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GENERAL FORMULATIONS OF SOME
THEOREMS OF CLUSTER SETS

Abstract

Two theorems on symmetry properties of cluster sets relative to a
grill for the domain of the functions are proved here. One of these
contains a result of Young [8] and its analogue for qualitative and other
cluster sets. (Wilczynski [7] introduced the notion of qualitative cluster
sets.) The other contains a result of Erdös and Piranian [2], one of
Dolzhenko [1], and analogous results for other cluster sets.

1 Introduction

In this section we introduce basic notation. Throughout the paper R, E2 and
H are taken to represent the real line, complex plane, and the open upper half
plane, respectively.

Definition 1. A collection P of subsets of R (respectively E2) is called a grill
[6] in R (respectively E2) if

(i) ∅ /∈ P ,

(ii) A ∈ P and A ⊂ B implies B ∈ P , and

(iii) A ∪B ∈ P implies either A ∈ P or B ∈ P .

If a collection P satisfies (i), (ii) and

(iii)′ ∪∞n=1An ∈ P implies An ∈ P for at least one n,

then P is called a σ-grill. Clearly a σ-grill is a grill.
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Definition 2. Let P be a grill in R (respectively E2) and E ⊂ R (respectively
E2). A point y ∈ R (respectively E2) is said to be a p-point of E if E∩Nr(y) ∈
P for all r > 0, where Nr(y) = (y − r, y) ∪ (y, y + r) or Nr(y) = {z : z ∈
E2, |z − y| < r} according to the requirement. The set of all p-points of E
will be denoted by Ep.

It can be verified that the operator E → E ∪ Ep is a Kuratowski-closure
operator defined on the class of all subsets of R (respectively E2), and hence
it will generate a topology for R (respectively E2).

For θ and ϕ, 0 < θ < ϕ < π, let

Sθϕ =
{
z : z ∈ H, θ < arg(z) < ϕ

}
.

Then Sθϕ = S is the sector in H with vertex at the origin. Let Sθϕ(x) = S(x)
be the translate of S and which is obtained by taking the origin at x ∈ R. For
x ∈ R and r > 0, we also set

K(x, r) =
{
z : z ∈ H, |z − x| < r

}
and S(x, r) = S(x) ∩K(x, r) .

2 The Single Variable Case

In this section we shall consider the theorem for functions of a single variable.
Let f : R→W , where W is a topological space. Let P be a grill in R. For

U ⊂W , set
f−1(U) =

{
x : x ∈ R, f(x) ∩ U 6= ∅

}
.

Let f be an one or multi-valued function. Then the right hand P -cluster set
C+
P (f, x) of f at x ∈ R is the set of all w ∈W such that for every open set U

of W containing w, f−1(U) ∩ (x, x + r) ∈ P for all r > 0. The definition of
C−P (f, x), i.e. the left hand cluster set of f at x, is similar and is obtained by
replacing (x, x+ r) with (x− r, x) from the definition of C+

P (f, x).
Now we shall prove the auxiliary lemmas and theorems.

Lemma 1. Let P be a grill in R and E ⊂ R be arbitrary. Then the set T of
all points x in R such that (x, x+r)∩E ∈ P for all r > 0 but (x−r, x)∩E /∈ P
for some r > 0 is countable.

Proof. For a positive integer n, let

Tn(E) =
{
x : x ∈ R, E∩(x, x+r) ∈ P for all r > 0 and E∩(x−1/n, x) /∈ P

}
.

Then clearly,
T ⊂ ∪∞n=1Tn(E) .
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Suppose that for some n = k, Tk(E) = T ′ is uncountable. Let x′ ∈ T ′ be a
two sided limit point of T ′. Let {xm} ⊂ T ′ be a sequence converging to x′ and
xm < xm+1 < x′ for all m. Then there is xp ∈ {xm} so that xp ∈ (x′−1/k, x′).
Since

E ∩ (xp, x′) = E ∩
(
xp, xp + (x′ − xp)

)
∈ P

it follows that E∩(x′−1/k, x′) ∈ P , which contradicts the fact that x′ ∈ Tk(E).
Thus, each set Tn(E) is countable and hence T is a countable set.

Lemma 2. Let P be a grill in R and E ⊂ R be arbitrary. Then the set T ′ of all
points x ∈ R, such that E∩(x, x+r) /∈ P for some r > 0 but E∩(x−r, x) ∈ P
for all r > 0, is countable.

