the Lebesgue measurable subsets of P (see Theorem 2 and the two examples in Remark 1).

In [5] Brian S. Thomson proved a theorem that can be written in the following form:

Theorem A.

- I. If $F : [a,b] \to \mathbb{R}$ is AC^*G on [a,b] then $\mu_F^* : \mathcal{P}([a,b]) \to [0,+\infty]$ has the following properties:
 - 1) $\mu_F^* \ll m;$
 - 2) there is a sequence of closed sets $\{P_n\}$ such that $\bigcup_{n=1}^{\infty} P_n = [a, b]$ and $\mu_F^*(P_n) < +\infty$ for each n.
 - 3) $(\mu_F^*)_{|Bor([a,b])}$ is a measure (see [4, p. 40]);
 - 4) $\mu_F^*(B) = (\mathcal{L}) \int_B |F'(t)| dt$ whenever B is a Borel subset of [a, b].

Mathematical Reviews subject classification: 26A45, 26A39, 28A12

Key Words: variational measure, Borel sets, Lebesgue sets, $VB^{\ast}G,\;AC^{\ast}G,$ Lusin's condition (N)

Received by the editors October 22, 1998

^{*}The author died on November 11, 1998; see Real Anal. Exch. 24 1 (1998/99), 3.

- II. Conversely, let $\mu : \mathcal{B}or([a,b]) \to [0,+\infty]$ be a measure such that:
 - 1') $\mu \ll m;$
 - 2') there is a sequence of closed sets $\{P_n\}$ such that $\bigcup_{n=1}^{\infty} P_n = [a, b]$ and $\mu(P_n) < +\infty$ for each n;

Then there exists a continuous function $F : [a, b] \to \mathbb{R}, F \in AC^*G$ on [a, b], such that $(\mu_F^*)_{|\mathcal{B}or([a,b])} = \mu$.

In this paper we shall improve Theorem A as it will be shown in Theorem 2 (see also the two examples given in Remark 1).

We denote by m the Lebesgue measure in \mathbb{R} . By $\mathcal{O}(f; X)$ we shall mean the oscillation of the function f on the set X, and by $f_{|X}$ the restriction of the function f on the set X. The conditions AC, ACG, $AC^* AC^*G$, VB^* , VB^*G and Lusin's condition (N) are defined as in [3].

Definition 1. Let $P \subset \mathbb{R}$, $\mathcal{A} \subseteq \mathcal{P}(P) = \{E : E \subset P\}$ and $\alpha : \mathcal{A} \to [0, +\infty]$.

- We say that α is absolutely continuous with respect to m and write $\alpha \ll m$ if $\alpha(Z) = 0$ whenever $Z \in \mathcal{A}$ and m(Z) = 0.
- For P a Lebesgue measurable subset of \mathbb{R} , we put $\mathcal{L}eb(P) = \{E \subset P : E \text{ is Lebesgue measurable}\}.$
- For P a Borel measurable subset of \mathbb{R} , we put $\mathcal{B}or(P) = \{E \subset P : E \text{ is Borel measurable}\}.$

Definition 2. For $x, y \in \mathbb{R}$, $x \neq y$, let $\langle x, y \rangle$ denote the closed interval with the endpoints x and y. Let $E \subset \mathbb{R}$, $\delta : E \to (0, +\infty)$,

$$\beta^*(E;\delta) = \left\{ \left(\langle x, y \rangle, x \right) \, : \, x \in E, \, \, y \in \left(x - \delta(x), x + \delta(x) \right) \right\}.$$

The finite set $\pi = \{(\langle x_i, y_i \rangle, x_i)\}_{i=1}^n \subset \beta^*(E; \delta)$ is said to be a partition if $\{\langle x_i, y_i \rangle\}_{i=1}^n$ is a set of nonoverlapping closed intervals. Let $f : \mathbb{R} \to \mathbb{R}$,

$$V_{\delta}^{*}(f;E) = \sup\left\{\sum_{(\langle x,y\rangle,x)\in\pi} \left|f(y) - f(x)\right| : \pi \subset \beta^{*}(E;\delta) \text{ is a partition}\right\},$$

and

$$\mu_f^*(E) = \inf_{\delta} V_{\delta}^*(f; E) \,.$$

Note that this μ_f^* is the same as that of Thomson [5, p. 186], and it is also identical with Thomson's S_{o} - μ_F of [4].

