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ON A. C. LIMITS OF DECREASING
SEQUENCES OF CONTINUOUS OR RIGHT

CONTINUOUS FUNCTIONS

Abstract

The a.c. limits (i.e. the discrete limits introduced by Császár and
Laczkovich) of decreasing sequences of continuous (resp. right continu-
ous) functions are investigated.

Let R be the set of all reals. (X, τ) or X in this paper always denotes a
perfectly normal Hausdorff topological space. A function f : X → R is a B∗1
function (belongs to the class B∗1) if there is a sequence of continuous functions
fn : X → R with f = a. c. limn→∞ fn, i.e. for each point x ∈ X there is a
positive integer k such that fn(x) = f(x) for every n > k (compare [2, 3]).

From the results obtained in [2] it follows that the function f : X → R
belongs to B∗1 if and only if there are closed sets An, n = 1, 2, . . ., such that
the restricted functions f � An are continuous and X =

⋃∞
n=1An.

1 The Discrete Limits of Decreasing Sequences of Con-
tinuous Functions.

In the first part of this article we will investigate B∗1 functions which are upper
semicontinuous. Recall that the function f : X → R is upper semicontinuous
if for every real a the set {x ∈ X; f(x) < a} belongs to τ . Evidently the
pointwise limit of each decreasing sequence of upper semicontinuous functions
fn : X → R, n = 1, 2, . . ., is upper semicontinuous.

The following theorem can be found on page 51 of [4].
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Remark 1. If the function f : X → R is upper semicontinuous, then there is
a decreasing sequence of continuous functions fn : X → R, n = 1, 2, . . ., such
that f = limn→∞ fn.

We will prove the following theorem.

Theorem 1. Let (X, τ) be a perfectly normal σ-compact Hausdorff topological
space. Then an upper semicontinuous function f : X → R belongs to class B∗1
if and only if there is a decreasing sequence of continuous functions fn : X → R
such that f = a. c. limn→∞ fn.

We start from the following lemma.

Lemma 1. Let f : X → R be a function. If there are sets An and continuous
functions fn : X → R such that A1 ⊂ A2 ⊂ · · · , X =

⋃
nAn, fn ≥ f and

fn � An = f � An for n = 1, 2, . . . , then there is a decreasing sequence of
continuous functions gn : X → R with f = a. c. limn→∞ gn.

Proof. Of course, the functions gn = mink≤n fn satisfy all required condi-
tions.

Proof of Theorem 1. If f is the discrete limit of a decreasing sequence
of continuous functions fn : X → R, then evidently f ∈ B∗1 . So, we assume
that f ∈ B∗1 . Since f is upper semicontinuous and X is perfectly normal, by
Remark 1 there is a decreasing sequence of continuous functions fn : X → R
which converges to f at each point x ∈ X.

On the other hand f is the discrete limit of continuous functions; so there
are closed sets An, n = 1, 2, . . ., such that every restricted function f � An is
continuous and X =

⋃∞
n=1An. We can assume that An is compact for each

n = 1, 2, . . .. Fix a positive integer k. On Ak the sequence (fn) tends uniformly
to f due to Dini’s lemma. So we can also assume that

max{(fn(x)− fn+1(x));x ∈ Ak} ≤ 2−n.

By Tietze’s theorem for n = 1, 2, . . . there is a continuous extension gn : X →
[0, 2−n] of the restricted function (fn − fn+1) � Ak. Let

hn = min(gn, fn − fn+1) for n = 1, 2, . . . ,

and let lk = f1 −
∑∞
n=1 hn. Since the series

∑∞
n=1 hn converges uniformly,

the function lk is continuous. Moreover, for k = 1, 2, . . . we have lk ≥ f and
f � Ak = lk � Ak. So, by Lemma 1 we obtain our theorem.

Theorem 1 in the presented form and its proof was proposed by the referee.
My formulation concerned the function f : [a, b] → R and the Euclidean
topology and its proof was more complicated.
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2 Decreasing Sequences of Right Continuous Functions

In this part we assume that X = [a, b) and τ is the topology of right continuity.
This topology τ is perfectly normal and Hausdorff but is not σ-compact. So,
the limit f of a decreasing sequence of right upper semicontinuous functions
fn, n = 1, 2, . . ., is a right upper semicontinuous function and Remark 1 is
valid for (X, τ). Thus we have the following assertion.

Remark 2. For every right upper semicontinuous function f there is a de-
creasing sequence of right continuous functions fn, n = 1, 2, . . ., such that
f = limn→∞ fn.

From the last remark by an elementary proof we obtain the next assertion.

Remark 3. If a function f : [a, b) → R is right upper semicontinuous, then
there is a decreasing sequence of functions fn : [a, b)→ R such that

the functions fn are right continuous ;

f = limn→∞ fn;

all functions fn, n = 1, 2, . . ., are locally constant from the right, i.e. for
each point x ∈ [a, b) there is a positive real rx,n such that

Ix,n = [x, x+ rx,n] ⊂ [a, b) and f � Ix,n is constant ;

if lim supt→x+ f(t) < f(x), then for n sufficiently large fn(x) = f(x);

for every integer n the inclusion fn([a, b)) ⊂ cl(f [a, b))), (where cl de-
notes the closure operation) holds.