The proof is similar to that of Lemma 1.

Theorem 1. Let f : R→W be an one or multi-valued function, where W is
a second countable topological space, and let P be a grill in R. Then, except
at most a countable set of points x ∈ R,

C+
P (f, x) = C−P (f, x) .

Proof. Let L be the exceptional set of the theorem. Let B = {Bn} be a
countable basis for the topology of W and let f−1(Bn) = En for Bn ∈ B. Let
x ∈ L. Then C+

P (f, x) 6= C−P (f, x). If possible, let w ∈ C+
P (f, x) \ C−P (f, x).

Then there is a Bm ∈ B containing w such that Em ∩ (x, x + r) ∈ P for all
r > 0, but E ∩ (x− r, x) /∈ P for some r > 0. Hence x ∈ Tm, where Tm is the
set T in Lemma 1 with E = Em.
Again if there is a w ∈ C−P (f, x) \ C+

P (f, x), it can be shown that there is a
positive integer k such that x ∈ T ′k, where T ′k is the set T ′ in Lemma 2 with
E = Ek. Thus, it is proved that

L ⊂ ∪(Tm ∪ Tk′) ,

where the union is taken for all positive integers m and k.
Since by Lemma 1 and Lemma 2 each Tm and T ′k is countable, L is a

countable set, which completes the proof.

Now we discuss some consequences of Theorem 1.

(i) If P is the collection of all non- void sets in R then clearly P is a grill
in R and the P -cluster sets are the ordinary cluster sets, and we get the
following theorem of Young [8].
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Example 1. If f : R → R is a one to one multi-valued function then,
except for at most a countable set of points x in R,

C+(f, x) = C−(f, x) .

(ii) If P is the collection of all second category sets in R then P is also a grill
in R and we get the following analogue of Young’s theorem for qualitative
cluster sets C+

q (f, x) and C−q (f, x).

Example 2. If f : R→ R is an one or multi-valued function then except
for at most a countable set in R,

C+
q (f, x) = C−q (f, x) .

(iii) If P is the collection of all sets of positive outer measure (in the Lebesgue
sense) of R then P is also a grill in R. If the cluster sets relative to this
grill are called quantitative cluster sets and are denoted by C+

m(f, x) and
C−m(f, x) (see [9], set M(f, x)), then we get a similar symmetry relation
between these cluster sets too.

Similar results can also be obtained if we consider P to be the collection of
all uncountable sets of R. Let the cluster sets relative to this grill be denoted
by C+

a (f, x) and C−a (f, x), and let them be called attributive cluster sets. Set
Ca(f, x) = C+

a (f, x)∪C−a (f, x). Now, we prove a result which will improve the
result of Collingwood proved in the paper Cluster set theorems for arbitrary
functions with applications to function theory, Ann. Acad. Sci. Fenn. Ser.
AI. No. 336/8 (1963), 83–146.

Theorem 2. If f : H→W is an one or multi-valued function, where W is a
compact and second countable topological space, then except at a countable set
of points x in R, every value of f(x) ∈ Ca(f, x).

Proof. Let B = {Bn} be a countable basis for the topology of W . Let

En = f−1(Bn) =
{
x : x ∈ R, f(x) ∩Bn 6= ∅

}
.

Let K be the exceptional set of Theorem 2. Let x ∈ K. Then there is w ∈ f(x)
but w /∈ Ca(f, x). Since w /∈ Ca(f, x) so there are Bk ∈ B containing w and
a positive integer p such that Ek ∩ (x − 1/p, x + 1/p) is countable. Further,
since x ∈ Ek so Ek ∩ (x− 1/p, x+ 1/p) = Kkp is a countable set containing x
and thus

K ⊂ ∪∞n=1 ∪∞m=1 Knm .

Since each set Knm is countable so K is a countable set, and the proof is
complete.
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Remark. Since C(f, x) contains the set Ca(f, x) so Collingwood’s result fol-
lows from Theorem 2.

Theorem 2′. If f : R→W is an one or multi-valued function, where W is a
compact and second countable topological space, then except at a first category
set of points x in R, every value of f(x) ∈ Cq(f, x).

The proof is similar to that of Theorem 2.

