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FUNCTIONS AND MULTIFUNCTIONS†

Abstract

Suppose (X, d) is a compact metric space with the fixed point prop-
erty and C the family of all continuous self maps on X with the topology
of uniform convergence. A fixed point p of f ∈ C is said to be essential
if functions near f have fixed points near p . A function which has all of
its fixed points essential is called an essential map. Fort [4] proved that
the set of essential maps is residual in C and yet the only known exam-
ples of essential maps are those with only one fixed point. In this paper
working in [0,1], we first characterize essential fixed points and prove
some simple results concerning them. Then we characterize essential
maps and give algorithms to construct them. We then study essential
components introduced by Kinoshita [8]. Next we consider essential
fixed points of multifunctions in which case results differ considerably
from the case of single valued functions. This also leads us to a study
of selections. We conclude with a study of essential fixed points of non
expansive functions in Banach spaces. All along we provide examples to
illustrate the concepts and their limitations. Our results throw light on
what is already known and takes the subject further. Unsolved problems
are also mentioned.
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1 Introduction

The concept of an essential fixed point was introduced by M. K. Fort [4]. It is a
kind of stability and has been successfully used in studying Nash Equilibrium
points in Game Theory by Jiang Jia-He [7]. We believe that it can be used in
studying stability in Differential equations as well as in Dynamics; in this con-
nection see Bruckner’s paper [3]. Fort showed that, under suitable conditions,
functions that have all fixed points essential (essential maps) form a residual
set. In the general case of a metric space with fixed point property, Fort asked
for examples of essential maps. But in spite of forming a residual set, the
only known examples of essential maps in the literature are those with only
one fixed point. In this paper, we completely classify fixed points of self maps
in [0, 1] and provide techniques to construct essential maps. We also char-
acterize them. Similar problems of characterizing essential fixed points and
essential maps on [0, 1]n , n > 1 as well as on the well known spaces with fixed
point property, such as compact convex subsets of a Banach space, are still
open. Kinoshita [8] introduced the concept of an essential component. This is
a non trivial concept since a function may not have essential fixed point and
yet have an essential component. We characterize essential components and
provide a technique for the construction of maps with essential components.
We then study essential fixed point of multifunctions. Here the situation is
quite different from that of single valued maps and thus making it interesting.
Our study continues with comparisons of essential points of selections with
those of multifunctions. The relationship between single valued selections and
multifunctions is intriguing and there are some surprising results here. Finally,
we study essential fixed points of non-expansive self maps on Banach spaces.
Under suitable conditions such maps have the fixed point property, but can
have more than one fixed point. We show that essential non-expansive maps
are those with only one fixed point.

2 Preliminary Definitions and Results

Let (X, d) be a compact metric space with the fixed point property, that is
every continuous function from X to X has a fixed point. Let CL(X) denote
the family of nonempty closed (compact) subsets of X .We recall that if A
and B belong to CL(X)

d(x,A) = inf {d(x, y) : y ∈A}

dH(A,B) = max {sup
x∈B

d(x,A), sup
y∈A

d(y,B)} .
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We denote by C the set of continuous single valued functions on X to
X , by M the set of multivalued continuous functions from X to CL(X) , by
MC the set of continuous multivalued functions with connected values from
X to CL(X) and use capital letters for multifunctions and small ones for
single valued functions.

Below we recall the well known uniform metric between members of C
and the uniform Hausdorff metric between members of M :

%(f, g) = sup{d(f(x), g(x)) : x ∈X}

%H(F,G) = sup{dH(F (x), G(x)) : x ∈X}.

A point p of X is a fixed point of f iff p = f(p) , while it is fixed for F
iff p ∈F (p) . The set of all fixed points of f or F , that we denote by Fix(f)
or Fix(F ) , is clearly closed. A fixed point p of f is called essential w.r.t. a
family C of functions in C [4] iff for every neighborhood U of p , there is a
δ > 0 such that every g in C with %(f, g) < δ has a fixed point in U (Cf.
[3]). If every fixed point of f is essential w.r.t. C f is said to be an essential
map w.r.t. C . A fixed point p of F is called essential w.r.t. a family M
of multivalued continuous functions iff for every neighborhood U of p , there
is a δ > 0 such that every G in M with %H(F,G) < δ has a fixed point in
U . If every fixed point of F is essential w.r.t. M , F is called an essential
map w.r.t. M .

