Zbigniew Grande^{*}, Institute of Mathematics, Pedagogical University, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. e-mail: grande@wsp.bydgoszcz.pl

ON A. C. LIMITS OF DECREASING SEQUENCES OF CONTINUOUS OR RIGHT CONTINUOUS FUNCTIONS

Abstract

The a.c. limits (i.e. the discrete limits introduced by Császár and Laczkovich) of decreasing sequences of continuous (resp. right continuous) functions are investigated.

Let \mathbb{R} be the set of all reals. (X, τ) or X in this paper always denotes a perfectly normal Hausdorff topological space. A function $f: X \to \mathbb{R}$ is a B_1^* function (belongs to the class B_1^*) if there is a sequence of continuous functions $f_n: X \to \mathbb{R}$ with $f = a. c. \lim_{n \to \infty} f_n$, i.e. for each point $x \in X$ there is a positive integer k such that $f_n(x) = f(x)$ for every n > k (compare [2, 3]).

From the results obtained in [2] it follows that the function $f : X \to \mathbb{R}$ belongs to \mathcal{B}_1^* if and only if there are closed sets A_n , $n = 1, 2, \ldots$, such that the restricted functions $f \upharpoonright A_n$ are continuous and $X = \bigcup_{n=1}^{\infty} A_n$.

1 The Discrete Limits of Decreasing Sequences of Continuous Functions.

In the first part of this article we will investigate B_1^* functions which are upper semicontinuous. Recall that the function $f: X \to \mathbb{R}$ is upper semicontinuous if for every real a the set $\{x \in X; f(x) < a\}$ belongs to τ . Evidently the pointwise limit of each decreasing sequence of upper semicontinuous functions $f_n: X \to \mathbb{R}, n = 1, 2, \ldots$, is upper semicontinuous.

The following theorem can be found on page 51 of [4].

Key Words: upper semicontinuity, decreasing sequences of functions, B_1^\ast class, right continuity.

Mathematical Reviews subject classification: 26A15, 26A21, 26A99 Received by the editors August 3, 1998

^{*}Supported by Bydgoszcz Pedagogical University grant 1998

²³¹

Remark 1. If the function $f : X \to \mathbb{R}$ is upper semicontinuous, then there is a decreasing sequence of continuous functions $f_n : X \to \mathbb{R}$, n = 1, 2, ..., such that $f = \lim_{n \to \infty} f_n$.

We will prove the following theorem.

Theorem 1. Let (X, τ) be a perfectly normal σ -compact Hausdorff topological space. Then an upper semicontinuous function $f : X \to \mathbb{R}$ belongs to class B_1^* if and only if there is a decreasing sequence of continuous functions $f_n : X \to \mathbb{R}$ such that $f = a. c. \lim_{n \to \infty} f_n$.

We start from the following lemma.

Lemma 1. Let $f: X \to \mathbb{R}$ be a function. If there are sets A_n and continuous functions $f_n: X \to \mathbb{R}$ such that $A_1 \subset A_2 \subset \cdots, X = \bigcup_n A_n, f_n \geq f$ and $f_n \upharpoonright A_n = f \upharpoonright A_n$ for $n = 1, 2, \ldots$, then there is a decreasing sequence of continuous functions $g_n: X \to \mathbb{R}$ with $f = a.c. \lim_{n \to \infty} g_n$.

PROOF. Of course, the functions $g_n = \min_{k \le n} f_n$ satisfy all required conditions.

PROOF OF THEOREM 1. If f is the discrete limit of a decreasing sequence of continuous functions $f_n : X \to \mathbb{R}$, then evidently $f \in \mathcal{B}_1^*$. So, we assume that $f \in \mathcal{B}_1^*$. Since f is upper semicontinuous and X is perfectly normal, by Remark 1 there is a decreasing sequence of continuous functions $f_n : X \to \mathbb{R}$ which converges to f at each point $x \in X$.