Proof. The set A of all points x at which lim supt→x+ f(t) < f(x) is count-
able, i.e. if A 6= ∅, then A = {x1, x2, . . .}. By Remark 2 there is a decreasing
sequence of right continuous functions gn such that f = limn→∞ gn. Fix a posi-
tive integer n and observe that there is a sequence of intervals Ii,n = [ui,n, vi,n),
i = 1, 2, . . ., such that:

[a, b) =
⋃
i Ii,n;

Ii,n ∩ Ij,n = ∅ for i 6= j;

ui,n = xi for i ≤ n;

osc gn < 1
n on each interval Ii,n;

gn(x) > f(x) if x ∈ Ii,n and i ≤ n.
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Let

hn(x) =

{
f(xi) for x ∈ Ii,n, i ≤ n
supIi,n

gn for x ∈ Ii,n i > n.

Then the functions fn = min(h1, h2, . . . , hn), for n = 1, 2, . . . , satisfy all re-
quired conditions.

Theorem 2. If f = a. c. limn→∞ fn, where all functions fn, n = 1, 2, . . ., are
right continuous, then f satisfies the following condition.

(1) For each nonempty perfect set A ⊂ [a, b) there is an open interval I such
that A ∩ I 6= ∅ and the restricted function f � (I ∩B), where

B = {x ∈ A;x is a right limit point of A},

is right continuous at each point of the intersection B ∩ I.

Proof. Let A ⊂ [a, b) be a nonempty perfect set and let B denote the set
of all right limit points of A. For each point x ∈ [a, b) there is a positive
integer n(x) such that fn(x) = f(x) for n ≥ n(x). For n = 1, 2, . . . put
An = {x ∈ [a, b);n(x) = n} and observe that [a, b) =

⋃∞
n=1An. So there are

an open interval I and a positive integer k such that I ∩B 6= ∅ and Ak ∩ I ∩B
is dense in B ∩ I. Thus f(x) = fk(x) for each point x ∈ I ∩A which is a right
limit point of A and consequently f � (B∩ I) is right continuous at each point
of I ∩B.

The above proof of Theorem 2 is short. However the referee related this
statement to the result of Császár and Laczkovich (Theorem 13 of [2], pp. 469)
which says that if X is a Baire space, the functions fn : X → R, n = 1, 2, . . .,
are continuous and f = a. c. limn→∞ fn, then the points of discontinuity of f
constitute a nowhere dense set in X.

The connection between these two results is the following assertion.

Let (X, T , τ) be a bitopological space such that τ is finer than T and
(X, T ) is a Baire space. Assume that for every nonempty set A ∈ τ there is
a nonempty set B ∈ T such that B ⊂ A. Then every τ -nowhere dense set is
T -nowhere dense and (X, T ) is a Baire space.

We arrive at Theorem 2 at once if we observe that the sets X ⊂ [a, b) having
no right isolated points satisfy the conditions of the previous statement. So
the quoted theorem of Császár and Laczkovich can be applied.
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Example 1. Let C be the Cantor ternary set and let In = (an, bn), n =
1, 2, . . ., be an enumeration of all components of the set [0, 1) \ C such that
In ∩ Im = ∅ for n 6= m, n, m = 1, 2, . . . . Put

f(x) =
{

1 for x ∈ B = C \ {an;n ≥ 1}
0 for x ∈ [0, 1) \B.

Observe that the function f is not of Baire class one. For n ≥ 1 let

fn(x) =
{

0 for x ∈ Bn =
⋃
i≤n[ai, bi)

1 for x ∈ [0, 1) \Bn.

Then all functions fn, n = 1, 2, . . ., are right continuous, fn ≥ fn+1 for n =
1, 2, . . . and a. c. limn→∞ fn = f.

Now we introduce the following condition (1′).

(1’) A function f satisfies condition (1′) if for every nonempty closed set
A ⊂ [0, 1) there is an open interval I such that I ∩ A 6= ∅ and the
restricted function f � (A ∩ I) is right continuous. (If x ∈ A is right
isolated in A, then f � A is right continuous at x by default.)

Observe that the implication (1′) =⇒ (1) is true. The function f from Example
1 satisfies condition (1) but it does not satisfy condition (1′). Observe also
that, by Baire’s theorem on Baire 1 functions, every function f satisfying
condition (1′) is of Baire 1 class.

Theorem 3. A function f satisfies condition (1′) if and only if it satisfies the
following condition.

(2) There is a sequence of nonempty closed sets An ⊂ [a, b) such that all
restricted functions f � An, n = 1, 2, . . ., are right continuous and
[a, b) =

⋃∞
n=1An.