M. K. Fort proved that if p is the unique fixed point of a function it is
essential and that the identity map has no essential fixed point. Also due to
Fort is the following result.

Theorem 2.1 (Fort). Let f belong to C and p be a point of X . If p has
arbitrary small neighborhood V such that V has the fixed point property and
f(V ) ⊆ V , then p is an essential fixed point of f .

We wish to point out that the condition of 2.1 is not necessary. Let us
consider the function f(x) = 1− x from [0, 1] to [0, 1] ; it has only one fixed
point 1/2 which is essential, but for 0 < ε < 1/2

f([1/2− ε, 1/2 + ε]) 6⊆ (1/2− ε, 1/2 + ε) .

Let us prove the following result which is true for functions and multifunc-
tions.

Theorem 2.2. The set of all essential fixed point of a function or a multi-
function is closed.
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Proof. We prove the result for a multifunction; the one for a function is
similar. Suppose F is a multifunction, pn ∈F (pn) is essential and (pn)n

converges to p . If U is a neighborhood of p , then eventually pn belongs to
U and there is a δ > 0 such that if G is in M and %H(F,G) < δ , G has a
fixed point in U .

Later on we give an example to show that it is possible for an essential fixed
point to be a limit of a sequence of non essential fixed points (see Example
3.6.).

3 Essential fixed points for functions.

In this section we completely characterize essential fixed points of a function
f w.r.t. C , if X = [0, 1] . To simplify the statements we will not refer to C .
By the Brouwer [1] fixed point theorem, each f has a fixed point.

Theorem 3.1. Let p ∈ (0, 1) be a fixed point for f . Then p is an essential
fixed point of f iff every neighborhood of p contains points a and b such
that f(a) > a and f(b) < b .

Proof. Let ε > 0 be arbitrary but such that

U = (p− ε, p+ ε) ⊆ (0, 1) .

There are a , b in U such that f(a)−a = ε1 > 0 and b−f(b) = ε2 > 0 . Set

δ =
1
2

min {ε, ε1, ε2} .

If g satisfies the condition %(f, g) < δ , then g(a) − a > ε1 − δ > 0 and
g(b)− b < 0 ,therefore the function g(x)− x must vanish between a and b .
So g has a fixed point in U , showing that p is essential for f . On the other
hand, suppose that there exists a neighborhood U of p such that for each
x ∈U either (i) f(x) ≤ x or (ii) f(x) ≥ x . We need consider only (i). Since
f is continuous, there is a neighborhood V of p such that f(V ) ⊂ U . Let
z and y be in V such that z < p < y , and let δ be arbitrary but less than
1. Set g by

g(x) = f(x) + (1− f(x))d(x, {z, y}) δ for x ∈ [z, y]

and g(x) = f(x) otherwise. Clearly 0 ≤ g(x) ≤ f(x) + (1 − f(x)) δ ≤ 1
for x ∈ [0, 1] , %(f, g) < δ and g has no fixed point in [z, y] . So p is not
essential.

Similar results concerning the end points of [0,1] are given by the following
corollary.
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Corollary 3.2. 0 is an essential fixed point of f iff for each ε > 0 there is an
x ∈ (0, ε) such that f(x) < x . 1 is an essential fixed point of f iff for each
ε > 0 there is an x ∈ (1− ε, 1) such that f(x) > x .

We observe that if Fix(f) contains a subset dense in an interval, then by
Theorem 2.2 it contains an interval and by Theorem 3.1 no interior point of
Fix(f) can be essential. Therefore,

Corollary 3.3. If f is an essential map, Fix(f) cannot contain a subset
dense in an interval.

If Fix(f) contains an interval, the end points may be essential or not as
we show with the following examples.

Example 3.1. Let f(x) = x if 0 ≤ x ≤ 1/2 and f(x) = 1/2 otherwise.
Here Fix(f) = [0, 1/2] and both 0 and 1/2 are not essential.