On the other hand f is the discrete limit of continuous functions; so there are closed sets A_n , n = 1, 2, ..., such that every restricted function $f \upharpoonright A_n$ is continuous and $X = \bigcup_{n=1}^{\infty} A_n$. We can assume that A_n is compact for each n = 1, 2, ... Fix a positive integer k. On A_k the sequence (f_n) tends uniformly to f due to Dini's lemma. So we can also assume that

$$\max\{(f_n(x) - f_{n+1}(x)); x \in A_k\} \le 2^{-n}.$$

By Tietze's theorem for n = 1, 2, ... there is a continuous extension $g_n : X \to [0, 2^{-n}]$ of the restricted function $(f_n - f_{n+1}) \upharpoonright A_k$. Let

$$h_n = \min(g_n, f_n - f_{n+1})$$
 for $n = 1, 2, \dots,$

and let $l_k = f_1 - \sum_{n=1}^{\infty} h_n$. Since the series $\sum_{n=1}^{\infty} h_n$ converges uniformly, the function l_k is continuous. Moreover, for $k = 1, 2, \ldots$ we have $l_k \ge f$ and $f \upharpoonright A_k = l_k \upharpoonright A_k$. So, by Lemma 1 we obtain our theorem.

Theorem 1 in the presented form and its proof was proposed by the referee. My formulation concerned the function $f : [a, b] \to \mathbb{R}$ and the Euclidean topology and its proof was more complicated.

2 Decreasing Sequences of Right Continuous Functions

In this part we assume that X = [a, b) and τ is the topology of right continuity. This topology τ is perfectly normal and Hausdorff but is not σ -compact. So, the limit f of a decreasing sequence of right upper semicontinuous functions f_n , $n = 1, 2, \ldots$, is a right upper semicontinuous function and Remark 1 is valid for (X, τ) . Thus we have the following assertion.

Remark 2. For every right upper semicontinuous function f there is a decreasing sequence of right continuous functions f_n , n = 1, 2, ..., such that $f = \lim_{n \to \infty} f_n$.

From the last remark by an elementary proof we obtain the next assertion.

Remark 3. If a function $f : [a,b) \to \mathbb{R}$ is right upper semicontinuous, then there is a decreasing sequence of functions $f_n : [a,b) \to \mathbb{R}$ such that

the functions f_n are right continuous ;

 $f = \lim_{n \to \infty} f_n;$

all functions f_n , n = 1, 2, ..., are locally constant from the right, i.e. for each point $x \in [a, b)$ there is a positive real $r_{x,n}$ such that

 $I_{x,n} = [x, x + r_{x,n}] \subset [a, b)$ and $f \upharpoonright I_{x,n}$ is constant;

if $\limsup_{t \to x+} f(t) < f(x)$, then for n sufficiently large $f_n(x) = f(x)$;

for every integer n the inclusion $f_n([a,b)) \subset cl(f[a,b)))$, (where cl denotes the closure operation) holds.

PROOF. The set A of all points x at which $\limsup_{t\to x+} f(t) < f(x)$ is countable, i.e. if $A \neq \emptyset$, then $A = \{x_1, x_2, \ldots\}$. By Remark 2 there is a decreasing sequence of right continuous functions g_n such that $f = \lim_{n\to\infty} g_n$. Fix a positive integer n and observe that there is a sequence of intervals $I_{i,n} = [u_{i,n}, v_{i,n})$, $i = 1, 2, \ldots$, such that:

 $[a,b) = \bigcup_{i} I_{i,n};$ $I_{i,n} \cap I_{j,n} = \emptyset \text{ for } i \neq j;$ $u_{i,n} = x_i \text{ for } i \leq n;$ $\operatorname{osc} g_n < \frac{1}{n} \text{ on each interval } I_{i,n};$ $g_n(x) > f(x) \text{ if } x \in I_{i,n} \text{ and } i \leq n.$ Let

$$h_n(x) = \begin{cases} f(x_i) & \text{for } x \in I_{i,n}, \ i \le n \\ \sup_{I_{i,n}} g_n & \text{for } x \in I_{i,n}, \ i > n. \end{cases}$$

Then the functions $f_n = \min(h_1, h_2, \ldots, h_n)$, for $n = 1, 2, \ldots$, satisfy all required conditions.

