Erik Talvila, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801. e-mail: talvila@math.uiuc.edu

LIMITS AND HENSTOCK INTEGRALS OF PRODUCTS

Abstract

When it is known that $\int_a^b f_n \to \int_a^b f$ for a sequence of Henstock integrable functions $\{f_n\}$ we give necessary and sufficient conditions for $\int_a^b f_n g_n \to \int_a^b f g$ for all convergent sequences $\{g_n\}$ of functions of uniform bounded variation. The conditions are easy to apply and involve either the uniform boundedness or uniform convergence of the indefinite integrals of f_n . The proof uses Stieltjes integrals and applies to bounded or unbounded intervals on the real line. It is shown how to define Stieltjes integrals. The special cases $f_n \equiv f$ or $g_n \equiv g$ are also examined. The Abel and Dirichlet tests for integrability of a product are obtained as corollaries as well as a form of the Riemann-Lebesgue lemma. And, if $\Phi:\mathbb{N}\to(0,\infty)$ it is shown what conditions on $\{f_n\}$ and $\{g_n\}$ give $\int_a^b f_n g_n = O(\Phi(n))$ as $n \to \infty$.

1 Introduction

Let [a, b] be a closed interval in the extended real line $(-\infty \leq a < b \leq +\infty)$. Suppose $\{f_n\}$ is a sequence of functions $f_n : [a, b] \to \mathbb{R}$, each of which has a finite Henstock integral over [a, b], and $\int_a^b f_n \to \int_a^b f$ as $n \to \infty$ for some Henstock integrable function $f:[a, b] \to \mathbb{R}$. This paper answers the following question. What are necessary and sufficient conditions on f_n and $g_n:[a, b] \to \mathbb{R}$ so that $\int_a^b f_n g_n \to \int_a^b f g$? Note that we do not assume $f_n \to f$ but it will generally be necessary to assume $g_n \to g$. It is known that for $\int_a^b f_n g_n$ to exist for all integrable f_n each g_n must be of bounded variation. (The functions of bounded variation are multipliers for Henstock integrable functions.) Clearly some condition involving convergence of $\int f_n$ to $\int f$ on subintervals is needed

Key Words: Henstock integral, convergence test, Stieltjes integral

Mathematical Reviews subject classification: 26A39, 26A42

Received by the editors July 24, 1999

^{*}Supported by an NSERC Postdoctoral Fellowship

⁹⁰⁷

since the g_n could be characteristic functions of intervals in [a, b]. As we will see in Theorem 3.1 below, such additional conditions can take two forms. Let $F_n(x) = \int_a^x f_n$ and $F(x) = \int_a^x f$. If $F_n \to F$ uniformly on [a, b] then $\{g_n\}$ must be of uniform bounded variation in order for $\int_a^b f_n g_n \to \int_a^b f g$. If $\{F_n\}$ is uniformly bounded then $\{g_n\}$ must be of uniform bounded variation and $V(g_n - g)$ must tend to 0 as $n \to \infty$. Here, the variation of function g is $V(g) = \sup \sum |g(a_i) - g(b_i)|$ where the supremum is taken over all finite sets of disjoint intervals $(a_i, b_i) \subset [a, b]$. The special cases $f_n \equiv f$ or $g_n \equiv g$ are dealt with in corollaries to the theorem. The results continue to hold when f_n and g_n are changed on sets of measure zero and $g_n \to g$ almost everywhere.

If $a = -\infty$ or $b = +\infty$ we treat [a, b] as a compact interval, with topological base the intervals (α, β) , $[-\infty, \alpha)$, $(\alpha, +\infty]$ for all real numbers $\alpha < \beta$. For $\phi: [-\infty, +\infty] \to \mathbb{R}$ we demand that $\phi(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$, $\phi(-\infty) \in \mathbb{R}$ and $\phi(+\infty) \in \mathbb{R}$. For a function to be continuous on $[-\infty, +\infty]$ it must equal its limits at $\pm\infty$. Thus, no definition of the functions $x \mapsto x$ and $x \mapsto \sin x$ can make these functions continuous on $[-\infty, +\infty]$. When there is no confusion write ∞ in place of $+\infty$. With this point of view theorems used below such as Bolzano-Weierstrass and integration by parts apply on unbounded intervals. The value of ϕ at $\pm\infty$ is immaterial in the Henstock integral $\int_{-\infty}^{\infty} \phi$. But, with the Riemann-Stieltjes integral $\int_{-\infty}^{\infty} d\phi$ the value of ϕ at the endpoints is its essence. The proof of our limit theorem will involve Riemann-Stieltjes integrals, for which a new definition is given in Proposition 2.1 below.

