A GENERALIZATION OF A RESULT DUE TO HAVIN AND MAZÝA

Abstract

In this short note we give a direct proof of a generalization of a standard result due to Havin and Mazýa which relates the Bessel capacity of a set to its Hausdorff dimension.

Let $L_{\alpha}^{p}\left(\mathbb{R}^{d}\right)=\left\{f: f=G_{\alpha} * g, g \in L^{p}\left(\mathbb{R}^{d}\right)\right\}, \alpha \in \mathbb{R}, p>1$, be the space of Bessel potentials, with norm $\|f\|_{\alpha, p}=\|g\|_{p}$. Here G_{α} is the Bessel kernel, i.e., the inverse Fourier transform of the function $\hat{G}_{\alpha}(\xi)=\left(1+|\xi|^{2}\right)^{-\alpha / 2}$.

The Bessel capacity of a set $E \subset \mathbb{R}^{d}$ is defined as

$$
B_{\alpha, p}=\inf \left\{\|f\|_{\alpha, p}^{p}: p \geq 1 \text { on } E\right\}
$$

The relation between capacity and Hausdorff dimension is given by the following result due to Havin and Mazýa [2]:

Theorem 1. Let $E \subset \mathbb{R}^{d}$ be a Borel set. If $p>1$, $\alpha p \leq d$, then

$$
B_{\alpha, p}(E)=0 \Rightarrow \mathcal{H}^{d-\alpha p+\epsilon}(E)=0, \text { for every } \epsilon>0
$$

In this note we generalize the preceding result in the case of "mixed-norm" capacities to be defined as follows:

Let $L^{p_{1}, p_{2}}\left(\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}\right), p_{1}>1, p_{2}>1$ be the space of all functions with finite $\|\cdot\|_{p_{1}, p_{2}}$ norm, where

$$
\|g\|_{p_{1}, p_{2}}=\left(\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}}\left|g\left(x_{1}, x_{2}\right)\right|^{p_{1}} d x_{1}\right)^{p_{2} / p_{1}} d x_{2}\right)^{1 / p_{2}}
$$

For $\alpha>0$, define the space

$$
L_{\alpha}^{p_{1}, p_{2}}\left(\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}\right)=\left\{f: f=G_{\alpha} * g, g \in L^{p_{1}, p_{2}}\left(\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}\right)\right\}
$$

[^0]with norm $\|f\|_{\alpha, p_{1}, p_{2}}=\|g\|_{p_{1}, p_{2}}$.
The mixed-norm capacity of $E \subset \mathbb{R}^{d}=\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$ is defined as
$$
B_{\alpha, p_{1}, p_{2}}(E)=\inf \left\{\|f\|_{\alpha, p_{1}, p_{2}}^{p_{2}}: f \geq 1 \text { on } E\right\}
$$

Theorem 2. Let $E \subset \mathbb{R}^{d}=\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$ be a Borel set.
If $p_{1} \leq p_{2}$ and $d_{2}+d_{1} \frac{p_{2}}{p_{1}}-p_{2} \alpha \geq 0$ then

$$
B_{\alpha, p_{1}, p_{2}}(E)=0 \Rightarrow \mathcal{H}^{d_{2}+d_{1} \frac{p_{2}}{p_{1}}-p_{2} \alpha+\epsilon}(E)=0, \text { for every } \epsilon>0
$$

If $p_{2} \leq p_{1}$ and $d_{1}+d_{2} \frac{p_{1}}{p_{2}}-p_{1} \alpha \geq 0$ then

$$
B_{\alpha, p_{1}, p_{2}}(E)=0 \Rightarrow \mathcal{H}^{d_{1}+d_{2} \frac{p_{1}}{p_{2}}-p_{1} \alpha+\epsilon}(E)=0, \text { for every } \epsilon>0
$$

Proof. Without loss of generality we may assume that $E \subset[0,1]^{d}$. Let μ be a finite measure supported on E, and let u be a non-negative C_{c}^{∞} function such that $u \geq 1$ on E. Then

$$
\begin{aligned}
\mu(E) & \leq \int u(x) d \mu(x) \\
& =\int G_{\alpha} * D^{\alpha} u(x) d \mu(x) \\
& =\int D^{\alpha} u(y) \int G_{\alpha}(x-y) d \mu(x) d y \\
& \leq\|u\|_{\alpha, p_{1}, p_{2}}\left\|G_{\alpha} * \mu\right\|_{q_{1}, q_{2}}
\end{aligned}
$$

where q_{1}, q_{2} are the conjugate exponents of p_{1}, p_{2} respectively, and $D^{\alpha} u$ is the fractional derivative operator acting on u, defined as the inverse Fourier transform of the function $\left(1+|\xi|^{2}\right)^{\alpha / 2} \hat{u}(\xi)$.