Lemma 1. Let $F : [a,b] \to \mathbb{R}$, $E \subset P \subset [a,b]$, $F \in VB^*$ on E, F continuous at each point of P. Then $\mu_F^*(\overline{E} \cap P) \neq +\infty$.

PROOF. By Theorem 7.1 of [3, p. 229], F is VB^* on $\overline{E} \cap P$. Let $X = \overline{E} \cap P$ and $Y = \{x \in X : x \text{ is isolated at least at one side in } X\}$. Since Y is at most countable [3, p. 260], and F is continuous at each point of P, it follows that $\mu_F^*(Y) = 0$. Thomson shows in [4, p. 34] that $\mu_F^*(X \setminus Y) \leq 2V^*(F; X)$. Hence $\mu_F^*(X) \leq 2V^*(F; X) \neq +\infty$.

Theorem 1. Let $F : [a, b] \to \mathbb{R}$, and let P be a Lebesgue measurable subset of [a, b]. Let $\mu_F^* : \mathcal{P}(P) \to [0, +\infty]$. The following assertions are equivalent:

- (*i*) $\mu_F^* \ll m$;
- (ii) F is $VB^*G \cap (N)$ on P and F is continuous at each point of P;
- (iii) F is continuous at each point of P, derivable a.e. on P, and

$$\mu_F^*(E) = (\mathcal{L}) \int_E \left| F'(t) \right| dt \,,$$

whenever E is a Lebesgue measurable subset of P;

Moreover, each of the three equivalences implies that there exists a sequence of sets P_n such that $\bigcup_n P_n = P$ and $\mu_F^*(\overline{P}_n \cap P) \neq +\infty$.

PROOF. The three equivalences follow from [2, Theorem 13, (ii), (iii), (vii)] (because $S_o - \mu_F = \mu_F^*$). The second part follows by Lemma 1 and (ii).

Lemma 2. Let $f : [a, b] \to [0, +\infty)$ a Lebesgue integrable function, P a closed subset of [a, b], $\{(a_i, b_i)\}_i$ the intervals continuous to $P \cup \{a, b\}$, and let $\{\alpha_i\}_i$ be a sequence of positive numbers. Then there is a function $G : [a, b] \to \mathbb{R}$ such that:

- a) G(t) = 0 for $t \in P \cup \{a, b\}$;
- b) $G \in AC$ on [a, b];
- c) |G'(t)| = f(t) a.e. on $\cup_{i=1}^{\infty} (a_i, b_i);$
- d) $G(t) \in [0, \alpha_i)$ for $t \in [a_i, b_i]$, i = 1, 2, ...;
- e) G'(t) = 0 a.e. on P.

PROOF. We shall use a technique of Thomson [5, p. 190]. For each i, let n_i be a positive integer, and let

$$a_i = a_{i,0} < a_{i,1} < a_{i,2} < \ldots < a_{i,2n_i-1} < a_{i,2n_i} = b_i$$

be such that

$$\int_{a_{i,k}}^{a_{i,k+1}} f(t) \, dt = \frac{1}{2n_i} \int_{a_i}^{b_i} f(t) \, dt < \alpha_i \, .$$

Let $g: [a, b] \to \mathbb{R}$,

$$g(t) = \begin{cases} 0 & \text{if } t \in P \cup \{a, b\} \\ f(t) & \text{if } t \in [a_{i,2k}, a_{i,2k+1}], \ k = \overline{0, n_i - 1}, \ i = \overline{1, \infty} \\ -f(t) & \text{if } t \in (a_{i,2k-1}, a_{i,2k}), \ k = \overline{1, n_i}, \ i = \overline{1, \infty} \,. \end{cases}$$

Then $G: [a, b] \to \mathbb{R}, G(x) = \int_a^x g(t) dt$ satisfies our lemma.