2 Stieltjes Integrals

The following result shows how to handle Stieltjes integrals on unbounded intervals. For a Henstock integral on $[0, \infty]$, the tag for the last interval $[x_{N-1}, \infty]$ is taken to be ∞ and the corresponding term in the Riemann sum is simply ignored. With a Stieltjes integral this term must be retained. We take the tag for this interval to be ∞ and force x_{N-1} to be sufficiently large. Let $\delta : [0, \infty] \to (0, \infty)$. We will always write tagged partitions of $[0, \infty]$ in the generic form $\mathcal{P} = \{(z_i, [x_{i-1}, x_i])\}_{i=1}^N$, where $z_i \in [x_{i-1}, x_i],$ $0 = x_0 < x_1 < \cdots < x_N = \infty$ and $z_N = \infty$. Define \mathcal{P} to be δ -fine if $(z_i - \delta(z_i), z_i + \delta(z_i)) \supset [x_{i-1}, x_i]$ for $1 \leq i \leq N - 1$ and $x_{N-1} > 1/\delta(\infty)$. A regulated function has a left and right limit at each point. Note that a function of bounded variation is regulated. Part iii) below is given in [13], p. 187.

Proposition 2.1. Let F and g be real valued functions on $[0, \infty]$ with one regulated and the other of bounded variation. The following definitions of

 $\int_0^\infty F \, dg = A \in \mathbb{R} \text{ are equivalent.}$

- i) For each $\epsilon > 0$ there is a function $\delta : [0, \infty] \to (0, \infty)$ so that for any δ -fine tagged partition of $[0, \infty]$ we have $\left| \sum_{i=1}^{N} F(z_i) [g(x_i) g(x_{i-1})] A \right| < \epsilon$.
- ii) For any strictly increasing continuous function $h:[0,1) \to [0,\infty)$ satisfying h(0) = 0 and $\lim_{t \to 1^-} h(t) = +\infty$ we have $\int_0^1 F \circ h d(g \circ h) = A$.

iii)
$$\lim_{t \to \infty} \int_0^t F \, dg + F(\infty) \Big[g(\infty) - \lim_{s \to \infty} g(s) \Big] = A.$$

PROOF. The hypothesis guarantees the existence of $\int_0^t F \, dg$ for all $t \in [0, \infty)$.

Suppose iii) holds. Let $\epsilon > 0$. By lemma 9.20 in [9], there exists a function $\delta_1 : [0, \infty] \to (0, \infty)$ such that if $0 < c < \infty$ and \mathcal{P} is a δ_1 -fine tagged partition of [0, c] then $\left| \sum_{i=1}^N F(z_i) [g(x_i) - g(x_{i-1})] - \int_0^c F dg \right| < \epsilon$. Take $\delta_\infty > 0$ small enough so that if $1/\delta_\infty < T < \infty$ then $|g(T) - \lim_{s \to \infty} g(s)| < \epsilon/(1 + |F(\infty)|)$ and $|\lim_{t \to \infty} \int_0^t F dg - \int_0^T F dg| < \epsilon$. Let $\delta(x) = \delta_1(x)$ for $0 \le x < \infty$ and $\delta(\infty) = \delta_\infty$. Let \mathcal{P} be a δ -fine tagged partition of $[0, \infty]$. Then

$$\begin{split} \left| \sum_{i=1}^{N} F(z_{i})[g(x_{i}) - g(x_{i-1})] - A \right| \\ &\leq \left| \sum_{i=1}^{N-1} F(z_{i})[g(x_{i}) - g(x_{i-1})] - \int_{0}^{x_{N-1}} F \, dg \right| \\ &+ \left| F(\infty)[g(\infty) - g(x_{N-1})] - F(\infty) \Big[g(\infty) - \lim_{s \to \infty} g(s) \Big] \Big| \\ &+ \left| \lim_{t \to \infty} \int_{0}^{t} F \, dg - \int_{0}^{x_{N-1}} F \, dg \right| \leq 3\epsilon. \end{split}$$

Hence we have i).