Example 3.2. Let K =
{

n+ 3

2(n+ 1)
: n ∈N

}
and

f(x) =

 x if x ∈ [0, 1/2]

x+ (−1)n+1d(x,K) if n+ 4

2(n+ 2)
≤ x ≤ n+ 3

2(n+ 1)
.

Each element of K is essential by Theorem 3.1, and 1/2 being a limit point
of K is essential by Theorem 2.2, while 0 is not essential.

The following result gives information about the cardinality of Fix(f) ,
when Fix(f) is finite.

Theorem 3.4. Let f be an essential map. If Fix(f) is finite, then it must
be odd.

Proof. First we note that a point p at (0, 1) is essential iff the graph G(f)
of f crosses the diagonal ∆ in the point (p, p) . Suppose that only one of the
end points is fixed, for example 0. Then f(0) = 0 , f(1) < 1 and there is an
ε > 0 such that f(x) < x for each x ∈ (0, ε) . If 0 is the only fixed point of f,
we are done. If not, G(f) must cross ∆ an even number of times in (0, 1) .
So Fix(f) is odd. If both the end points are fixed, there exists an ε > 0 such
that f(x) < x for each x ∈ (0, ε) and f(x) > x for each x ∈ (1 − ε, 1) . So
G(f) must cross ∆ an odd number of times and Fix(f) is odd. If Fix(f)
does not contain the end points then f(0) > 0 and f(1) < 1 . So G(f) must
cross ∆ an odd number of times.

The above results show that if f is an essential map, then Fix(f) is made
up of suitable combinations of the following basic cases:
(i) Fix(f) is finite and contains an odd number of elements.
(ii) Fix(f) is countably infinite but not dense in any interval.
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(iii) Fix(f) is uncountable but does not contain any interval e.g. Cantor Set.
We now show a technique which enables us to construct essential maps

illustrating the above cases.
Example 3.3. Let K = {ai, 1 ≤ i ≤ 2n + 1} be an odd number of points

in [0, 1] . We construct an essential map f having Fix(f) = K .
If a1 = 0 and a2n+1 = 1 we put

f(x) = x+ (−1)i d(x,K)

If a1 > 0 and a2n+1 = 1 we put

f(x) =

{
a1 if 0 ≤ x ≤ a1

x+ (−i)i d(x,K) if ai ≤ x ≤ ai+1

If a1 > 0 and a2n+1 < 1 we put

f(x) =


a1 if 0 ≤ x ≤ a1

x+ (−1)i d(x,K) if ai ≤ x ≤ ai+1 ,

a2n+1 if a2n+1 ≤ x ≤ 1 .

Example 3.4. Let K be the set {1/n, n ∈N} ∪ {0} . The function f
defined by

f(x) =


0 if x = 0

x− (−1)nd(x,K) if 1

n+ 1
≤ x ≤ 1

n
,

is an essential map with Fix(f) = K .
Example 3.5. Let K be the standard Cantor set in [0, 1] , which is obtained

by removing 2n middle third open intervals for each n ∈N . We set f(x) = x
for each x in K . If x is in any one of the 2n open intervals removed at the
nth stage, we set

f(x) = x+ (−1)nd(x,K)

It can be verified that f is an essential map with Fix(f) = K .
We observe that a sequence of non-essential fixed points of f may converge

to an essential fixed point or to a non essential one.
Example 3.6. Let K be the set {1/n, n ∈N} ∪ {0} and f the function

defined by f(x) = x − d(x,K) . Each point p = 1/n is non essential but 0
is essential. For the function g defined by g(x) = x + d(x,K) each point
p = 1

n+ 1
is non essential as is 0.
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S. Kinoshita [8] first introduced the concept of an essential component of
a continuous function. A component H ⊂ Fix(f) is essential iff for every
neighborhood U of H, there is a δ > 0 such that every g in C with %(f, g) <
δ has a fixed point in U . Obviously it is possible for a function have no
essential fixed point and yet have an essential component, see for example
f(x) = x for x in [0, 1] . It is easy to see that if p ∈H is an essential fixed
point of f , then H is obviously an essential component of f . Therefore
we will consider only components which are closed intervals containing no
essential fixed point. Let f be a continuous function in [0, 1] and [c, d] a
typical component contained in Fix(f) . If c = 0 (resp. d = 1 ), then c (resp.
d ) is not an essential fixed point. If c = 0 and d = 1 we have already seen
that it is an essential component. In the following we assume that no x ∈ [c, d]
is essential.