Lemma 3. Let $f, f_n : [a, b] \to \mathbb{R}$ be such that the series $\sum_{n=1}^{\infty} f_n(x) = f(x)$ for $x \in [a, b]$. Then

$$\mathcal{O}(f;[a,b]) \le \sum_{n=1}^{\infty} \mathcal{O}(f_n;[a,b]).$$
(1)

PROOF. Let $x, y \in [a, b]$. Then

$$\left| f(y) - f(x) \right| = \left| \sum_{n=1}^{\infty} \left(f_n(y) - f_n(x) \right) \right| \le \sum_{n=1}^{\infty} \left| f_n(y) - f_n(x) \right| \le \sum_{n=1}^{\infty} \mathcal{O}\left(f_n; [a, b] \right).$$

Thus we have (1).

Theorem 2. Let P be a Lebesgue measurable subset of [a, b].

- I. If $F : [a,b] \to \mathbb{R}$ is $VB^*G \cap (N)$ (particularly $F \in AC^*G$) on P and F is continuous at each point of P, then $\mu_F^* : \mathcal{P}(P) \to [0, +\infty]$ has the following properties:
 - 1) $\mu_F^* \ll m;$
 - 2) there is a a sequence of sets P_n such that $\bigcup_n P_n = P$ and for each n, $\mu_F^*(\overline{P}_n \cap P) \neq +\infty;$
 - 3) $(\mu_F^*)_{|\mathcal{L}eb(P)|}$ is a measure;

4)
$$\mu_F^*(B) = (\mathcal{L}) \int_B |F'(t)| dt$$
 whenever $B \subset \mathcal{L}eb(P)$.

- II. Conversely, let $\mu : \mathcal{L}eb(P) \to [0, +\infty]$ be a measure such that:
 - 1') $\mu \ll m;$
 - 2') there is a sequence of sets P_n such that $\cup_n P_n = P$ and for each n, $\mu(\overline{P}_n \cap P) \neq +\infty$.

Then there exists a continuous function $F : [a, b] \to \mathbb{R}, F \in AC^*G$ on P, such that $(\mu_F^*)_{|\mathcal{L}eb(P)} = \mu$.

PROOF. I. 1) follows by Theorem 1, (i), (ii).

2) follows by the last part of Theorem 1.

3) Let $\{E_n\}_n \subset \mathcal{L}eb(P)$ be a sequence of pairwise disjoint sets. Then each $E_n = A_n \cup B_n$, where A_n is a Borel set and $m(B_n) = 0$. By 1), $\mu_F^*(B_n) = 0$. Since μ_F^* is a metric outer measure it follows that μ_F^* restricted to the Borel subsets of [a, b] is a measure. Thus we obtain:

$$\mu_{F}^{*}(\cup_{n} E_{n}) \leq \sum_{n}^{\infty} \mu_{F}^{*}(E_{n}) \leq \sum_{n}^{\infty} \left(\mu_{F}^{*}(A_{n}) + \mu_{F}^{*}(B_{n}) \right)$$
$$= \sum_{n}^{\infty} \mu_{F}^{*}(A_{n}) = \mu_{F}^{*}(\cup_{n} A_{n}) \leq \mu_{F}^{*}(\cup_{n} E_{n}).$$

Thus $(\mu_F^*)_{|\mathcal{L}eb(P)|}$ is a measure.

4) See Theorem 1, (ii), (iii).

II. Let $Q_0 = \emptyset$ and $Q_n = \bigcup_{i=1}^n \overline{P}_i \cup \{a, b\}$, $n = 1, 2, \ldots$ For $n \ge 1$, let $\{(a_{nj}, b_{nj})\}$ be the intervals contiguous to Q_n . Clearly $\mu(Q_n \cap P) \ne +\infty$. We shall use Thomson's technique of [5, p. 189-190]. Since μ is absolutely continuous on $P \cap (Q_n \setminus Q_{n-1})$ and $\mu(P \cap (Q_n \setminus Q_{n-1})) \ne +\infty$, by the Radon-Nicodym Theorem, there exists a Lebesgue integrable function $g_n : P \cap (Q_n \setminus Q_{n-1}) \rightarrow [0, +\infty)$ such that

