Dumitru Popa, Department of Mathematics, University of Constanta, Bd. Mamaia 127, 8700 Constanta, Romania. e-mail: dpopa@univ-ovidius.ro

ON THE VECTOR FORM OF THE LAGRANGE FORMULA, THE DARBOUX PROPERTY AND L'HÔPITAL'S RULE

Dedicated to the memory of my colleague Vasile Ene.

Abstract

We prove that the well-known Lagrange formula, the Darboux property and a classical result concerning the connected graph of a differentiable function are specific for \mathbb{R} , and surprisingly, the rule of L'Hôpital is also true for the vector case.

Proposition 1. Let X be a topological vector space. Then the following assertions are equivalent:

- 1. For each $f : [0,1] \to X$, f continuous on [0,1] and differentiable on (0,1), there exists $c \in (0,1)$ such that: f(1) f(0) = f'(c).
- 2. For each $f : [0,1] \to X$, f continuous on [0,1] and differentiable on (0,1) with f(1) = f(0), there exists $c \in (0,1)$ such that: f'(c) = O.
- 3. X is a real topological vector space and $\dim_{\mathbb{R}} X = 1$.

PROOF. i) or ii) \Rightarrow iii) Let $x \in X$, $x \neq O$. Let us suppose that X is a complex topological vector space. In this case, let

 $f: [0,1] \to X, \quad f(t) = (\cos 2\pi t + i \sin 2\pi t)x.$

The hypotheses from i) or ii) are satisfied, thus there exists $c \in (0, 1)$ such that: f'(c) = O (because f(1) = f(0) = x). But

$$f'(c) = 2\pi(-\sin 2\pi c + i\cos 2\pi c))x$$
,

Key Words: Lagrange Formula, Darboux Property, L'Hôpital's Rule Mathematical Reviews subject classification: 26A24

Received by the editors January 16, 1998

so $-\sin 2\pi c + i\cos 2\pi c = 0$, which contradicts the fact that $\cos^2 2\pi c + \sin^2 2\pi c = 1$. Hence X is a real topological vector space. In this case, let $y \in X$ and $g : [0,1] \to X$, $g(t) = x\cos 2\pi t + y\sin 2\pi t$. From i) or ii), there exists $c \in (0,1)$ such that g'(c) = O, hence $x\sin 2\pi c = y\cos 2\pi c$. If $\cos 2\pi c = 0$, then $\sin 2\pi c = \pm 1$. It follows that $O = y \cdot \cos 2\pi c = \pm x$, so x = O, which is impossible. Thus $\cos 2\pi c \neq 0$ and $y = (\tan 2\pi c)x$, hence $\dim_{\mathbb{R}} X = 1$.

iii) \Rightarrow i) or ii) Let X be a topological real vector space, dim_{\mathbb{R}} X = 1, and let $f : [0,1] \rightarrow X$ be as in i) or ii). Let $x \in X$, $x \neq O$. Since $f(t) \in X$, there exists an unique $\varphi(t) \in \mathbb{R}$ such that $f(t) = \varphi(t)x$, $\forall t \in [0,1]$. It is easy to prove that φ is continuous on [0,1] and differentiable on (0,1). Then the classical Rolle or Lagrange theorems applied to $\varphi : [0,1] \rightarrow \mathbb{R}$ imply i) or ii).

Proposition 2. Let X be a normed space. Then the following assertions are equivalent:

- 1. For each function $f : [0,1) \to X$ differentiable on [0,1), it follows that: $f'([0,1)) \subset X$ is a connected subset.
- 2. X is a real normed space and $\dim_{\mathbb{R}} X = 1$.

PROOF. i) \Rightarrow ii) Let $x \in X$, with ||x|| = 1. Suppose that X is a complex normed space. Let $f : [0, 1) \to X$,

$$f(t) = \begin{cases} 0 & \text{if } t = 0\\ (t^2 \sin \frac{1}{t} + it^2 \cos \frac{1}{t})x & \text{if } t \in (0, 1) \end{cases}$$

Obviously, f is differentiable on (0, 1). For t > 0,

$$\left\|\frac{f(t) - f(0)}{t}\right\| = \left\| (t\sin\frac{1}{t} + it\cos\frac{1}{t})x \right\| = t.$$

Thus

$$f'(t) = \begin{cases} 0 & \text{if } t = 0\\ [2t\sin\frac{1}{t} - \cos\frac{1}{t} + i(2t\cos\frac{1}{t} + \sin\frac{1}{t})]x & \text{if } t \in (0,1) \end{cases}.$$