Theorem 2. If $f = a. c. \lim_{n\to\infty} f_n$, where all functions f_n , n = 1, 2, ..., are right continuous, then f satisfies the following condition.

(1) For each nonempty perfect set $A \subset [a, b)$ there is an open interval I such that $A \cap I \neq \emptyset$ and the restricted function $f \upharpoonright (I \cap B)$, where

 $B = \{x \in A; x \text{ is a right limit point of } A\},\$

is right continuous at each point of the intersection $B \cap I$.

PROOF. Let $A \subset [a, b)$ be a nonempty perfect set and let B denote the set of all right limit points of A. For each point $x \in [a, b)$ there is a positive integer n(x) such that $f_n(x) = f(x)$ for $n \ge n(x)$. For n = 1, 2, ... put $A_n = \{x \in [a, b); n(x) = n\}$ and observe that $[a, b) = \bigcup_{n=1}^{\infty} A_n$. So there are an open interval I and a positive integer k such that $I \cap B \neq \emptyset$ and $A_k \cap I \cap B$ is dense in $B \cap I$. Thus $f(x) = f_k(x)$ for each point $x \in I \cap A$ which is a right limit point of A and consequently $f \upharpoonright (B \cap I)$ is right continuous at each point of $I \cap B$.

The above proof of Theorem 2 is short. However the referee related this statement to the result of Császár and Laczkovich (Theorem 13 of [2], pp. 469) which says that if X is a Baire space, the functions $f_n : X \to \mathbb{R}$, n = 1, 2, ..., are continuous and $f = a. c. \lim_{n \to \infty} f_n$, then the points of discontinuity of f constitute a nowhere dense set in X.

The connection between these two results is the following assertion.

Let (X, \mathcal{T}, τ) be a bitopological space such that τ is finer than \mathcal{T} and (X, \mathcal{T}) is a Baire space. Assume that for every nonempty set $A \in \tau$ there is a nonempty set $B \in \mathcal{T}$ such that $B \subset A$. Then every τ -nowhere dense set is \mathcal{T} -nowhere dense and (X, \mathcal{T}) is a Baire space.

We arrive at Theorem 2 at once if we observe that the sets $X \subset [a, b)$ having no right isolated points satisfy the conditions of the previous statement. So the quoted theorem of Császár and Laczkovich can be applied. **Example 1.** Let C be the Cantor ternary set and let $I_n = (a_n, b_n)$, n = 1, 2, ..., be an enumeration of all components of the set $[0, 1) \setminus C$ such that $I_n \cap I_m = \emptyset$ for $n \neq m, n, m = 1, 2, ...$ Put

$$f(x) = \begin{cases} 1 & \text{for } x \in B = C \setminus \{a_n; n \ge 1\} \\ 0 & \text{for } x \in [0, 1) \setminus B. \end{cases}$$

Observe that the function f is not of Baire class one. For $n \ge 1$ let

$$f_n(x) = \begin{cases} 0 & \text{for} \quad x \in B_n = \bigcup_{i \le n} [a_i, b_i] \\ 1 & \text{for} \quad x \in [0, 1) \setminus B_n. \end{cases}$$

Then all functions f_n , n = 1, 2, ..., are right continuous, $f_n \ge f_{n+1}$ for n = 1, 2, ... and a. c. $\lim_{n\to\infty} f_n = f$.

Now we introduce the following condition (1').

(1') A function f satisfies condition (1') if for every nonempty closed set $A \subset [0,1)$ there is an open interval I such that $I \cap A \neq \emptyset$ and the restricted function $f \upharpoonright (A \cap I)$ is right continuous. (If $x \in A$ is right isolated in A, then $f \upharpoonright A$ is right continuous at x by default.)

Observe that the implication $(1') \Longrightarrow (1)$ is true. The function f from Example 1 satisfies condition (1) but it does not satisfy condition (1'). Observe also that, by Baire's theorem on Baire 1 functions, every function f satisfying condition (1') is of Baire 1 class.