Now suppose i) holds. Let $\epsilon > 0$. We can assume $\delta : [0, \infty] \to (0, \infty)$ such that $1/\delta(\infty) < T < \infty$ implies $|g(T) - \lim_{s \to \infty} g(s)| < \epsilon/(1 + |F(\infty)|)$. Let $1/\delta(\infty) < T < \infty$. There is a δ -fine tagged partition of $[0, \infty]$ with $x_{N-1} = T$.

And, there is $A \in \mathbb{R}$ such that

$$\epsilon > \left|\sum_{i=1}^{N} F(z_i)[g(x_i) - g(x_{i-1})] - A\right|$$
$$\geq \left|\sum_{i=1}^{N-1} F(z_i)[g(x_i) - g(x_{i-1})] - B\right| - \epsilon$$

where $B = A - F(\infty) \left[g(\infty) - \lim_{s \to \infty} g(s) \right]$. It follows that $|\int_0^T F \, dg - B| < 3\epsilon$. This gives iii).

With a change of variables, iii) becomes

$$\lim_{t \to 1^-} \int_0^t F \circ h \, d(g \circ h) + F \circ h(1) \left[g \circ h(1) - \lim_{s \to 1^-} g \circ h(s) \right] = A.$$

The proof that ii) is equivalent to iii) is now similar to the above. \Box

There are obvious modifications for other unbounded intervals. When F is continuous and g is of bounded variation we have a Riemann-Stieltjes integral and δ can be taken to be a constant.

3 Limit Theorem

We now present the main theorem.

Theorem 3.1. Let $\{f_n\}$ be a sequence of Henstock integrable functions such that $f_n:[a,b] \to \mathbb{R}$ and $\int_a^b f_n \to \int_a^b f$ as $n \to \infty$ for some Henstock integrable function $f:[a,b] \to \mathbb{R}$. Define $F_n(x) = \int_a^x f_n$ and $F(x) = \int_a^x f$. Let $\{g_n\}$ be a sequence of functions such that $g_n:[a,b] \to \mathbb{R}$, $\{g_n\}$ is of uniform bounded variation and $\{g_n\}$ converges pointwise on [a,b] to the function $g:[a,b] \to \mathbb{R}$. Then convergence $\int_a^b f_n g_n \to \int_a^b f g$ for all such $\{g_n\}$ is equivalent to each of the following:

- i) $F_n \to F$ uniformly on [a, b],
- ii) $F_n \to F$ on [a,b], $\{F_n\}$ is uniformly bounded on [a,b], under the additional assumption $V(g_n - g) \to 0$,

iii)
$$\int_a^b F_n \, dg_n \to \int_a^b F \, dg_n$$

.

910

PROOF. i) Suppose $F_n \to F$ uniformly on [a, b]. Since $\{g_n\}$ is of uniform bounded variation and $g_n \to g$ it follows there is a constant M so that $|g| \leq M$, $V(g) \leq M$ and $|g_n| \leq M$, $V(g_n) \leq M$ for all n. Write $f_n g_n - f g = (f_n - f)g_n + f(g_n - g)$. Integrate by parts ([9], Theorem 12.21),

$$\int_{a}^{b} (f_n - f)g_n = g_n(b) \int_{a}^{b} (f_n - f) - \int_{a}^{b} (F_n - F)dg_n.$$
(1)

It follows that

$$\left| \int_{a}^{b} (f_n - f)g_n \right| \le M \left| \int_{a}^{b} (f_n - f) \right| + \max_{a \le x \le b} |F_n(x) - F(x)|M.$$
(2)

Both expressions on the right tend to 0 as $n \to \infty$. Also,

$$\int_{a}^{b} f(g_n - g) = [g_n(b) - g(b)] \int_{a}^{b} f - \int_{a}^{b} F \, dg_n + \int_{a}^{b} F \, dg.$$
(3)

The first term on the right tends to 0 since $g_n \to g$ pointwise. As $\{g_n\}$ is of uniform bounded variation and F is continuous on [a, b], we have $\int_a^b F dg_n \to \int_a^b F dg$. (The proof of the theorem on page 212 of [13] can be extended to unbounded intervals using Proposition 2.1.) This proves sufficiency.