3 Auxiliary Results

To prove the auxiliary lemmas and the corresponding theorem we require the
following definitions.

Definition 3. Let P be a grill in E2. If f : H → W is arbitrary, where
W is a topological space, then the P -cluster set CP (f, x) of f at x ∈ R is
the set of all w in W such that for every open set U of W containing w,
f−1(U) ∩ K(x, r) ∈ P for all r > 0. Considering the sector S(x, r) instead
of K(x, r) in the definition of CP (f, x), we get the definition of sectorial P -
cluster set CP (f, x, S) of f at x in the sector S.

Definition 4. A set F ⊂ R is said to be porous at a point x ∈ R if

lim sup
r→0

`(x, r, F )
r

> 0 ,

where `(x, r, F ) is the length of the largest open interval in the complement of
F , which is entirely contained in (x − r, x + r). A set F is said to be porous
if it is porous at all its points. A set is said to be σ-porous if it is a countable
union of porous sets. It is clear that a σ-porous set is a first category set of
measure zero, but Zaj́ıček [10] constructed a perfect set of measure zero which
is not a σ-porous set.

We shall prove the auxiliary lemmas and the the theorem in the sequel.

Lemma 3. Let P be a σ-grill in E2. If F ∈ P then there is at least one point
z ∈ F which is a p-point of F .

Proof. Suppose the contrary. Then for each point z ∈ F there is a r = rz
such that the neighborhood Nr(z) of z satisfies F ∩ Nr(z) /∈ P . Since E2 is
second countable with respect to the usual topology for E2 and

F = ∪
{
F ∩Nr(z) : z ∈ F

}
,
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so there is a countable set of points z1, z2, . . ., such that

F = ∪∞n=1

{
F ∩Nr(zn) : zn ∈ F

}
.

Since F ∈ P is a σ-grill, there is at least one member, say F ∩Nr(zm), such
that F ∩Nr(zm) ∈ P . This is a contradiction, thus the proof is complete.

Lemma 4. Let P be a σ-grill in E2 and let G ⊂ H be arbitrary. Then the
set T of all points x ∈ R at which there are two sectors S1(x) and S2(x) such
that S1(x, r) ∩G ∈ P for all r > 0, but S2(x, r) ∩G /∈ P for some r > 0, is a
σ-porous set.

Proof. If S1 ⊂ S2 then T is empty and the proof is complete. So we suppose
that S1 6⊂ S2. For rationals i, j, k, l in (0, π) with [i, j] ∩ [k, l] = ∅, and a
positive integer n, set

Tnijkl =
˘
x : x ∈ R, Sij(x, r) ∩G ∈ P for all r > 0, and Skl(x, 1/n) ∩G /∈ P

¯
.

Then it can be shown that
T ⊂ ∪Tnijkl , (1)

where the union is taken for all positive integers n and rationals i, j, k, l
in (0, π) with [i, j] ∩ [k, l] = ∅. If possible, let Tnijkl be non-porous. So by
definition there is x′ ∈ T̂ = Tnijkl such that

lim
r→0

`(x′, r, T̂ )
r

= 0 , (2)

where `(x′, r, T̂ ) is the length of the largest open interval in the complement of
T̂ and is entirely contained in (x′ − r, x′ + r). Since x′ ∈ T̂ , Sij(x′, r)∩G ∈ P
for all r > 0. For definiteness, suppose that 0 < i < j < k < l < π, and set

K =
sin(i) sin(l − k)
sin(k) sin(l − i)

.

Then from (2), for an arbitrary ε, 0 < ε < K/2, there exists η > 0 such that

`(x′, r, T ) < ε · r (3)

for all r < η. Since T̂ is non-porous at x′ therefore for all x > x′, (x′, x)∩T̂ 6= ∅.
Let y ∈ (x′, x′+η)∩T̂ be such that Sij(x′)∩Skl(y, 1/n) is a quadrilateral. Since
G∩Sij(x′, r) ∈ P for all r > 0, so by Lemma 3, there is z0 ∈ Sij(x′, r)∩G and
a x0 ∈ R, x′ < x0 < y such that z0 is a p-point of G and z0 lies on Ll(x0, 1/n),
where