Since $f'([0,1)) \subset X$ is a connected subset then :

$$\inf_{0 < t < 1} \left\| \left(2t \sin \frac{1}{t} - \cos \frac{1}{t} \right) + i \left(2t \cos \frac{1}{t} + \sin \frac{1}{t} \right) x \right\| = 0,$$

or ||x|| = 1, $\inf_{0 < t < 1}(4t^2 + 1) = 0$, a contradiction. Thus X is a real normed space. Let $y \in X$ and let $F : [0, 1) \to X$ be defined as follows:

$$F(t) = \begin{cases} 0 & \text{if } t = 0\\ (t^2 \sin \frac{1}{t})x + (t^2 \cos \frac{1}{t})y & \text{if } t \in (0, 1) \end{cases}$$

Clearly F is differentiable and

$$F'(t) = \begin{cases} 0 & \text{if } t = 0\\ x \left(2t \sin \frac{1}{t} - \cos \frac{1}{t} \right) + y \left(2t \cos \frac{1}{t} + \sin \frac{1}{t} \right) & \text{if } t \in (0, 1) \end{cases}$$

By i), it follows that $F'([0,1)) \subset X$ is connected, hence

$$\inf_{0 < t < 1} \left\| xh(t) + yg(t) \right\| = 0, \qquad (1)$$

where

$$h(t) = 2t \sin \frac{1}{t} - \cos \frac{1}{t}, \quad g(t) = 2t \cos \frac{1}{t} + \sin \frac{1}{t}, \quad t \in (0, 1].$$

By (1), there exists a sequence $(t_n)_{n \in N} \subset (0, 1)$ such that

$$\left\|xh(t_n) + yg(t_n)\right\| \to 0.$$
⁽²⁾

The sequence $(t_n)_{n\in N}$ being bounded, we can choose a subsequence (which for simplicity will also be denoted by $(t_n)_{n\in N}$) convergent to $t_o \in [0,1]$. If $0 < t_0 \leq 1$, using the continuity of the functions h and g on (0,1), by (2), it follows that $||xh(t_0) + yg(t_0)|| = 0$, hence $xh(t_0) + yg(t_0) = O$. If $g(t_0) = O$, as $h^2(t_0) + g^2(t_0) = 4t_0^2 + 1 > 1$, we obtain: $xh(t_0) = -yg(t_0) = 0$. Then, $h(t_0) \neq 0$, implies x = 0, which contradicts the fact that ||x|| = 1. Thus $g(t_0) \neq O$ and $y = \lambda x$, with $\lambda = -\frac{h(t_0)}{g(t_0)} \in \mathbb{R}$. If $t_0 = 0$, then $t_n \to 0$, and by (2) we have:

$$\left\| y \sin \frac{1}{t_n} - x \cos \frac{1}{t_n} \right\| \le \\ \le \left\| xh(t_n) + yg(t_n) \right\| + \left\| 2t_n \sin \frac{1}{t_n} x \right\| + \left\| 2t_n \cos \frac{1}{t_n} y \right\| \le \\ \le 2|t_n| \left(\|x\| + \|y\| \right) + \left\| xh(t_n) + yg(t_n) \right\| \to 0.$$

Thus:

$$\left\|y\sin\frac{1}{t_n} - x\cos\frac{1}{t_n}\right\| \to 0.$$

From here we obtain:

$$\inf_{0 < t < 1} \left\| y \sin \frac{1}{t} - x \cos \frac{1}{t} \right\| \le \left\| y \sin \frac{1}{t_n} - x \cos \frac{1}{t_n} \right\| \to 0,$$

i.e.

$$\inf_{0 < t < 1} \left\| y \sin \frac{1}{t} - x \cos \frac{1}{t} \right\| = 0,$$

or using the periodicity of $\sin e$ and $\cos e$,

$$\inf_{0 \le \theta \le 2\pi} \|y\sin\theta - x\cos\theta\| = 0$$

Let $0 \leq \theta_n \leq 2\pi$ be such that: $\|y \sin \theta_n - x \cos \theta_n\| \to 0$. Extract a convergent subsequence which will be denoted also by $\theta_n \to \theta$, where $\theta \in [0, 2\pi]$. Hence: $\|y \sin \theta - x \cos \theta\| = 0$, i.e. $y \sin \theta = x \cos \theta$. If $\sin \theta = 0$, then $\cos \theta = \pm 1$, from where $0 = y \sin \theta = x \cos \theta = \pm x$, i.e. x = 0, contradiction! Thus, $\sin \theta \neq 0$ and hence: $y = \lambda x$, with $\lambda = \cot \theta$, i.e. ii) is proved.

ii) \Rightarrow i) Let X be a normed space with $\dim_{\mathbb{R}} X = 1, x \in X$ with ||x|| = 1, and let $f : [0,1) \to X$ be a differentiable function. Then there exists a unique element $\varphi(t) \in \mathbb{R}$ such that $f(t) = \varphi(t) \cdot x, \forall t \in [0,1)$, i.e. there exists $\varphi : [0,1) \to \mathbb{R}$ such that $f(t) = \varphi(t)x$. Because f is differentiable on [0,1)and ||x|| = 1 we obtain easily that φ is derivable on [0,1). Using the Darboux theorem for $\varphi : [0,1) \to \mathbb{R}$, we obtain that $I = \varphi'([0,1)) \subset \mathbb{R}$ is an interval, i.e. a connected set. Since $f'(t) = \varphi'(t)x, \forall t \in [0,1)$, it follows that $f'([0,1)) = x \cdot I$ is a connected subset in X.