$$\mu(B) = (\mathcal{L}) \int_B g_n(t) \, dt \,,$$

whenever B is a Lebesgue measurable subset of $P \cap (Q_n \setminus Q_{n-1})$. We may consider $g_n : [a, b] \to \mathbb{R}$, if we put $g_n(x) = 0$ for $x \in [a, b] \setminus (P \cap (Q_n \setminus Q_{n-1}))$. Let

$$F_1(x) = (\mathcal{L}) \int_a^x g_1(t) \, dt \, .$$

Then $F_1 \in AC$ on [a, b] and $F'_1 = g_1$ a.e. on [a, b]. Clearly F_1 is constant on each (a_{1j}, b_{1j}) . Let $\{\alpha_{nj}\}_j$ be a sequence of positive numbers such that

$$\sum_{j=1}^{\infty} \alpha_{nj} < \frac{1}{2^n} \,. \tag{2}$$

By Lemma 2, there exists $F_{n+1}: [a, b] \to \left[0, \frac{1}{2^n}\right)$ such that

- a) $F_{n+1}(t) = 0$ for $t \in Q_n$;
- b) $F_{n+1} \in AC$ on [a, b];
- c) $|F'_{n+1}(t)| = g_{n+1}(t)$ a.e. on each $(a_{nj}, b_{nj});$
- d) $F_{n+1}(t) \in [0, \alpha_{nj})$ on $[a_{nj}, b_{nj}];$
- e) $F'_{n+1}(t) = 0$ a.e. on Q_n .

Let $F : [a, b] \to \mathbb{R}$, $F(x) = \sum_{n=1}^{\infty} F_n(x)$. Then F is continuous on [a, b] (see d), b) and (2)). Let $R_n(x) = \sum_{k=1}^{\infty} F_{n+k}(x)$. Since each

$$(a_{nj}, b_{nj}) \subset [a, b] \setminus Q_n \subset [a, b] \setminus (P \cap (Q_n \setminus Q_{n-1})),$$

it follows that $g_n(t) = 0$ on (a_{nj}, b_{nj}) . By c) we have that $F'_n(t) = 0$, so F_n is constant on each (a_{nj}, b_{nj}) . Thus

$$F_1(x) + \ldots + F_n(x) = \text{constant} \text{ on each } (a_{nj}, b_{nj})$$
 (3)

(because $Q_1 \subset Q_2 \subset \ldots$). Since $F_{n+k}(t) = 0$ on Q_{n+k-1} for $k = \overline{1,\infty}$ (see a)), and $Q_n \subset Q_{n+1} \subset Q_{n+2} \subset \ldots$ it follows that $R_n(t) = 0$ on Q_n . Thus $F(x) = F_1(x) + \ldots + F_n(x)$ for $x \in Q_n$. Hence F and R_n are AC on Q_n . By Lemma 3 and (3), we have

$$\begin{split} \sum_{j} \mathcal{O}\big(F; [a_{nj}, b_{nj}]\big) &= \sum_{j} \mathcal{O}\big(R_{n}; [a_{nj}, b_{nj}]\big) \\ &\leq \sum_{j} \Big(\mathcal{O}\big(F_{n+1}; [a_{nj}, b_{nj}]\big) + \mathcal{O}\big(F_{n+2}; [a_{nj}, b_{nj}]\big) + \dots \Big) \\ &= \sum_{j} \mathcal{O}\big(F_{n+1}; [a_{nj}, b_{nj}]\big) + \sum_{j} \mathcal{O}\big(F_{n+2}; [a_{nj}, b_{nj}]\big) + \dots \\ &< \frac{1}{2^{n}} + \sum_{j} \mathcal{O}\big(F_{n+2}; [a_{n+1,j}, b_{n+1,j}]\big) + \dots \\ &< \frac{1}{2^{n}} + \frac{1}{2^{n+1}} + \dots = \frac{1}{2^{n-1}} \,. \end{split}$$

(see a), d) and (2)). By [3, p. 232], F and R_n are AC^* on Q_n . Clearly $R'_n(x) = 0$ a.e. on Q_n and F is AC^*G ($\subset VB^*G \cap (N)$) on P. It follows that

$$F'(x) = F'_1(x) + \ldots + F'_n(x) + R'_n(x) = F'_1(x) + \ldots + F'_n(x) \ a.e. \ on \ Q_n.$$