Lθ(x, r) =
{
z ∈ H, arg(z − x) = θ and |z − x| < r

}
, 0 < θ < π .
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Let Jx0 be the open segment on Li(x′) intercepted by Skl(x0, 1/n) and let Ix0

be the open interval on R with the right end-point at x0 and

|Ix0 | = |Jx0 | ·
sin(k − i)

sin(k)
,

where | · | denotes the length. Then clearly

|Ix0 |
x0 − x′

= K . (4)

From (3),
`(x′, x0 − x′, T̂ ) < ε · (x0 − x′)

and 0 < ε < K/2, therefore (4) ensures that there is a point x′′ ∈ Ix0 ∩ T̂
such that z0 ∈ Skl(x′′, 1/n). Since z0 is a p-point of G, this implies that
Skl(x′′, 1/n) ∩G ∈ P , which contradicts the fact that x′′ ∈ T̂ = Tnijkl. If we
suppose that 0 < k < l < i < j < π then we can arrive at a contradiction by
proceeding from the left of x′. Thus each set Tnijkl is porous, and the proof
is complete by (1).

Lemma 5. Let P be a σ-grill in E2 and F ⊂ H be arbitrary. Then the set K
of all points x ∈ R at which there is a sector S(x) so that K(x, r)∩F ∈ P for
all r > 0, but S(x, r) ∩ F /∈ P for some r > 0, is a first category set in R.

Proof. For fixed positive integer n and rationals i, j in (0, π) with i < j, let

Knij =
˘
x : x ∈ R, K(x, r) ∩ F ∈ P for all r > 0, but Sij(x, 1/n) ∩ F /∈ P

¯
.

Then clearly K ⊂ ∪Knij , where the union is taken for all positive integers n
and rationals i, j in (0, π) with i < j.

If possible, suppose that Knij = K ′ is dense in an open interval I(x′),
where x′ ∈ K ′ is the center of I(x′). Since for x ∈ K ′, Sij(x, 1/n)∩F /∈ P and
Knij is dense in I(x′), so by Lemma 3, Sij(x, 1/n) ∩ F /∈ P for all x ∈ I(x′).
Let

B = ∪
{
Sij(x, 1/n) : x ∈ I(x′)

}
.

Then we can choose a r′ > 0 such that K(x′, r′) ⊂ B. Since for x ∈ I(x′),
Sij(x, 1/n)∩F /∈ P , so by Lemma 3, B ∩F /∈ P , and hence K(x′, r′)∩F /∈ P .
This contradicts the fact that x′ ∈ K ′ = Knij . Thus, each set Knij is nowhere
dense in R, so by (1) the set K is a first category set. This completes the
proof.

Theorem 3. Let P be a σ-grill in E2 and let f : H→W be arbitrary, where
W is a second countable topological space. Then
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(i) except at a first category set of points x ∈ R, for each sector S in H

CP (f, x) = CP (f, x, S) and

(ii) except at a σ-porous set of points x ∈ R, for each pair of sectors S1 and
S2 in H

CP (f, x, S1) = CP (f, x, S2) .

Proof. Let B = {Bn} be a countable basis for the topology of W and set
f−1(Bn) = En for Bn ∈ B.

(i) Let L be the exceptional set of the first part of the theorem. If x ∈ L
then there is a sector S in H such that CP (f, x) 6⊂ CP (f, x, S). Let w ∈
CP (f, x)\CP (f, x, S). Then there is Bm ∈ B containing w such that K(x, r)∩
Em ∈ P for all r > 0, but S(x, r)∩Em /∈ P for some r > 0. Thus, it is proved
that x ∈ Km, where Km is the set K in Lemma 5 with F = Em, and hence
we get

L ⊂ ∪∞n=1Kn .

By Lemma 5, each set Kn is a first category set and therefore L is a first
category set. This completes the proof of the first part.

(ii) Let L′ be the exceptional set of the second part of the theorem. Let
x ∈ L′. Then there is a pair of sectors S1 and S2 in H such that CP (f, x, S1) 6=
CP (f, x, S2). Let w ∈ CP (f, x, S1) 4 CP (f, x, S2). Then there is Bk ∈ B
containing w such that either

S1(x, r) ∩ Ek ∈ P for all r > 0 and S2(x, r) ∩ Ek /∈ P for some r > 0,
or

S1(x, r) ∩ Ek /∈ P for some r > 0 and S2(x, r) ∩ Ek ∈ P for all r > 0,
Hence in either case x ∈ Tk, where Tk is the set T in Lemma 4 with Ek = G,
and so we have proved that

L′ ⊂ ∪∞n=1Tn .