Similar to Theorem 3.1 and Corollary 3.2 we have the following results:

Proposition 3.5. [c, d] ⊂ Fix(f)∩ (0, 1) is an essential component iff every
neighborhood of [c, d] contains points a and b such that f(x)−x has opposite
signs at a and b .

Proposition 3.6. If d < 1 , [0, d] ⊂ Fix(f) is an essential component of f
iff every neighborhood of d contains a point x with f(x) < x .

Proposition 3.7. If c > 0 , [c, 1] ⊂ Fix(f) is an essential component iff for
each ε > 0 there is a point x ∈ (c− ε, c) with f(x) > x .

A simple example of a typical essential component is the following: [0, 1/2]
is an essential component for the function f(x) = x if x ∈ [0, 1/2] , f(x) = 1/2
otherwise.

4 Essential fixed points of continuous multifunctions.

In this section we study essential fixed points of continuous multifunctions F .
We show that some of the results are quite different from those of continuous
single valued functions while others are similar. Strother ([11], [12]) has shown
that in the space [0, 1] each F ∈ M has a fixed point whereas its analogue
for the unit square is not true. In Theorem 3.4 we showed that if Fix(f) is
finite for an essential map, then it must be odd. In contrast to this we give
examples of essential multifunctions having an even (Example 4.1) as well an
odd (Example 4.2) number of fixed points.

Example 4.1. Let F be the multifunction defined by F (x) = {x2,
√
x} .In

this case Fix(F ) = {0, 1} and each of 0,1 is an essential fixed point of F
w.r.t. M .
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Example 4.2. Let K = {0, 1, 1/2} and the multifunction G defined by

G(x) =

{
{x+ d(x,K), 0, 1} if 0 ≤ x ≤ 1/2
{x− d(x,K), 0, 1} if 1/2 ≤ x ≤ 1

G has three fixed points and each is essential, in contrast to the previous
one in which there are only two.

In Theorem 3.1 we showed that for a single valued function f , a fixed point
p is essential iff in each nbhd of p, f is not unisigned. In contrast to this we
have the following example for multifunctions.

Example 4.3. Let F be the multifunction F (x) = {x2, [x,
√
x]} . In this

case Fix(F ) = [0, 1] , 0 and 1 are essential w.r.t. M , but there are points
satisfying a condition similar to Theorem 3.1 which are not essential. Choose
p = 1/2 ε = 1/16 and x1, x2 in (p − ε, p + ε) such that x1 < p < x2

with yi ∈F (xi) satisfying y1 < x1 and y2 > x2 . Let δ > 0 be less than
1/2min{ε, x1 − y1, y2 − x2} and satisfying p+ δ < 1 . Set

G(x) =

{
{x2, y + δ(1−y) d(x, {x1, x2}) : y ∈ [x,

√
x]} if x1 ≤ x ≤ x2

F (x) otherwise .

It can be verified that G belongs to M , %H(F,G) < δ and G has no fixed
point in (x1, x2) .

For elements of M we can prove only the analogue of a part of Theorem
3.1.

Theorem 4.1. Let p ∈ (0, 1) be a fixed point for F ∈ M . If there exists a
neighborhood U of p such that for each x in U and for each y in F (x)
x ≤ y ( or y ≤ x ) , then p is not an essential fixed point of F .

Proof. We give an outline in the case x ≤ y . Let x1 and x2 be points of U
satisfying x1 ≤ p ≤ x2 . Let δ > 0 such that for each x ∈ [x1, x2] x+ δ < 1 .
The multifunction G defined by

G(x) =

{
{y + δ(1−y) d(x, {x1, x2}) : y ∈F (x)} if x1 ≤ x ≤ x2

F (x) otherwise

belongs to M , has no fixed point in (x1, x2) and %H(F,G) < δ .
With the same technique it is possible to obtain conditions assuring that

0 or 1 aren’t essential fixed points.
We can obtain results similar to those of functions if we consider multi-

functions with connected values. We can prove the following result:



Essential Fixed Points of Functions and Multifunctions 377

Theorem 4.2. Suppose that F ∈ MC , and p ∈ (0, 1)∩Fix(F ) . If each neigh-
borhood of p contains x1, x2 such that there are yi ∈F (xi) satisfying y1 < x1

and y2 > x2 , then p is an essential fixed point of F w.r.t. MC

Proof. We give an outline. Using the definition of the Hausdorff metric dH

it follows that if G belongs to MC and dH(F,G) < δ for sufficiently small
positive δ there exist zi ∈G(xi) satisfying z1 < x1 and z2 > x2 . Since
G([x1, x2]) is connected there is a point xo in (x1, x2) ∩G(xo) .

For multifunctions with connected values it is possible to obtain a result
for the end-points.

Theorem 4.3. 0 is an essential fixed point of F ∈MC w.r.t. MC if each
neighborhood of 0 contains points b < a and b ∈F (a) . A similar result is true
for 1.

We observe that for every compact and connected subset K of [0, 1] the
multifunction F (x) = K is in MC and each element of K is essential.

5 Selections and essential fixed points.

If F is a multifunction on X then a selection for F is a function f such that
for each x ∈X, f(x) ∈F (x). Strother [11] has shown that each continuous
multifunction F has continuous selections given by f(x) = l.u.b.F (x) and
g(x) = g.l.b.F (x) . In this section we study the relationships between the
essential fixed points of F and those of their selections. Simple examples
prove that ”essentiality” does not pass from a multifunction to its selections
or viceversa.

Example 5.1 Let us consider in [0, 1] F (x) = {
√
x, x2} and f(x) = x2 .

1 is not essential for f w.r.t. C but is essential for F w.r.t. M .
Example 5.2 Let us consider in [0, 1] K = {0, 1, 1/2} and the functions:

f(x) =

{
x+ d(x,K) if 1

2 ≤ x ≤ 1
x− d(x,K) if 0 ≤ x < 1

2 .

g(x) =

{
x− d(x,K) if 1

2 ≤ x ≤ 1
x+ d(x,K) if 0 ≤ x < 1

2 .

It is easy to prove that 1/2 is essential for both f and g but it is not
essential for the multifunction F (x) = {f(x), g(x)} . Choose x1, x2 in [0, 1]
such that x1, <

1
2 < x2 and x2 − x1 <

1
8 and δ satisfying 0 < δ < 1

8 . The
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multifunction

G(x) =


{x+ d(x,K) + δ d(x, {x1, x2}),

x− d(x,K)− δ d(x, {x1, x2})} if x1 ≤ x ≤ x2

F (x) otherwise

belongs to M , satisfies the condition %H(F,G) < δ but has no fixed point in
(x1, x2) .

We observe that for multifunctions with connected values we have the
following result whose proof follows from Theorems 3.1 and 4.3.

Proposition 5.1. Let F be in MC and f be a continuous selection of F .
If p is an essential fixed point for f w.r.t. C , then p is an essential fixed
point of F w.r.t. MC .

In general the converse is false, for example consider the multifunction
F (x) = [0, 1] and as selection f(x) = x .

The situation is different in the case of contractive multifunctions. that is
multifunctions satisfying dH(F (x), F (y)) < d(x, y) for every x, y. It is well
known that each contractive function has a unique fixed point (and hence
is an essential map) while a contractive multifunction may have many fixed
points. On the other hand if X = [0, 1] a multifunction with connected values
F (x) = [f(x), g(x)] is contractive iff each f and g are contractive. We prove
the following result:

Theorem 5.2. If F belongs to MC and is contractive, then F is an essential
map w.r.t. MC .

Proof. Let F (x) = [f(x), g(x)] and p fixed for F . There is a continuous
selection h(x) for which p is essential. Indeed, since p belongs to [f(p), g(p)]
there are α, β in [0, 1] for which p = α f(p) + β g(p) , and the function
h(x) = α f(x) + β g(x) is a contractive selection. Therefore p is an essential
fixed point of F .