Thus $F'(x) = F'_1(x) = g_1(x)$ on Q_1 and

$$|F'(x)| = |F'_1(x) + F'_2(x)| = |F'_2(x)| = g_2(x) \text{ on } Q_2 \setminus Q_1$$

(because F_1 is constant on each (a_{1j}, b_{1j})). Continuing, it follows that

$$|F'(x)| = |F'_1(x) + \ldots + F'_{n-1}(x) + F'_n(x)| = |F'_n(x)| = g_n(x) \text{ on } Q_n \setminus Q_{n-1}$$

(because F_1, \ldots, F_{n-1} are constant on each $(a_{n-1,j}, b_{n-1,j})$). By 3), for any Lebesgue measurable subset B of P, we have

$$\mu_{F}^{*}(B) = \sum_{n=1}^{\infty} \mu_{F}^{*} \left(B \cap (Q_{n} \setminus Q_{n-1}) \right) = \sum_{n=1}^{\infty} (\mathcal{L}) \int_{B \cap (Q_{n} \setminus Q_{n-1})} \left| F'(t) \right| dt =$$
$$= \sum_{n=1}^{\infty} (\mathcal{L}) \int_{B \cap (Q_{n} \setminus Q_{n-1})} g_{n}(t) dt = \sum_{n=0}^{\infty} \mu \left(B \cap (Q_{n} \setminus Q_{n-1}) \right) = \mu(B).$$

Thus $\mu_F^*(B) = \mu(B)$.

Remark 1.

- Theorem 2 contains Theorem A of Thomson.
- We recall the following example of [2]:

Let C be the Cantor ternary set and $\varphi : [0,1] \to [0,1]$ the Cantor ternary function (see for example [1], pp. 213-214). Then C contains a G_{δ} -set B such that $m^*(\varphi(B)) = 0$, hence $\varphi \in VB^*G \cap (N)$ on B. But $\varphi \notin ACG$ on B, so $\varphi \notin AC^*G$ on B.

From this example it follows that $AC^*G \subsetneq VB^*G\cap(N)$, so in Theorem 2, I., the particular case with AC^*G is genuine. Moreover $\mu_{\varphi}^* = \mu_f^* = 0$ on $\mathcal{L}eb(B)$ whenever $f: [0,1] \to \mathbb{R}$ is $VB^*G\cap(N)$ on B and continuous at each point of B (see Theorem 1).

• We consider the following example:

Let C be the Cantor ternary set. Let $\{(a_{ni}, b_{ni})\}$, $n = 1, 2, ..., i = 1, 2, ..., 2^{n-1}$, be the intervals contiguous to C of length $\frac{1}{3^n}$, and let $c_{ni} = \frac{a_{ni}+b_{ni}}{2}$. Let $F: [0,1] \to [0,1]$,

$$F(x) = \begin{cases} 0 & \text{if } x \in C \\ \frac{1}{n} & \text{if } x = c_{ni} \\ \text{linear} & \text{on each } [a_{ni}, c_{ni}] \text{ and } [c_{ni}, b_{ni}] \end{cases}$$

Let $P = \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{2^{n-1}} (a_{ni}, b_{ni})$. Clearly F is continuous on [a, b], F is AC^*G on P, but F is not AC^*G on [0, 1].

This example shows that the particular case of Theorem 2, I., also strictly contains Thomson's Theorem A, I. because our theorem holds for the function F, but Thomson's theorem doesn't.

References

- V. Ene, *Real functions current topics*, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
- [2] V. Ene, *Thomson's variational measure*, Real Analysis Exchange 24(1998-99), no. 2, 523-566.
- [3] S. Saks, *Theory of the integral*, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.
- [4] B. S. Thomson, *Real functions*, Lect. Notes in Math., vol. 1170, Springer-Verlag, 1985.
- [5] B. S. Thomson, σ-finite Borel measures on the real line, Real Analysis Exchange 23(1997-98), no. 1, 185–192.