By Lemma 4, each set Tn is a σ-porous set and therefore L′ is a σ-porous set.
This completes the proof of the theorem.

The above theorem includes several known results of ordinary cluster sets
and it also generates the corresponding analogue for qualitative cluster sets.
For example, let P be the collection of all non-void subsets of E2. Then P
is a σ-grill and the P -cluster sets are the ordinary cluster sets C(f, x) and
C(f, x, S). Applying Theorem 3, we get the following results.
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Example 3. ([2]). If f : H→W is arbitrary, where W is a second countable
topological space, then except for a first category set of points x in R,

C(f, x) = C(f, x, S)

for each sector S in H.

Example 4. ([1]). If f : H→W is arbitrary, where W is a second countable
topological space, then except for a σ-porous set of points x in R,

C(f, x, S1) = C(f, x, S2)

for each pair of sectors S1 and S2 in H.

If P is the collection of all second category subsets of E2, then P is also
a σ-grill in E2 and the P -cluster sets are qualitative cluster sets Cq(f, x) and
Cq(f, x, S). We get the following results from Theorem 3.

Example 5. If f : H → W is arbitrary, where W is a second countable
topological space, then except for a first category set of points x in R,

Cq(f, x) = Cq(f, x, S)

for every sector S in H.

Example 6. If f : H → W is arbitrary, where W is a second countable
topological space, then except for a σ-porous set of points x in R,

Cq(f, x, S1) = Cq(f, x, S2)

for each pair of sectors S1 and S2 in H.

Many other results can also be deduced from Theorem 3. For taking P to
be the σ-grill of all subsets of positive Lebesgue outer measure in E2, CP (f, x)
and CP (f, x, S) become the quantitative cluster sets Cm(f, x) and Cm(f, x, S)
[9]. We can deduce analogous results relating to these cluster sets too.

4 The Main Results

Here we shall prove a result which together with the results in the above
examples will imply the results in [3] and [4].

For θ ∈ (0, π) and x ∈ R, set

Lθ(x) =
{
z : z ∈ H, arg(z − x) = θ

}
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and
Lθ(x, r) =

{
z : z ∈ Lθ(x), |z − x| < r

}
.

In the sequel, for convenience, we have often written f.c. and s.c. for the
terms first category and second category respectively. We have taken W to
be a second countable topological space whenever nothing is mentioned about
W . Whenever other restrictions are needed for W , only those additional re-
strictions are mentioned.

Now we recollect some definitions which will be used in the lemma and the
corresponding theorem.

Definition 5. A set K ⊂ E2 is said to have the Baire property if K =
G4Q, where G is an open set and Q is a first category set in E2. A function
f : H → W is said to have the Baire property if for every open set V in W ,
f−1(V ) has the Baire property.

Definition 6. Let f : H → W . The directional cluster set C(f, x, θ) of f at
x ∈ R and in the direction θ ∈ (0, π) is the set of all w ∈ W such that for
every open set U of W containing w, f−1(U)∩Lθ(x, r) 6= ∅ for all r > 0. The
definition of the directional qualitative cluster set Cq(f, x, θ) is the same as
that of C(f, x, θ) but the condition “f−1(U) ∩ Lθ(x, r) 6= ∅” is to be replaced
by “f−1(U) ∩ Lθ(x, r) is a s.c. set”.

In the sequel {S} will denote the collection of all sectors S in H.

Lemma 6. If E ⊂ H has the Baire property then at each x ∈ R the set

Θ(E, x) =
{
θ : 0<θ<π, E ∩ Lθ(x, r) is a f.c. set in Lθ(x) for some r > 0,

but E ∩ S(x, r) is a s.c. set for all r > 0, and each S ∈ {S}
}

is a f.c. set in (0, π).

Proof. Let E = G4Q, where G is an open set and Q is a f.c. set in H. For
a positive integer n, set

Θn(E, x) =
{
θ : 0<θ<π, E ∩ Lθ(x, 1/n) is a f.c. set,

but for each S ∈ {S}, G ∩ S(x, r) is a s.c. set for all r > 0
}
.

