F. S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207, USA

ON THE DINI DERIVATES OF A PARTICULAR FUNCTION

Abstract

We construct a continuous strictly increasing function such that at each point one of its right Dini derivates is 0 or ∞ , and at each point one of its left Dini derivates is 0 or ∞ . Thus at no point can it have a positive real unilateral derivative.

In [1, (18.8)] there is discussed a continuous strictly increasing function F (attributed chiefly to Riesz-Nagy) that has no real positive derivative at any point. Consequently F' = 0 almost everywhere.

Put another way, F satisfies the condition:

(*) there are no positive real number y and point x such that

$$D^+F(x) = D_+F(x) = D^-F(x) = D_-F(x) = y$$

where D^+ , D_+ , D^- , D_- denote the usual Dini derivates.

But F may not satisfy the stronger condition:

(**) at each point x, either $D^+f(x) = +\infty$ or $D_+f(x) = 0$, and at each point x, either $D^-f(x) = \infty$ or $D_-f(x) = 0$.

In this note we will construct a strictly increasing continuous function f satisfying condition (**). Thus f cannot have a positive real unilateral derivative at any point.

It is worth comparing f with a nondifferentiable function p constructed in [2]. At each point x either $D^+p(x)$ $(D^-p(x))$ is as large as possible, ∞ , or $D_+p(x)$ $(D_-p(x))$ is as small as possible, $-\infty$. For our continuous increasing function f, at each point x either $D^+f(x)$ $(D^-f(x))$ is as large as possible, ∞ , or $D_+f(x)$ $(D_-f(x))$ is as small as possible, 0.

Key Words: Dini derivate, derivative, strictly increasing function.

Mathematical Reviews subject classification: 26A24, 26A48.

Received by the editors October 29,1999

⁹⁴³

The construction of f begins with the construction of two sequences of sets (A_n) and (B_n) such that each A_n and B_n is the union of finitely many compact intervals.

Among other things, $A_n \cup B_n$ will be [0, 1], and $A_n \cap B_n$ will be a finite set. We will proceed by induction on n. Let $A_1 = [0, 1/2]$ and $B_1 = [1/2, 1]$. To form A_2 delete from each component I of A_1 an open symmetric subinterval J of I such that

$$2^2(\text{length } J) = (\text{length } I).$$

Make B_2 the closure of $[0,1] \setminus A_2$. To form B_3 delete from each component I of B_2 an open symmetric subinterval J of I such that

$$2^{3}(\operatorname{length} J) = (\operatorname{length} I).$$

Make A_3 the closure of $[0,1] \setminus B_3$. If A_1, \ldots, A_{n-1} and B_1, \ldots, B_{n-1} have been constructed and if n is even, form A_n by deleting from each component I of A_{n-1} , the open symmetric subinterval J of I with

$$2^{n}(\text{length } J) = (\text{length } I),$$

and make B_n the closure of $[0, 1] \setminus A_n$. If n is odd, form B_n by deleting from each component I of B_{n-1} the open symmetric subinterval J of I such that

$$2^{n}(\text{length } J) = (\text{length } I),$$

and make A_n the closure of $[0,1] \setminus B_n$. By inductive construction, A_n and B_n have been constructed for all indices n. Note that the lengths of the components of A_n and B_n tend to 0 as $n \to \infty$.

 Put

$$A = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} A_j$$
 and $B = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} B_j$.

It follows that $A \cup B = [0, 1]$. (The set $A \cap B$ is nonvoid, but that will not affect our argument.)

Lemma 1. Let [a, b] be a component interval of A_n and $a \le x < b$. Let m denote the Lebesgue measure. Then

$$m([x,b] \cap B) \le 2^{1-n}(b-x)$$
 and $m([x,b] \cap A) \ge (1-2^{1-n})(b-x)$.

PROOF. Either $B_{n+1} \setminus B_n$ is void or $[a, b] \cap (B_{n+1} \setminus B_n)$ consists of one subinterval of [a, b] depending on whether n is even or odd. It follows from the construction that the length of this interval is not greater than $2^{-n}(b-x)$.

