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ON THE DINI DERIVATES OF A
PARTICULAR FUNCTION

Abstract

We construct a continuous strictly increasing function such that at
each point one of its right Dini derivates is 0 or ∞, and at each point
one of its left Dini derivates is 0 or ∞. Thus at no point can it have a
positive real unilateral derivative.

In [1, (18.8)] there is discussed a continuous strictly increasing function F
(attributed chiefly to Riesz-Nagy) that has no real positive derivative at any
point. Consequently F ′ = 0 almost everywhere.

Put another way, F satisfies the condition:

(∗) there are no positive real number y and point x such that

D+F (x) = D+F (x) = D−F (x) = D−F (x) = y

where D+, D+, D−, D− denote the usual Dini derivates.

But F may not satisfy the stronger condition:

(∗∗) at each point x, either D+f(x) = +∞ or D+f(x) = 0, and at each point
x, either D−f(x) =∞ or D−f(x) = 0.

In this note we will construct a strictly increasing continuous function
f satisfying condition (∗∗). Thus f cannot have a positive real unilateral
derivative at any point.

It is worth comparing f with a nondifferentiable function p constructed in
[2]. At each point x either D+p(x) (D−p(x)) is as large as possible, ∞, or
D+p(x) (D−p(x)) is as small as possible, −∞. For our continuous increasing
function f , at each point x either D+f(x) (D−f(x)) is as large as possible,
∞, or D+f(x) (D−f(x)) is as small as possible, 0.
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The construction of f begins with the construction of two sequences of
sets (An) and (Bn) such that each An and Bn is the union of finitely many
compact intervals.

Among other things, An∪Bn will be [0, 1], and An∩Bn will be a finite set.
We will proceed by induction on n. Let A1 = [0, 1/2] and B1 = [1/2, 1]. To
form A2 delete from each component I of A1 an open symmetric subinterval
J of I such that

22(length J) = (length I) .

Make B2 the closure of [0, 1] \A2. To form B3 delete from each component I
of B2 an open symmetric subinterval J of I such that

23(length J) = (length I) .

Make A3 the closure of [0, 1]\B3. If A1, . . . , An−1 and B1, . . . , Bn−1 have been
constructed and if n is even, form An by deleting from each component I of
An−1, the open symmetric subinterval J of I with

2n(length J) = (length I) ,

and make Bn the closure of [0, 1] \An. If n is odd, form Bn by deleting from
each component I of Bn−1 the open symmetric subinterval J of I such that

2n(length J) = (length I) ,

and make An the closure of [0, 1] \ Bn. By inductive construction, An and
Bn have been constructed for all indices n. Note that the lengths of the
components of An and Bn tend to 0 as n→∞.

Put
A = ∩∞k=1 ∪∞j=k Aj and B = ∩∞k=1 ∪∞j=k Bj .

It follows that A ∪ B = [0, 1]. (The set A ∩ B is nonvoid, but that will not
affect our argument.)

Lemma 1. Let [a, b] be a component interval of An and a ≤ x < b. Let m
denote the Lebesgue measure. Then

m
(
[x, b] ∩B

)
≤ 21−n(b− x) and m

(
[x, b] ∩A

)
≥ (1− 21−n)(b− x) .

Proof. Either Bn+1 \Bn is void or [a, b]∩ (Bn+1 \Bn) consists of one subin-
terval of [a, b] depending on whether n is even or odd. It follows from the
construction that the length of this interval is not greater than 2−n(b− x).

Now b is the right endpoint of a component of An+k for k = 1, 2, 3, . . . .
Thus [x, b] ∩ An+k consists of finitely many components of An+k and/or a
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compact interval containing x. Repeated applications of the principle in the
preceding paragraph and Bn+k \Bn+k−1 ⊂ An+k−1 show that

m
(

[x, b] ∩ (Bn+k \Bn+k−1)
)

= m
(

[x, b] ∩ (Bn+k \Bn+k−1) ∩An+k−1

)
≤ 21−n−km

(
[x, b] ∩An+k−1

)
≤ 21−n−k(b− x) .

But m(An ∩Bn) = 0, and it follows that

m
(

[x, b] ∩ (∪∞k=1Bn+k)
)

= m
(

[x, b] ∩
(
∪∞k=1(Bn+k \Bn+k−1)

))
≤
∞∑

k=1

21−n−k(b− x) = 21−n(b− x) .

Consequently m
(
[x, b]∩B

)
≤ 21−n(b−x) . But A∪B = [0, 1], so m

(
[x, b]∩A

)
≥(

1− 21−n
)
(b− x) . This proves Lemma 1.

Let the function h be the indefinite integral of the characteristic function
of A. Now, if x lies in [an, bn) for components [an, bn] of infinitely many sets
An, then from

m
(
[x, bn] ∩A

)
/(bn − x) ≥

(
1− 21−n

)
it follows that D+h(x) = 1. By reversing the roles of the sets An and Bn, we
see that if x lies in [cn, dn) for components [cn, dn] of infinitely many sets Bn,
then from

m
(
[x, dn] ∩A

)
/(dn − x) ≤ 21−n

it follows that D+h(x) = 0. Thus for x ∈ [0, 1), either D+h(x) = 1 or
D+h(x) = 0. We reverse left and right to see that for x ∈ (0, 1], either
D−h(x) = 0 or D−h(x) = 1.

Now any subinterval I of [0, 1] contains component intervals of some An

and Bn, and from the inequalities in the preceding paragraph it follows that
the functions h(x) and x− h(x) are strictly increasing.

Put k = h−1 on the set h(0, 1). Then the function k(y) − y is strictly
increasing on h(0, 1) because x − h(x) is strictly increasing on (0, 1). From
D+h(x0) = 1 we obtain D+k(y0) = 1 where y0 = h(x0), and from D+h(x0) =
0 we obtain D+k(y0) =∞. Likewise from D−h(x0) = 1 we obtain D−k(y0) =
1, and from D−h(x0) = 0 we obtain D−k(y0) = ∞. At each point in h(0, 1),
either D+k =∞ or D+k = 1, and either D−k =∞ or D−k = 1.

Finally, f(y) = k(y) − y is a continuous strictly increasing function on
h(0, 1) satisfying condition (∗∗).
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We conclude with the observation that if all that is required is a strictly
increasing continuous function whose derivative vanishes almost everywhere,
one solution is well-known and easily constructed. It can be found in [3, p.
101].
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