Then clearly Θ(E, x) ⊂ ∪∞n=1Θn(E, x) . Suppose that Θn(E, x) is a second
category set in (0, π). Let

V(Q, x) =
˘
θ : 0 < θ < π, Lθ(x, r) ∩Q is a s.c. set in Lθ(x) for r > 0

¯
.
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Then by the Kuratowski-Ulam Theorem [5, p. 56] the set V(Q, x) is of first
category in (0, π). Thus Θ = Θn(E, x)\V(Q, x) is a s.c. set in (0, π). Therefore
for each θ ∈ Θ each set Lθ(x, 1/n)∩Q and Lθ(x, 1/n)∩E is of first category in
Lθ(x). Thus, each set Lθ(x, 1/n)∩(G\Q) and Lθ(x, 1/n)∩(G∩Q) is a f.c. set
in Lθ(x) for θ ∈ Θ. This implies that Lθ(x, 1/n)∩G = ∅ for θ ∈ Θ. Since Θ is
a s.c. set, we can suppose that Θ is dense in some interval (i, j) ⊂ (0, π). The
facts that G is open and Θ is dense in (i, j) ensure that Lθ(x, 1/n)∩G = ∅ for
θ ∈ (i, j). Thus, we get Sij(x, 1/n) ∩ G = ∅. This is a contradiction because
Sij ∈ {S}. This proves that each set Θn(E, x) is a f.c. set in (0, π), and hence
Θ(E, x) is a f.c. set in (0, π), which completes the proof.

Theorem 4. If f : H → W has the Baire property then at each x ∈ R the
set Θ(x) =

{
θ : 0 < θ < π, ∩S∈{S} Cq(f, x, S) ⊂ Cq(f, x, θ)

}
is residual in

(0, π).

Proof. Let B = {Bn} be a countable basis for the topology of W . Set
En = f−1(Bn) for Bn ∈ B. Let θ ∈ (0, π) \ Θ(x). Then there is a w ∈
∩S∈{S}Cq(f, x, S) \ Cq(f, x, θ). So there is a Bm ∈ B containing w such that
Em ∩ S(x, r) is a s.c. set for all r > 0 and each S ∈ {S}, but Em ∩ Lθ(x, r) is
a f.c. set for some r > 0. These prove that θ ∈ Θ(Em, x), where Θ(Em, x) is
the set Θ(E, x) of Lemma 6 with E = Em. Thus, it is proved that

(0, π) \Θ(x) ⊂ ∪∞n=1Θ(En, x) .

By Lemma 6, each set Θ(En, x) is a f.c. set, hence Θ(x) is residual in (0, π),
and the proof is complete.

Corollary 1. Let f : H → W have the Baire property. Then, except for an
at most first category set of points x in R, the set V(x) =

{
θ : 0 < θ <

π, Cq(f, x) ⊂ Cq(f, x, θ)
}

is residual in (0, π).

Proof. The proof follows from the results in Theorem 4 and Example 5.

Corollary 2. Let f : H → W have the Baire property. Then, except for at
most a σ-porous set of points in R, the set

Θ(x) =
{
θ : 0 < θ < π, ∪S∈{S} Cq(f, x, S) ⊂ Cq(f, x, θ)

}
is residual in (0, π).

Proof. The proof follows from the results in Theorem 4 and Example 6.

Corollary 3. Let f : H → W have the Baire property, where W is also
compact. Then, except for at most a σ-porous set of points x in R, there exists
a residual set Φ(x) in (0, π) at x ∈ R such that ∩θ∈Φ(x)C(f, x, θ) 6= ∅ .
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Proof. The proof follows from the result of Corollary 2 together with the
fact that Cq(f, x, θ) ⊂ C(f, x, θ), and Cq(f, x, S) 6= ∅ for a compact W .

Remarks.

(i) The set inequalities contained in the relations in Corollary 1 and in Corol-
lary 2 can be strengthened to equality if we use the fact that for rationals
i < j in (0, π), Cq(f, x, θ) ⊂ ∪0<i<j<πCq(f, x, Sij) for a residual set of
directions θ in (0, π).

(ii) Since for a continuous f , Cq(f, x, θ) = C(f, x, θ), Cq(f, x) = C(f, x) and
Cq(f, x, S) = C(f, x, S), the results in Corollary 1 and in Corollary 2
become results for ordinary cluster sets in this case.
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