Now we show it is necessary to assume $F_n \to F$ uniformly on [a, b]. Suppose $F_n \not\to F$ on [a, b] or $F_n \to F$ on [a, b] but not uniformly. Then there is a sequence in [a, b] on which $F_n - F \not\to 0$. The sequence has a convergent subsequence $\{y_n\}_{n \in I}$ defined by the unbounded index set $I \subset \mathbb{N}$ (Bolzano-Weierstrass). As $n \to \infty$ in I, we have $F_n(y_n) - F(y_n) \not\to 0$ but $y_n \to y$. With no loss of generality we may assume $a < y_n \leq y \leq b$.

Let *H* be the Heaviside step function $(H(x) = 1 \text{ for } x \ge 0 \text{ and } H(x) = 0$ otherwise). Define $g_n(x) = H(x - y_n)$ for $n \in I$ and $g_n(x) = H(x - y)$ otherwise. Then g(x) = H(x - y) and $V(g_n) = 1$. Let $n \in I$. Then

$$\int_{a}^{b} f_n g_n = \int_{y_n}^{b} f_n = F_n(b) - F_n(y_n)$$
$$\int_{a}^{b} f g = \int_{y}^{b} f = F(b) - F(y).$$

Since $F_n(b) \to F(b)$ and F and F_n are continuous this gives our contradiction and proves i).

To prove ii), suppose that $F_n \to F$ pointwise, $|F_n| \leq M$ for all n and $V(g_n - g) \to 0$. Write $f_n g_n - f g = f_n(g_n - g) + (f_n - f)g$. Integrate by parts,

$$\left| \int_{a}^{b} f_n(g_n - g) \right| = \left| [g_n(b) - g(b)] \int_{a}^{b} f_n - \int_{a}^{b} F_n d(g_n - g) \right|$$
$$\leq |g_n(b) - g(b)| M + M V(g_n - g)$$
$$\to 0 \quad \text{as} \quad n \to \infty.$$

Also,

$$\int_{a}^{b} (f_n - f)g = g(b) \int_{a}^{b} (f_n - f) - \int_{a}^{b} (F_n - F)dg$$

We have $\int_a^b f_n \to \int_a^b f$. And, since g is of bounded variation, $|F_n| \leq M$ and $F_n \to F$ pointwise, the dominated convergence theorem for Riemann-Stieltjes integrals applies so that $\int_a^b (F_n - F) dg \to 0$ ([13], p. 205). Hence, $\int_a^b f_n g_n \to \int_a^b f g$.

 $\int_{a}^{b} f_{n} g_{n} \to \int_{a}^{b} f g.$ If there is $c \in (a, b)$ such that $F_{n}(c) \neq F(c)$ then let $g_{n}(x) = g(x) = H(x-c)$. Then $V(g_{n}) = 1$ and $V(g_{n}-g) = 0$. And,

$$\int_{a}^{b} f_n g_n = F_n(b) - F_n(c)$$
$$\int_{a}^{b} f g = F(b) - F(c).$$

Since $\int_a^b f_n \to \int_a^b f$, it follows that $\int_a^b f_n g_n \neq \int_a^b f g$. If F_n is not uniformly bounded then there is a sequence on which $|F_n| \to \infty$.

If F_n is not uniformly bounded then there is a sequence on which $|F_n| \to \infty$. With no loss of generality, there is a subsequence $\{y_n\}_{n \in I}$ defined by the unbounded index set $I \subset \mathbb{N}$ so that for $n \in I$ we have $F_n(y_n) \ge 1$, $F_n(y_n) \to +\infty$ and $y_n \to y$ for some $a < y_n < y \le b$. Let $g_n(x) = H(x - y_n)/\sqrt{F_n(y_n)}$ for $n \in I$ and $g_n(x) = 0$ otherwise. Then $V(g_n) \le 1$, g = 0 and $V(g_n - g) \to 0$. For $n \in I$ we have

$$\int_{a}^{b} f_n g_n = \frac{F_n(b) - F_n(y_n)}{\sqrt{F_n(y_n)}} \to -\infty$$

whereas $\int_{a}^{b} f g = 0$. The proof of iii) follows immediately from (1) and (3).