For each $n \geq 0$ we subdivide \mathbb{R}^{d} into disjoint dyadic cubes of side 2^{-n}, so that each cube of side 2^{-k} is split into 2^{d} cubes of side $2^{-(k+1)}$. If Q is such a dyadic cube then $l(Q)$ denotes its side length and \widetilde{Q} the cube with the same center as Q and side length $3 l(Q)$.

Let

$$
\widetilde{I}_{\alpha}(x)= \begin{cases}|x|^{\alpha-d}, & \text { if } 0<|x| \leq 1 \\ 0, & \text { if }|x|>1\end{cases}
$$

It follows from the properties of the Bessel kernel (see, e.g., [1]) that there exist constants a and A such that

$$
G_{\alpha}(x) \leq A \widetilde{I}_{\alpha}(x), 0<|x| \leq 1
$$

and

$$
G_{\alpha}(x) \leq A e^{-a|x|},|x|>1
$$

Therefore

$$
\begin{aligned}
& \left\|G_{\alpha} * \mu\right\|_{q_{1}, q_{2}} \\
& \lesssim\left(\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}}\left(\widetilde{I}_{\alpha} * \mu\left(x_{1}, x_{2}\right)\right)^{q_{1}} d x_{1}\right)^{\frac{q_{2}}{q_{1}}} d x_{2}\right)^{\frac{1}{q_{2}}} \\
& +\left(\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}}\left(\int_{\left|\left(x_{1}, x_{2}\right)-y\right|>1} e^{-a\left|\left(x_{1}, x_{2}\right)-y\right|} d \mu(y)\right)^{q_{1}} d x_{1}\right)^{\frac{q_{2}}{q_{1}}} d x_{2}\right)^{\frac{1}{q_{2}}} \\
& =B+B^{\prime}
\end{aligned}
$$

B^{\prime} is easy to estimate. By Minkowski's inequality for integrals we have

$$
\begin{aligned}
B^{\prime} & \leq \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}} e^{-a q_{1}\left|\left(x_{1}, x_{2}\right)-y\right|} d x_{1}\right)^{q_{2} / q_{1}} d x_{2}\right)^{1 / q_{2}} d \mu(y) \\
& \leq \mu(E)\left(\int_{\mathbb{R}^{d_{2}}} e^{-\frac{1}{\sqrt{2}} a q_{2}\left|x_{2}\right|} d x_{2}\left(\int_{\mathbb{R}^{d_{1}}} e^{-\frac{1}{\sqrt{2}} a q_{1}\left|x_{1}\right|} d x_{1}\right)^{q_{2} / q_{1}}\right)^{1 / q_{2}}<\infty
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\widetilde{I}_{\alpha} * \mu(x) & =\int_{|x-y| \leq 1} \frac{d \mu(y)}{|x-y|^{d-\alpha}} \\
& =\sum_{n=0}^{\infty} \int_{2^{-(n+1)}<|x-y| \leq 2^{-n}} \frac{d \mu(y)}{|x-y|^{d-\alpha}} \\
& \leq \sum_{n=0}^{\infty} 2^{(n+1)(d-\alpha)} \mu\left(B\left(x, 2^{-n}\right)\right) \\
& \lesssim \sum_{l(Q) \leq 1} \frac{\mu(\widetilde{Q})}{l(Q)^{d-\alpha}} \chi_{Q}(x) \\
& \lesssim\left(\sum_{n=0}^{\infty} 2^{-\delta p_{1}(n+1)}\right)^{1 / p_{1}}\left(\sum_{l(Q) \leq 1} \frac{\mu(\widetilde{Q})^{q_{1}}}{l(Q)^{q_{1}(d-\alpha+\delta)}} \chi_{Q}(x)\right)^{1 / q_{1}}
\end{aligned}
$$

Where δ is a positive number.
Let $\pi_{2}: \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}} \rightarrow \mathbb{R}^{d_{2}}$ be the usual projection $\pi_{2}\left(x_{1}, x_{2}\right)=x_{2}$. Also, let $s=d_{2}+d_{1} \frac{p_{2}}{p_{1}}-p_{2} \alpha$ and $t=d_{1}+d_{2} \frac{p_{1}}{p_{2}}-p_{1} \alpha$.

