TWICE PERIODIC MEASURABLE FUNCTIONS

Abstract

In this note we prove that, for $a, b \in(0,1)$ and f a measurable function mapping $[0,1]$ to \mathbb{R}, the following statements are equivalent: (i) $f(x)=f(x-a)$ a.e. in $[a, 1]$ and $f(x)=f(x-b)$ a.e. in $[b, 1]$ implies that f is a.e. constant in $[0,1]$. (ii) $a+b \leq 1$ and a / b is irrational.

Dealing with periods of measurable functions it is well known that, for a periodic real-valued function defined on \mathbb{R}, either there exists the smallest positive period t_{0} and all periods are of the form $n t_{0}$ where n is any integer, or the set of the periods is dense. Moreover, if a measurable function has a dense set of periods then it is a.e. constant. On the other hand, if a twice periodic measurable real-valued function is defined on the interval $[0,1]$, no results like the above, imposing conditions on the periods of the function, seem to exist in the literature.

Denote by \mathcal{F}_{a} the set of measurable functions $f:[0,1] \rightarrow \mathbb{R}$ such that $f(x)=f(x-a)$ a.e. in $[a, 1]$ where $a \in(0,1)$, and let \mathcal{C} be the set of functions mapping $[0,1]$ to \mathbb{R} which are constant a.e. in $[0,1]$. The result we shall prove is the following:

Theorem 1. If $a, b \in(0,1)$ then $a+b \leq 1$ and a / b is irrational $\Leftrightarrow \mathcal{F}_{a} \cap \mathcal{F}_{b}=\mathcal{C}$.
Let us first prove an auxiliary result. For any function $f:[0,1] \rightarrow \mathbb{R}$ let H_{f} be the set of points $a \in(0,1)$ such that $f(x)=f(x-a)$ a.e. in $[a, 1]$.

Lemma 2. Let $f:[0,1] \rightarrow \mathbb{R}$ and suppose $a, b \in H_{f}, a+b \leq 1$, and a / b is irrational. Then H_{f} is dense in $[0,1]$.

[^0]Proof. Assume $a<b$. Let $a_{0}:=a, b_{0}:=b$ and define recursively $a_{n+1}:=$ $\min \left\{a_{n}, b_{n}-a_{n}\right\}$ and $b_{n+1}:=\max \left\{a_{n}, b_{n}-a_{n}\right\}(n \in \mathbb{N} \cup\{0\})$. Let us show that $a_{n} \rightarrow 0, n \rightarrow \infty$. The fact that the limits of a_{n} and b_{n} exist and are nonnegative follows since the sequences are decreasing and nonnegative. If $x=\lim a_{n}$ and $y=\lim b_{n}$, using that $a_{n}+b_{n}=b_{n-1}$ we get

$$
x+y=\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} b_{n-1}=y
$$

implying that $x=0$. Now, one can easily show that $\left\{a_{n}\right\} \subset H_{f}$ which in turn implies (we omit the trivial proof) that H_{f} is dense.

Proof of theorem.

$" \Rightarrow$ ": Suppose $f:[0,1] \rightarrow \mathbb{R}$ measurable is not a.e. constant but $a, b \in H_{f}$, $a+b \leq 1$ and a / b is irrational. Then the inverse image of some interval is a set A with measure $0<m(A)<1$. By the Lebesgue density theorem there is an interval I (with length less than $\epsilon>0$) where the density of A is less than ϵ. If h is in H_{f} and $I+h$ (or $I-h$) is in $(0,1)$ then the intersection of A and I is congruent to the intersection of A and $I+h$ (or $I-h$), so the density is the same in $I+h$ (or $I-h$). By lemma, H_{f} is dense, and so we can cover almost the whole $(0,1)$ interval (with an exception of finitely many intervals with total length less than ϵ) with disjoint translates using translations from H_{f}. Since in each translate the density is less than ϵ and only less than ϵ is uncovered we get that $m(A)<2 \epsilon$ for any $\epsilon>0$, which is a contradiction.
" \Leftarrow ": Suppose $0<a<b<1$ are such that $a+b>1$ (the a / b rational case is quite obvious). Let $A_{0}:=[1-b, a)$. If A_{k} is in $[0,1-a)$ then let $A_{k+1}:=A_{k}+a$; if A_{k} is in $[b, 1)$ then let $A_{k+1}:=A_{k}-b$; if neither then let $m:=k$ and stop. It is easily seen that if $x \in A_{i} \cap A_{j}(i<j)$ then either $x-a$ or $x+b$ is in A_{i-1} and A_{j-1}. Repeating this, we get that A_{j-i} intersects $A_{0}=[1-b, a)$ which cannot happen by definition. Thus A_{0}, A_{1}, \ldots are disjoint intervals with length $a+b-1>0$ and so m must be finite. Let B_{m} be a proper subinterval of the intersection of A_{m} and $[1-a, b)$ and, going backwards, define B_{k} as a subinterval of A_{k} such that $B_{k+1}=B_{k}+a$ or $B_{k}-b$ in the same way as in the definition of A_{k}. Then the characteristic function of the union of $B_{0}, B_{1}, \ldots, B_{m}$ is in \mathcal{F}_{a} and \mathcal{F}_{b} but not a.e. constant.

Acknowledgement. The authors wish to thank the referee who simplified considerably the previous proof of the main result.

[^0]: Key Words: periodic measurable functions, Lebesgue density theorem
 Mathematical Reviews subject classification: 28A20
 Received by the editors May 28, 1998