Corollary 3.2. Suppose $f:[a,b] \to \mathbb{R}$ is measurable. Then $\int_a^b f g_n \to \int_a^b f g$ for all functions of uniform bounded variation $g_n:[a,b] \to \mathbb{R}$ with $g_n \to g$ if and only if $\int_a^b f$ exists.

This contains a version of the Riemann-Lebesgue lemma: If f is integrable over [0, 1] then

$$\int_{x=0}^{1} f(x) e^{i 2n\pi x} dx = o(n) \quad \text{as } n \to \infty.$$

Note that the functions $\sin(2n\pi x)$ and $\cos(2n\pi x)$ both have variation 4n over [0,1] so $\exp(i 2n\pi x)/n$ is of uniform bounded variation. This estimate was proven sharp in [15].

Corollary 3.3. Suppose the functions $f_n : [a,b] \to \mathbb{R}$ are integrable and $\int_a^b f_n \to \int_a^b f$ for some integrable function f. Then $\int_a^b f_n g \to \int_a^b f g$ for all functions $g:[a,b] \to \mathbb{R}$ of bounded variation if $F_n \to F$ on [a,b] and $\{F_n\}$ is uniformly bounded.

Necessary and sufficient conditions are not known for the above case.

Corollary 3.2 includes the Abel test for integrability of a product: If $\int_a^b f$ exists and g is of bounded variation then $\int_a^b f g$ exists. We also have a result than can be useful when $\int_a^b f_n$ does not exist:

Corollary 3.4. If $|\int_a^x f_n| \leq M$ for all $n \geq 1$ and all $x \in [a, b)$; if each g_n is of bounded variation; if $\lim_{x \to b^-} g_n(x) = 0$, uniformly in n; if $g_n \to 0$ on [a, b] and if $V(g_n) \to 0$ then $\int_a^b f_n g_n \to 0$.

PROOF. Let $x \in (a, b)$ and fix $n \ge 1$. Integrate by parts,

$$\int_a^x f_n g_n = g_n(x) \int_a^x f_n - \int_a^x F_n \, dg_n.$$

We have $|g_n(x) \int_a^x f_n| \le |g_n(x)| M \to 0$ as $x \to b^-$. And,

$$\int_{a}^{x} F_n dg_n = \int_{t=a}^{b} F_n(t)H(x-t) dg_n(t)$$

Defining $F_n(b) = 0$ gives

$$\lim_{x \to b^-} F_n(t)H(x-t) = \begin{cases} F_n(t), & a \le t < b \\ 0, & t = b. \end{cases}$$

The dominated convergence theorem now shows $\lim_{x\to b^-} \int_a^x F_n dg_n = \int_a^b F_n dg_n$ for each $n \ge 1$. So, $\int_a^b f_n g_n$ exists for all $n \ge 1$. As above, $|\int_a^x f_n g_n| \le M[|g_n(x)| + Vg_n]$. It now follows that $\lim_{n\to\infty} \lim_{x\to b^-} \int_a^x f_n g_n = 0$ since $|g_n(x)|$ is uniformly small as $x \to b^-$ and $Vg_n \to 0$.

Note that it is not assumed here that F_n has a limit or that $\int_a^b f_n$ exists. The premise of the corollary implies that $\{g_n\}$ is of uniform bounded variation. The first part of the proof gives the Dirichlet test for integrability of a product. This asserts the existence of $\int_a^b f g$ given that $|\int_a^x f| \leq M$ and that g is of bounded variation such that $\lim_{x\to b^-} g(x) = 0$ or $\lim_{x\to b^-} F(x)g(x)$ exists. See [12] and the forthcoming book [3] for other such tests.

Corollary 3.5. Let the functions $f_n : [a,b] \to \mathbb{R}$ be integrable and suppose we have a growth function $\Phi : \mathbb{N} \to (0,\infty)$. Then $\int_a^b f_n g_n = O(\Phi(n))$ for all uniformly bounded functions $g_n : [a,b] \to \mathbb{R}$ of uniform bounded variation if and only if $F_n = O(\Phi(n))$ uniformly on [a,b].