Theorem 3. A function f satisfies condition (1') if and only if it satisfies the following condition.

(2) There is a sequence of nonempty closed sets $A_n \subset [a,b)$ such that all restricted functions $f \upharpoonright A_n$, n = 1, 2, ..., are right continuous and $[a,b) = \bigcup_{n=1}^{\infty} A_n$.

PROOF. $(1') \Longrightarrow (2)$. We will apply transfinite induction. Let I_0 be an open interval with rational endpoints such that the restricted function $f \upharpoonright I_0$ is right continuous. Fix an ordinal number $\alpha > 0$ and suppose that for every ordinal number $\beta < \alpha$ there is an open interval with rational endpoints I_β such that $H_\beta = I_\beta \setminus \bigcup_{\gamma < \beta} I_\gamma \neq \emptyset$ and the restricted function $f \upharpoonright H_\beta$ is right continuous. If $G_\alpha = [a, b) \setminus \bigcup_{\beta < \alpha} I_\beta \neq \emptyset$, then by (1') there is an open interval I_α with rational endpoints such that $I_\alpha \cap G_\alpha \neq \emptyset$ and the restricted function $f \upharpoonright (I_\alpha \cap G_\alpha)$ is right continuous. Let ξ be the first ordinal number α such that $[a, b) \setminus \bigcup_{\beta < \xi} I_\beta = \emptyset$. Since the family of all intervals with rational endpoints is countable, ξ is a countable ordinal number. Every set H_α , $\alpha < \xi$, is an F_σ set; so there are closed sets $H_{k,\alpha}$, k = 1, 2, ..., such that $H_{\alpha} = \bigcup_{k=1}^{\infty} H_{k,\alpha}$. Evidently, all restricted functions $f \upharpoonright H_{k,\alpha}$, k = 1, 2, ... and $\alpha < \xi$, are right continuous. Now enumerate in a sequence (A_n) all sets

$$H_{k,\alpha}, \quad k=1,2,\ldots \quad \text{and} \quad \alpha < \xi,$$

and observe that this sequence satisfies all requirements.

 $(2) \Longrightarrow (1')$

Fix a nonempty closed set $A \subset [a, b)$. If A contains isolated points, then condition (1') is satisfied. So we assume that A is a perfect set. By (2) there is a sequence of closed sets A_n , n = 1, 2, ..., such that $[a, b] = \bigcup_n A_n$ and all restricted functions $f \upharpoonright A_n$, n = 1, 2, ..., are right continuous. Since $A = \bigcup_{n=1}^{\infty} (A \cap A_n)$, there are a positive integer k and an open interval I such that $I \cap A = I \cap A_k \neq \emptyset$. But the restricted function $f \upharpoonright (A \cap I)$ is right continuous; so condition (1') is satisfied.

Theorem 4. If f satisfies condition (1') (or equivalently (2)) from the last theorem, then there is a sequence of functions f_n , n = 1, 2, ..., which are right continuous and for which a. c. $\lim_{n\to\infty} f_n = f$.

PROOF. There is a sequence of nonempty closed sets A_n , n = 1, 2, ..., such that $[a, b) = \bigcup_{n=1}^{\infty} A_n$, $A_1 \subset A_2 \subset \cdots$ and all restricted functions $f \upharpoonright A_n$, n = 1, 2, ..., are right continuous. By Tietze's theorem for n = 1, 2, ... there is a right continuous function $f_n : [a, b) \to \mathbb{R}$ which is equal to f on the set A_n . Then a.c. $\lim_{n\to\infty} f_n = f$.

Theorem 5. If a function f is upper semicontinuous from the right and satisfies condition (1') (or equivalently (2)), then there is a decreasing sequence of right continuous functions f_n , n = 1, 2, ..., such that a. c. $\lim_{n\to\infty} f_n = f$.