Now b is the right endpoint of a component of A_{n+k} for k = 1, 2, 3, ...Thus $[x, b] \cap A_{n+k}$ consists of finitely many components of A_{n+k} and/or a compact interval containing x. Repeated applications of the principle in the preceding paragraph and $B_{n+k} \setminus B_{n+k-1} \subset A_{n+k-1}$ show that

$$m\Big([x,b] \cap (B_{n+k} \setminus B_{n+k-1})\Big) = m\Big([x,b] \cap (B_{n+k} \setminus B_{n+k-1}) \cap A_{n+k-1}\Big)$$
$$\leq 2^{1-n-k} m\Big([x,b] \cap A_{n+k-1}\Big) \leq 2^{1-n-k} (b-x) \,.$$

But $m(A_n \cap B_n) = 0$, and it follows that

$$m\Big([x,b] \cap (\bigcup_{k=1}^{\infty} B_{n+k})\Big) = m\Big([x,b] \cap \big(\bigcup_{k=1}^{\infty} (B_{n+k} \setminus B_{n+k-1})\big)\Big)$$
$$\leq \sum_{k=1}^{\infty} 2^{1-n-k}(b-x) = 2^{1-n}(b-x).$$

Consequently $m([x,b]\cap B) \leq 2^{1-n}(b-x)$. But $A \cup B = [0,1]$, so $m([x,b]\cap A) \geq (1-2^{1-n})(b-x)$. This proves Lemma 1.

Let the function h be the indefinite integral of the characteristic function of A. Now, if x lies in $[a_n, b_n)$ for components $[a_n, b_n]$ of infinitely many sets A_n , then from

$$m([x,b_n] \cap A)/(b_n - x) \ge (1 - 2^{1-n})$$

it follows that $D^+h(x) = 1$. By reversing the roles of the sets A_n and B_n , we see that if x lies in $[c_n, d_n)$ for components $[c_n, d_n]$ of infinitely many sets B_n , then from

$$m([x,d_n] \cap A)/(d_n - x) \le 2^{1-n}$$

it follows that $D_+h(x) = 0$. Thus for $x \in [0,1)$, either $D^+h(x) = 1$ or $D_+h(x) = 0$. We reverse left and right to see that for $x \in (0,1]$, either $D_-h(x) = 0$ or $D^-h(x) = 1$.

Now any subinterval I of [0, 1] contains component intervals of some A_n and B_n , and from the inequalities in the preceding paragraph it follows that the functions h(x) and x - h(x) are strictly increasing.

Put $k = h^{-1}$ on the set h(0,1). Then the function k(y) - y is strictly increasing on h(0,1) because x - h(x) is strictly increasing on (0,1). From $D^+h(x_0) = 1$ we obtain $D_+k(y_0) = 1$ where $y_0 = h(x_0)$, and from $D_+h(x_0) =$ 0 we obtain $D^+k(y_0) = \infty$. Likewise from $D^-h(x_0) = 1$ we obtain $D_-k(y_0) =$ 1, and from $D_-h(x_0) = 0$ we obtain $D^-k(y_0) = \infty$. At each point in h(0,1), either $D^+k = \infty$ or $D_+k = 1$, and either $D^-k = \infty$ or $D_-k = 1$.

Finally, f(y) = k(y) - y is a continuous strictly increasing function on h(0, 1) satisfying condition (**).

We conclude with the observation that if all that is required is a strictly increasing continuous function whose derivative vanishes almost everywhere, one solution is well-known and easily constructed. It can be found in [3, p. 101].

References

- E. Hewitt and K. Stromberg, *Real and Abstract Analysis*, Springer Verlag, New York, 1965.
- [2] A. P. Morse, A continuous function with no unilateral derivatives, Trans. Amer. Math. Soc. 44 (1938), 496–507.
- [3] S. Saks, Theory of the Integral, Dover, New York, 1964.