PROOF. Suppose $|g_n| \leq M$, $|Vg_n| \leq M$ and $F_n = O(\Phi(n))$, uniformly on [a, b]. As in (2) we have $|\int_a^b f_n g_n| \leq M(|F_n(b)| + \max_{a \leq x \leq b} |F_n(x)|) = O(\Phi(n))$. To show necessity, we proceed as in case i) of the theorem. If F_n is not $O(\Phi(n))$ uniformly on [a, b] then there is a sequence $y_n \in [a, b]$ such that $y_n \to y \in [a, b]$ and $F_n(y_n)/\Phi(n) \to +\infty$ as $n \to \infty$ in $I \subset \mathbb{N}$. Let $g_n(x) = H(y_n - x)$ for $n \in I$ and $g_n(x) = H(y - x)$ otherwise. This gives $\int_a^b f_n g_n = \int_a^{y_n} f_n = F_n(y_n) \neq O(\Phi(n))$ as $n \to \infty$ in I.

Remark 3.6. The Alexiewicz norm ([1]) of an integrable function f is defined by $||f|| = \sup_{a \le x \le b} |\int_a^x f|$. Condition i) of the theorem can be written $||f_n - f|| \to 0$. And, in ii), F_n being uniformly bounded on [a, b] is equivalent to the uniform boundedness of $||f_n||$.

Remark 3.7. Some care is needed in the case of infinite intervals. The conclusion following (3) is essentially Helley's second theorem ([14], p. 233). The editor's appendix (p. 240) contains the example

$$g_n(x) = \begin{cases} 0, & x \le n \\ x - n, & n \le x \le n + 1 \\ 1, & x \ge n + 1. \end{cases}$$

It is claimed that $\int_{-\infty}^{+\infty} dg_n \not\to \int_{-\infty}^{+\infty} dg$. However, specifying g_n at the endpoints $\pm \infty$ corrects this problem. Let α and β be any real numbers. Defining $g_n(-\infty) = \alpha$ and $g_n(+\infty) = \beta$ gives $g(-\infty) = \alpha$, $g(+\infty) = \beta$ and g(x) = 0 for $x \in \mathbb{R}$. And, $V(g_n) = |\alpha| + 1 + |\beta - 1|$. Using Proposition 2.1, $\int_{-\infty}^{+\infty} dg_n = \beta - \alpha = \int_{-\infty}^{+\infty} dg$. Thus, $\int_{-\infty}^{+\infty} dg_n \to \int_{-\infty}^{+\infty} dg$.

Remark 3.8. The special cases in Corollaries 3.2 and 3.3 are examined from a different perspective in [6], namely Theorems 48 and 49 in Chapter 1, as proved for the wide Denjoy integral (Denjoy-Khintchine). (But, they also hold for the restricted Denjoy integral, which is equivalent to the Henstock integral.) Theorem 49 assumes $f_n \to f$ and requires $\{F_n\}$ to be $UACG_*$ and continuous, uniformly with respect to n (equicontinuous), in order to provide a sufficient condition to give $\int_a^b f_n \to \int_a^b f$. In this paper we need $\{F_n\}$ to be uniformly bounded and assume $\int_a^x f_n \to \int_a^x f$ for each $x \in [a, b]$. Necessary and sufficient for $\int_a^b f_n \to \int_a^b f$ is that $\{f_n\}$ be γ -convergent to f ([4]). (See also [10], Theorems 11.1, 11.2, 13.7 and 13.8.) If $f_n \to f$ then sufficient is that $\{f_n\}$ be uniformly Henstock integrable ([9]) or that $\{F_n\}$ be $UACG_*$ and uniformly continuous with respect to n ([6], Theorem 47). See [5] for an example of a sequence of continuous functions that has a uniform limit but is not $UACG_*$. The definitions are given there as well. For $UACG^*$ in [6] and [11], read $UACG_*$ in [5] and [9]. See also [11], Theorems 12.4 and 12.11, for different versions of our Corollaries 3.2 and 3.3.