PROOF. Let a function f satisfies the hypothesis of our theorem. There is a sequence of nonempty closed sets A_n , $n = 1, 2, \ldots$, such that $[a, b] = \bigcup_{n=1}^{\infty} A_n$ and all restricted functions $f \upharpoonright A_n$, $n = 1, 2, \ldots$, are right continuous. Without loss of the generality we can suppose that $a \in A_1 \subset A_2 \subset \ldots \subset A_n \subset \ldots$. Fix a positive integer n and enumerate in a sequence $(I_{n,k})_k$ all components of the set $[a, b) \setminus A_n$. If $I_{n,k} = (a_{n,k}, b_{n,k})$, $a_{n,k} \in A_n$ and $\lim \sup_{t \to a_{n,k+}} f(t) = f(a_{n,k})$, then we find points $c_{n,k,i}$, $i = 1, 2, \ldots$, such that

$$b_{n,k} = c_{n,k,1} > \ldots > c_{n,k,i} > \ldots \searrow a_{n,k}$$

By Theorem 2 and Remark 1 for every $i \ge 1$ there is right constant function $h_{n,k,i} : [c_{n,k,i+1}, c_{n,k,i}) \to \mathbb{R}$ such that $h_{n,k,i} \ge f/[c_{n,k,i+1}, c_{n,k,i})$ and $h_{n,k,i}(c_{n,k,i}) < f(c_{n,k,i}) + \frac{1}{ik}$. Let $g_{n,k,i}(x) = \max(h_{n,k,i}(x), f(a_{n,k}))$ for $x \in \mathbb{R}$

 $[c_{n,k,i+1}, c_{n,k,i})$. Observe that $g_{n,k,i}([c_{n,k,i+1}, c_{n,k,i})) \subset cl(f([a_{n,k}, b_{n,k}))), i = 1, 2, \dots$ Next in every such interval $I_{n,k}$ we define the function $g_{n,k}$ by

$$g_{n,k}(x) = g_{n,k,i}(x)$$
 for $x \in [c_{n,k,i+1}, c_{n,k,i}), i = 1, 2, \dots$

If $I_{n,k} = [a_{n,k}, b_{n,k})$, $a_{n,k} \in A_n$, and $\limsup_{x \to a_{n,k+}} f(x) < f(a_{n,k})$, then by Remarks 2 and 3 there is a right constant function $h_{n,k} : [a_{n,k}, b_{n,k}) \to \mathbb{R}$ such that $h_{n,k} \ge f \upharpoonright [a_{n,k}, b_{n,k})$, $h_{n,k}(a_{n,k}) = f(a_{n,k})$ and $h_{n,k}([a_{n,k}, b_{n,k})) \subset$ $\operatorname{cl}(f([a_{n,k}, b_{n,k}))))$. Let $g_{n,k}(x) = \max(h_{n,k}(x), f(x))$ for $x \in [a_{n,k}, b_{n,k})$. Put

$$g_n(x) = \begin{cases} f(x) & \text{for } x \in A_n \\ g_{n,k}(x) & \text{for } x \in I_{n,k} \ i, k = 1, 2, \dots \end{cases}$$

Then the function g_n is right continuous, $g_n \ge f$ and $g_n \upharpoonright A_n = f \upharpoonright A_n$. So, by Lemma 1 we obtain our theorem.

Observe that the last theorem is not a corollary of Theorem 1, since the topology τ is not σ -compact.

Acknowledgment I would like to thank to the referee for several suggestions, the reformulation of Theorem 1 and its proof. \mathbf{D}

Problem. Is Theorem 5 true if we replace condition (1') by (1)?

References

- A. M. Bruckner, J. B. Bruckner and B. S. Thomson, *Real Analysis*, Prentice–Hall International, INC, Upper Saddle River, New Jersey, 1996.
- [2] A. Császár and M. Laczkovich, Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975), 463–472.
- [3] R. J. O'Malley, Approximately differentiable functions. The r topology, Pacific J. Math. 72 (1977), 207–222.
- [4] H. L. Royden, *Real Analysis*, Third Edition, MacMillan, 1988.
- [5] B. S. Thomson, *Real Functions*, Lectures Notes in Math. 1170 (1985), Springer-Verlag.

ZBIGNIEW GRANDE

238