Suppose that $p_{1} \leq p_{2}$ and that $\mathcal{H}^{s+\epsilon}(E)>0$ for some $\epsilon>0$. Then there exists a nontrivial finite measure μ supported on E such that $\mu(B(x, r)) \leq r^{s+\epsilon}$ for all $x \in \mathbb{R}^{d}, r>0$. It follows that

$$
\begin{aligned}
B^{q_{2}} & =\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}}\left(\widetilde{I}_{\alpha} * \mu\left(x_{1}, x_{2}\right)\right)^{q_{1}} d x_{1}\right)^{q_{2} / q_{1}} d x_{2} \\
& \leq C \int_{\mathbb{R}^{d_{2}}}\left(\sum_{l(Q) \leq 1} \frac{\mu(\widetilde{Q})^{q_{1}}}{l(Q)^{q_{1}(d-\alpha+\delta)}} l(Q)^{d_{1}} \chi_{\pi_{2}(Q)}\left(x_{2}\right)\right)^{q_{2} / q_{1}} d x_{2} \\
& \leq C \sum_{l(Q) \leq 1} \frac{\mu(\widetilde{Q})^{q_{2}}}{l(Q)^{q_{2}(d-\alpha+\delta)-d_{1} \frac{q_{2}}{q_{1}}-d_{2}}} \\
& =C \sum_{n=0}^{\infty} 2^{n\left(q_{2}(d-\alpha+\delta)-d_{1} \frac{q_{2}}{q_{1}}-d_{2}\right)} \sum_{l(Q)=2^{-n}} \mu(\widetilde{Q}) \mu(\widetilde{Q})^{q_{2}-1} \\
& \lesssim C \mu(E) \sum_{n=0}^{\infty} \frac{2^{n\left(q_{2}(d-\alpha+\delta)-d_{1} \frac{q_{2}}{q_{1}}-d_{2}\right)}}{2^{n\left(q_{2}-1\right)(s+\epsilon)}}<\infty
\end{aligned}
$$

provided that δ has been chosen so that $p_{2} \delta<\epsilon$.
Now suppose that $p_{2} \leq p_{1}$ and that $\mathcal{H}^{t+\epsilon}(E)>0$ for some $\epsilon>0$. Then, as above, there exists a nontrivial finite measure supported on E such that $\mu(B(x, r)) \leq r^{t+\epsilon}$ for all $x \in \mathbb{R}^{d}, r>0$. It follows that

$$
\begin{aligned}
B^{q_{1}} & \leq C\left(\int_{\mathbb{R}^{d_{2}}}\left(\sum_{l(Q) \leq 1} \frac{\mu(\widetilde{Q})^{q_{1}}}{l(Q)^{q_{1}(d-\alpha+\delta)}} l(Q)^{d_{1}} \chi_{\pi_{2}(Q)}\left(x_{2}\right)\right)^{q_{2} / q_{1}} d x_{2}\right)^{q_{1} / q_{2}} \\
& \leq C \sum_{l(Q) \leq 1} \frac{\mu(\widetilde{Q})^{q_{1}}}{l(Q)^{q_{1}(d-\alpha+\delta)-d_{2} \frac{q_{1}}{q_{2}}-d_{1}}} \\
& =C \sum_{n=0}^{\infty} 2^{n\left(q_{1}(d-\alpha+\delta)-d_{2} \frac{q_{1}}{q_{2}}-d_{1}\right)} \sum_{l(Q)=2^{-n}} \mu(\widetilde{Q}) \mu(\widetilde{Q})^{q_{1}-1} \\
& \lesssim C \mu(E) \sum_{n=0}^{\infty} \frac{2^{n\left(q_{1}(d-\alpha+\delta)-d_{2} \frac{q_{1}}{q_{2}}-d_{1}\right)}}{2^{n\left(q_{1}-1\right)(t+\epsilon)}}<\infty
\end{aligned}
$$

provided that $p_{1} \delta<\epsilon$.
It follows that $\mu(E) \lesssim\|u\|_{\alpha, p_{1}, p_{2}}$. By assumption, $B_{\alpha, p_{1}, p_{2}}(E)=0$. Therefore $\mu(E)=0$ which is a contradiction.

References

[1] D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, 1996
[2] V. Havin, V. Mazýa, Nonlinear potential theory, Russian Math. Surveys, 27(1972), 71-148
T. Mitsis

[^0]: Key Words: Bessel capacity, Hausdorff dimension
 Mathematical Reviews subject classification: Primary 31C15; Secondary 28A78
 Received by the editors February 19, 1998