Remark 3.9. Note that if a sequence of continuous functions converges to a continuous function the convergence is quasi-uniform but need not be uniform. See [7] or [8]. Similarly when the functions are ACG. For example, $\phi_n(x) = nx \exp(-nx)$ converges to 0 on [0, 1] but not uniformly since $\phi_n(1/n) = \exp(-1)$. Hence, the condition in i) is not superfluous.

4 Examples

The first example shows $\{f_n\}$ need not have a limit (not even almost everywhere) and that if f = 0 then the theorem may still apply when $\{g_n\}$ does not have a limit. The second example deals with integrals of derivatives and the third with a convolution where n has been replaced with a continuous variable. A final example involves the Dirichlet test.

Example 4.1. Let [a,b] = [0,1] and let $f_n(x) = a_n \cos(2n\pi x)$ where $\{a_n\}$ is a sequence of real numbers. Then $F_n(x) = a_n \sin(2n\pi x)/(2n\pi)$. For all sequences $\{a_n\}$ we have $\int_0^1 f_n = 0$. If $a_n = o(n)$ then $F_n \to 0$ uniformly on [0,1]. We can take f = 0. It is clear from equations (1) and (3) that

if f = 0 then $\{g_n\}$ need not have a limit at any point in [0, 1], provided $g_n(1)$ is bounded. Part i) of the theorem applies and $\int_0^1 f_n g_n \to 0$ for any sequence $\{g_n\}$ of uniform bounded variation with $\{g_n(1)\}$ bounded (which is so if $\{g_n(x_0)\}$ is bounded at any fixed point x_0 in [0, 1]).

If $a_n = O(n)$ then $\{F_n\}$ is uniformly bounded. Part ii) applies and $\int_0^1 f_n g_n \to 0$ for any sequence of functions $\{g_n\}$ of uniform bounded variation with $g_n \to g$ and $V(g_n - g) \to 0$.

If $a_n \neq O(n)$ then $\{F_n\}$ need not be bounded and the theorem need not apply. Indeed, let $a_n = n^3$ and $g_n(x) = \cos(2n\pi x)/n^2$. Then $g_n \to 0$ and $V(g_n) = 4/n$ but $\int_0^1 f_n g_n = n/2 \neq 0$.

We remark in passing that $\{\cos(2n\pi x)\}$ is not uniformly Henstock integrable (i.e., not equi-integrable). (See [9] for the definition.) If $\{z_i\}_{i=1}^N$ are the tags of a δ -fine tagged partition of [0, 1] then there are positive integers n and k_i so that $\cos(2n\pi z_i) \ge 1/2$ for all $1 \le i \le N$. By an extension of Dirichlet's approximation theorem (exercise 1 in Chapter 7 of [2]), this inequality can always be solved for some $n \ge 1$ and $0 \le k_i \le n$. The number n may have to be taken as large as 6^N . For this value of n the Riemann sum is at least as large as 1/2 so $\{\cos(2n\pi x)\}$ is not uniformly Henstock integrable. I am indebted to Aimo Hinkkanen for supplying the reference to Dirichlet's approximation theorem.

Example 4.2. Let $\beta > \alpha > 0$. Define $f_n(x) = \frac{d}{dx}[(x/n^\beta)\sin(n^\alpha/x)]$ when $x \neq 0$ and $f_n(0) = 0$. For a = 0 this gives $F_n(x) = (x/n^\beta)\sin(n^\alpha/x)$ when $x \neq 0$ and $F_n(0) = 0$. We have $|F_n(x)| \leq n^{\alpha-\beta} \to 0$ uniformly on $[0,\infty]$. Let f = 0 then for any $\{g_n\}$ of uniform bounded variation with $g_n \to g$ we have $\int_0^b f_n g_n \to 0$ for any fixed $0 < b \leq \infty$. If $\beta = \alpha$ then part ii) applies on $[0,\infty]$ and part i) applies on bounded intervals but not on $[0,\infty]$ since $F_n(x) \to H(x-\infty)$ and we would then be forced to take $f(x) = \delta(x-\infty)$, the Dirac distribution at $+\infty$.