6 Essential fixed points of non expansive functions be-
tween Banach spaces.

If X is a Banach space, a mapping g on X to X is called non expansive
provided ‖g(x) − g(y)‖ ≤ ‖x − y‖ for all x, y in X . For mappings of this
type there need not be any fixed points nor need a fixed point be unique if it
does exist. In [2] Browder has proved that:
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Theorem 6.1 (Browder). Let X be a uniformly convex Banach space, g
a non expansive mapping on X to X and B a non empty bounded convex
closed subset of X for which g(B) ⊂ B . Then the set of the fixed points of
g in B is non empty closed and convex.

Under the same hypotheses of Browder’s theorem we prove that:

Theorem 6.2. If there exist in B more than one fixed point, none of them
is essential.

Proof. Let p and p′ be fixed points of g in B and let U(p) be a neigh-
borhood of p which does not contain p′ . The sequence

gn(x) = p′

n
+
(

1− 1

n

)
g(x) , x ∈X

converges uniformly to g(x) in B since

‖gn(x)− g(x)‖ = 1

n
‖p′ − g(x)‖ ≤ 1

n
sup
x∈C
‖p′ − g(x)‖ .

gn is a contraction having p′ as unique fixed point and p′ does not belong to
U(p) . Now we prove that there exists a mapping g′ on X to X satisfying
g′(B) ⊂ B and sufficiently near to g which has no fixed point in U(p) . If B′

is a bounded subset of X containing B let us consider, for δ > 0 and gm

satisfying the condition sup
x∈B
‖g(x)− gm(x)‖ < δ

g′(x) =

 g(x) if x 6∈B′
gm(x) if x ∈B
gm(x)α(x) + g(x)β(x) if x ∈B′ −B

where

α(x) = d(x, ∂B′)

d(x, ∂B′) + d(x, ∂B)
and β(x) = d(x, ∂B)

d(x, ∂B′) + d(x, ∂B)
.

g′ is continuous in X and for every x in X satisfies the condition ‖g′(x)−
g(x)‖ < δ .

We observe that if we fix p , U(p) and p′ 6∈ U(p) , the same sequence

gn(x) = p′

n
+
(

1− 1

n

)
g(x) , x ∈X

can be used to prove that every fixed point in U(p) is not essential. See the
following example [13]. Let X be the space R2 with the Euclidean norm and
let B be the set {

(r, ϑ), 0 ≤ r ≤ 1,
−π
2
≤ ϑ ≤ −π

4

}
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where (r, ϑ) denotes polar coordinates. If we define in B the mapping
g(r, ϑ) = (r,−π/2) we obtain a non expansive mapping whose set of fixed
points is the line segment F = {(r,−π/2), 0 ≤ r ≤ 1, } . Using the approx-
imating sequence gn(r, ϑ) = ((1 − 1/n)r , −π/2) whose unique fixed point
is (0,−π/2) we can prove that every point (r,−π/2) with 1/2 ≤ r is not
essential. Using the approximating sequence

g′n(r, ϑ) =
((

1 + 1− r
n

)
r , −

π

2

)
,

whose unique fixed point is (1,−π/2) we can prove that every point (r,−π/2)
with 1/2 < r is not essential.

For mappings between Banach spaces, that are non necessarily non expan-
sive we can prove the following:

Theorem 6.3. Let X be a Banach space with fixed point property and g
a mapping from X to X . If Fix(g) has interior points, none of them is
essential.

Proof. Let p be interior to Fix(g) and U(p) be a bounded open neigh-
borhood of p contained in Fix(g) . If w0 is a point of X and |w0| 6= 0 we
define

gn(x) =

{
g(x) if x 6∈U(p)
g(x) + d(x, ∂U(p))

n δ(U(p))
w0 if x ∈U(p) ,

where δ(U(p)) is the diameter of U(p) and ∂U(p) its boundary. gn is
continuous, has no fixed point in U(p) since in U(p)

‖gn(x)− x‖ = ‖g(x)− x+ d(x, ∂U(p))

n δ(U(p))
w0‖ = ‖w0‖

d(x, ∂U(p))

n δ(U(p))
.

Since ‖gn(x) − g(x)‖ ≤ ‖w0‖
n

, the sequence gn(x) converges uniformly to
g(x) .
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