Alberto Alonso and Javier F. Rosenblueth, IIMAS–UNAM, Apartado Postal 20-726, México DF 01000, México.

TWICE PERIODIC MEASURABLE FUNCTIONS

Abstract

In this note we prove that, for $a, b \in (0, 1)$ and f a measurable function mapping [0, 1] to \mathbb{R} , the following statements are equivalent:

- (i) f(x) = f(x a) a.e. in [a, 1] and f(x) = f(x b) a.e. in [b, 1] implies that f is a.e. constant in [0, 1].
- (ii) $a + b \le 1$ and a/b is irrational.

Dealing with periods of measurable functions it is well known that, for a periodic real-valued function defined on \mathbb{R} , *either* there exists the smallest positive period t_0 and all periods are of the form nt_0 where n is any integer, or the set of the periods is dense. Moreover, if a measurable function has a dense set of periods then it is a.e. constant. On the other hand, if a twice periodic measurable real-valued function is defined on the interval [0, 1], no results like the above, imposing conditions on the periods of the function, seem to exist in the literature.

Denote by \mathcal{F}_a the set of measurable functions $f: [0,1] \to \mathbb{R}$ such that f(x) = f(x-a) a.e. in [a,1] where $a \in (0,1)$, and let \mathcal{C} be the set of functions mapping [0,1] to \mathbb{R} which are constant a.e. in [0,1]. The result we shall prove is the following:

Theorem 1. If $a, b \in (0, 1)$ then $a+b \leq 1$ and a/b is irrational $\Leftrightarrow \mathcal{F}_a \cap \mathcal{F}_b = \mathcal{C}$.

Let us first prove an auxiliary result. For any function $f: [0,1] \to \mathbb{R}$ let H_f be the set of points $a \in (0,1)$ such that f(x) = f(x-a) a.e. in [a,1].

Lemma 2. Let $f: [0,1] \to \mathbb{R}$ and suppose $a, b \in H_f$, $a + b \leq 1$, and a/b is irrational. Then H_f is dense in [0,1].

Received by the editors May 28, 1998

Key Words: periodic measurable functions, Lebesgue density theorem

Mathematical Reviews subject classification: 28A20

PROOF. Assume a < b. Let $a_0 := a$, $b_0 := b$ and define recursively $a_{n+1} := \min\{a_n, b_n - a_n\}$ and $b_{n+1} := \max\{a_n, b_n - a_n\}$ $(n \in \mathbb{N} \cup \{0\})$. Let us show that $a_n \to 0$, $n \to \infty$. The fact that the limits of a_n and b_n exist and are nonnegative follows since the sequences are decreasing and nonnegative. If $x = \lim a_n$ and $y = \lim b_n$, using that $a_n + b_n = b_{n-1}$ we get

$$x + y = \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} b_{n-1} = y$$

implying that x = 0. Now, one can easily show that $\{a_n\} \subset H_f$ which in turn implies (we omit the trivial proof) that H_f is dense. PROOF OF THEOREM.

"⇒": Suppose $f: [0,1] \to \mathbb{R}$ measurable is not a.e. constant but $a, b \in H_f$, $a + b \leq 1$ and a/b is irrational. Then the inverse image of some interval is a set A with measure 0 < m(A) < 1. By the Lebesgue density theorem there is an interval I (with length less than $\epsilon > 0$) where the density of A is less than ϵ . If h is in H_f and I + h (or I - h) is in (0, 1) then the intersection of A and I is congruent to the intersection of A and I + h (or I - h), so the density is the same in I + h (or I - h). By lemma, H_f is dense, and so we can cover almost the whole (0, 1) interval (with an exception of finitely many intervals with total length less than ϵ) with disjoint translates using translations from H_f . Since in each translate the density is less than ϵ and only less than ϵ is uncovered we get that $m(A) < 2\epsilon$ for any $\epsilon > 0$, which is a contradiction.

"⇐": Suppose 0 < a < b < 1 are such that a + b > 1 (the a/b rational case is quite obvious). Let $A_0 := [1 - b, a)$. If A_k is in [0, 1 - a) then let $A_{k+1} := A_k + a$; if A_k is in [b, 1) then let $A_{k+1} := A_k - b$; if neither then let m := k and stop. It is easily seen that if $x \in A_i \cap A_j$ (i < j) then either x - a or x + b is in A_{i-1} and A_{j-1} . Repeating this, we get that A_{j-i} intersects $A_0 = [1 - b, a)$ which cannot happen by definition. Thus A_0, A_1, \ldots are disjoint intervals with length a + b - 1 > 0 and so m must be finite. Let B_m be a proper subinterval of the intersection of A_m and [1 - a, b) and, going backwards, define B_k as a subinterval of A_k such that $B_{k+1} = B_k + a$ or $B_k - b$ in the same way as in the definition of A_k . Then the characteristic function of the union of B_0, B_1, \ldots, B_m is in \mathcal{F}_a and \mathcal{F}_b but not a.e. constant.

Acknowledgement. The authors wish to thank the referee who simplified considerably the previous proof of the main result.