Example 4.3. Consider the convolution $\gamma(s) = \int_{-\infty}^{\infty} \phi(s-t) \psi(t) dt$ where $s \in \mathbb{R}$, $\int_{-\infty}^{\infty} \phi$ exists and ψ is real valued on \mathbb{R} and of bounded variation. First suppose $\lim_{t\to\infty} \psi(t) = \psi_{\infty} \in \mathbb{R}$. Let $g_s(t) = \psi(s-t)$. We have $g(t) = \lim_{s\to\infty} g_s(t) = \psi_{\infty}$ for $t \in \mathbb{R}$. Since $V(g_s) = V(\psi)$, Corollary 3.2 gives $\lim_{s\to\infty} \gamma(s) = \psi_{\infty} \int_{-\infty}^{\infty} \phi$.

$$\begin{split} \lim_{s\to\infty} \gamma(s) &= \psi_{\infty} \int_{-\infty}^{\infty} \phi. \\ \text{Now suppose } \int_{-\infty}^{\infty} \phi = 0. \text{ Let } f_s(t) = \phi(s-t). \text{ Then } \int_{-\infty}^{\infty} f_s = 0. \text{ Take } f = 0. \\ \text{Then } F_s(x) &= \int_{-\infty}^x f_s(t) \, dt = \int_{s-x}^{\infty} \phi \to 0 \text{ as } s \to \infty. \\ \text{Hence, } F_s \to 0, \text{ but perhaps not uniformly. However, } F_s \text{ is uniformly bounded by } \sup_{x\in\mathbb{R}} |\int_x^{\infty} \phi|. \\ \text{Corollary 3.3 then says } \lim_{s\to\infty} \gamma(s) = 0. \\ \text{This agrees with the previous part of this example when } \int_{-\infty}^{\infty} \phi = 0. \end{split}$$

Example 4.4. Let $\phi:[0,1] \to \mathbb{R}$ be integrable. Define f(x) to be $\phi(x \mod 1)$ if $2n \le x < 2n+1$ for some $n \in \mathbb{N}_0$ and $f(x) = -\phi(x \mod 1)$ otherwise. If g is of bounded variation and $g \to 0$ at infinity then $\int_0^\infty f g$ exists. Note that $\int_0^\infty f g$ exists only if $\phi = 0$ almost everywhere. Special cases are $\int_1^\infty \sin(x) x^{-p} dx$ and $\int_1^\infty x^q \sin(x^p) dx$ for p > 0 and q .

References

- A. Alexiewicz, Linear functionals on Denjoy-integrable functions, Colloq. Math. 1(1948), 289–293.
- [2] T. M. Apostol, Modular functions and Dirichlet series in number theory, New York, Springer-Verlag, 1990.
- [3] R. G. Bartle, A Modern Theory of Integration, Providence, American Mathematical Society.
- [4] R. G. Bartle, A convergence theorem for generalized Riemann integrals, Real Anal. Exchange 20(1994/95), 119–124.
- B. Bongiorno, L. Di Piazza and V. Skvortsov, Uniform generalized absolute continuity and some related problems in H-integrability, Real Anal. Exchange 19(1993/94), 290–301.
- [6] V. G. Čelidze and A.G. Džvaršeišvili, The theory of the Denjoy integral and some applications (trans. P.S. Bullen), Singapore, World Scientific, 1989.
- [7] N. Dunford and J.T. Schwartz, *Linear operators, vol. I*, New York, Interscience, 1958.
- [8] R. A. Gordon, When is a limit function continuous?, Math. Mag. 71(1998), 306–308.
- [9] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock, Providence, American Mathematical Society, 1994.
- [10] R. Henstock, Lectures on the theory of integration, World Scientific, Singapore, 1988.
- [11] P-Y. Lee, Lanzhou lectures on Henstock integration, Singapore, World Scientific, 1989.

- [12] J. Mawhin, Analyse-fondements, techniques, évolution, De Boeck Université, Brussels, 1992.
- [13] R. M. McLeod, *The generalized Riemann integral*, Washington, The Mathematical Association of America, 1980.
- [14] I. P. Natanson, Theory of functions of a real variable, vol. I (trans. L.F. Boron, ed. E. Hewitt), New York, Ungar, 1955.
- [15] E. C. Titchmarsh, The order of magnitude of the coefficients in a generalized Fourier series, Proc. London Math. Soc., Series 2 22(1923/1924) xxv-xxvi (November 9, 1922).