Proof. (1′) =⇒ (2). We will apply transfinite induction. Let I0 be an open
interval with rational endpoints such that the restricted function f � I0 is
right continuous. Fix an ordinal number α > 0 and suppose that for every
ordinal number β < α there is an open interval with rational endpoints Iβ
such that Hβ = Iβ \

⋃
γ<β Iγ 6= ∅ and the restricted function f � Hβ is right

continuous. If Gα = [a, b)\
⋃
β<α Iβ 6= ∅, then by (1′) there is an open interval

Iα with rational endpoints such that Iα ∩Gα 6= ∅ and the restricted function
f � (Iα∩Gα) is right continuous. Let ξ be the first ordinal number α such that
[a, b) \

⋃
β<ξ Iβ = ∅. Since the family of all intervals with rational endpoints

is countable, ξ is a countable ordinal number. Every set Hα, α < ξ, is an Fσ
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set; so there are closed sets Hk,α, k = 1, 2, . . ., such that Hα =
⋃∞
k=1Hk,α.

Evidently, all restricted functions f � Hk,α, k = 1, 2, . . . and α < ξ, are right
continuous. Now enumerate in a sequence (An) all sets

Hk,α, k = 1, 2, . . . and α < ξ,

and observe that this sequence satisfies all requirements.
(2) =⇒ (1′)
Fix a nonempty closed set A ⊂ [a, b). If A contains isolated points, then

condition (1′) is satisfied. So we assume that A is a perfect set. By (2)
there is a sequence of closed sets An, n = 1, 2, . . ., such that [a, b) =

⋃
nAn

and all restricted functions f � An, n = 1, 2, . . ., are right continuous. Since
A =

⋃∞
n=1(A∩An), there are a positive integer k and an open interval I such

that I ∩ A = I ∩ Ak 6= ∅. But the restricted function f � (A ∩ I) is right
continuous; so condition (1′) is satisfied.

Theorem 4. If f satisfies condition (1′) (or equivalently (2)) from the last
theorem, then there is a sequence of functions fn, n = 1, 2, . . ., which are right
continuous and for which a. c. limn→∞ fn = f .

Proof. There is a sequence of nonempty closed sets An, n = 1, 2, . . ., such
that [a, b) =

⋃∞
n=1An, A1 ⊂ A2 ⊂ · · · and all restricted functions f � An,

n = 1, 2, . . ., are right continuous. By Tietze’s theorem for n = 1, 2, . . . there
is a right continuous function fn : [a, b) → R which is equal to f on the set
An. Then a. c. limn→∞ fn = f.

Theorem 5. If a function f is upper semicontinuous from the right and sat-
isfies condition (1′) (or equivalently (2)), then there is a decreasing sequence
of right continuous functions fn, n = 1, 2, . . ., such that a. c. limn→∞ fn = f.

Proof. Let a function f satisfies the hypothesis of our theorem. There is a
sequence of nonempty closed sets An, n = 1, 2, . . ., such that [a, b) =

⋃∞
n=1An

and all restricted functions f � An, n = 1, 2, . . ., are right continuous. Without
loss of the generality we can suppose that a ∈ A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . . . Fix a
positive integer n and enumerate in a sequence (In,k)k all components of the set
[a, b) \An. If In,k = (an,k, bn,k), an,k ∈ An and lim supt→an,k+ f(t) = f(an,k),
then we find points cn,k,i, i = 1, 2, . . ., such that

bn,k = cn,k,1 > . . . > cn,k,i > . . .↘ an,k.

By Theorem 2 and Remark 1 for every i ≥ 1 there is right constant func-
tion hn,k,i : [cn,k,i+1, cn,k,i) → R such that hn,k,i ≥ f/[cn,k,i+1, cn,k,i) and
hn,k,i(cn,k,i) < f(cn,k,i) + 1

ik . Let gn,k,i(x) = max(hn,k,i(x), f(an,k)) for x ∈
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[cn,k,i+1, cn,k,i). Observe that gn,k,i([cn,k,i+1, cn,k,i)) ⊂ cl(f([an,k, bn,k))), i =
1, 2, . . . Next in every such interval In,k we define the function gn,k by

gn,k(x) = gn,k,i(x) for x ∈ [cn,k,i+1, cn,k,i), i = 1, 2, . . . .

If In,k = [an,k, bn,k), an,k ∈ An, and lim supx→an,k+ f(x) < f(an,k), then by
Remarks 2 and 3 there is a right constant function hn,k : [an,k, bn,k) → R
such that hn,k ≥ f � [an,k, bn,k), hn,k(an,k) = f(an,k) and hn,k([an,k, bn,k)) ⊂
cl(f([an,k, bn,k)))). Let gn,k(x) = max(hn,k(x), f(x)) for x ∈ [an,k, bn,k). Put

gn(x) =
{

f(x) for x ∈ An
gn,k(x) for x ∈ In,k i, k = 1, 2, . . . .

Then the function gn is right continuous, gn ≥ f and gn � An = f � An. So,
by Lemma 1 we obtain our theorem.

Observe that the last theorem is not a corollary of Theorem 1, since the
topology τ is not σ-compact.

Acknowledgment I would like to thank to the referee for several suggestions,
the reformulation of Theorem 1 and its proof.
Problem. Is Theorem 5 true if we replace condition (1′) by (1)?
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