Recall that if X is a topological space a subset $A \subset X$ is called path connected if for each $x_0, x_1 \in A$, there exists $\gamma : [0,1] \to X$, a continuous functions such that: $\gamma(0) = x_0, \gamma(1) = x_1, Im\gamma \subset A$. In the sequel we need the following, probably well-known result. We give the proof for the completeness.

Proposition 3. Let X be a metric space, $f : (0, \infty) \to X$, be a continuous function, $a \in X$ and $A = \{(0, a)\} \cup \{(x, f(x)) \mid x > 0\} \subset (0, \infty) \times X$. Then:

- 1. A is connected if and only if there exists a sequence $(x_n)_{n \in N} \subset (0, \infty)$ such that: $x_n \to 0$, and $f(x_n) \to a$.
- 2. A is path connected if and only if: $\lim_{x\to 0, x>0} f(x) = a$.

PROOF. a) If A is connected then: $d((0,a), G) = \inf_{x>0} d((0,a), (x, f(x))) = 0$, $\inf_{x>0} (x+d(f(x), a)) = 0$. (Here G is the graph of f). Conversely, this condition implies: $(0,a) \in \overline{G}$, $\{(0,a)\} \cap \overline{G} = \{(0,a)\} \neq \emptyset$, hence: $A = \{(0,a)\} \cup G$ is connected. But $\inf_{x>0} (x+d(f(x),a)) = 0$, if and only if there exists a sequence $(x_n)_{n\in N} \subset (0,\infty)$ such that: $x_n \to 0$, and $f(x_n) \to a$.

b) Let us suppose that A is path connected. Then for the points (0, a) and $(1, f(1)) \in A$ there exists a continuous path contained in A i.e. $\gamma : [0, 1] \to \mathbb{R}^2$, $\gamma = (g, h)$, continuous such that: $\gamma(0) = (0, a)$, $\gamma(1) = (1, f(1))$, $Im\gamma \subset A$. So: g(0) = 0, g(1) = 1. Let

$$E = \{t \in [0,1] \mid g(t) = 0\} = g^{-1}(\{0\}),\$$

 $\alpha = \sup E$. The set E is nonvoid, since g(0) = 0. As g(1) = 1 > 0, $\alpha \neq 1$, i.e. $0 \leq \alpha < 1$. But g is continuous and E is closed, so $\alpha \in E$, $g(\alpha) = 0$, i.e. $\alpha = \max E$. Hence if $t > \alpha$, $t \in [0, 1]$, $g(t) \neq 0$, so $\gamma(t) = (g(t), h(t)) \in A$, i.e. g(t) > 0, h(t) = f(g(t)). Thus: $\forall t \in (\alpha, 1]$, h(t) = f(g(t)) and using the continuity of h:

$$\lim_{t \to \alpha, \ t > \alpha} h(t) = h(\alpha), \quad \lim_{t \to \alpha, \ t > \alpha} f(g(t)) = h(\alpha).$$
(3)

We prove that:

$$\lim_{x \to 0, x > 0} f(x) = h(\alpha).$$

$$\tag{4}$$

If this is not so, then: there exists $\varepsilon_0 > 0$, a sequence $0 < x_n < \frac{1}{n}$, such that:

$$d(f(x_n), h(\alpha)) \ge \varepsilon_0, \quad \forall n \in N.$$
(5)

From $g(\alpha) = 0 < x_n < 1 = g(1)$, and the Darboux property of g, there is $\alpha < t_n < 1$, such that: $g(t_n) = x_n$. Extract a convergent subsequence: $t_{k_n} \to t \in [\alpha, 1]$. The continuity of g implies: $x_{k_n} = g(t_{k_n}) \to g(t), g(t) = 0$, $t \in E, t \leq \alpha$. But $t \geq \alpha$, so $t = \alpha$. Hence: $t_{k_n} \to \alpha, t_{k_n} > \alpha$ and (3) gives: $f(g(t_{k_n})) \to h(\alpha), f(x_{k_n})) \to h(\alpha)$, which contradicts (5). Thus (4) is proved. But if A is path connected, then it is connected, so by a) there exists a sequence $(x_n)_{n \in N} \subset (0, \infty)$ such that: $x_n \to 0$, and $f(x_n) \to a$. Using (4):

$$f(x_n) \to h(\alpha), \quad h(\alpha) = a, \text{ i.e. } \lim_{x \to 0, x > 0} f(x) = a.$$

The converse is clear.

Using the same functions as in the Proposition 2, with the help of Proposition 3, we must show that a classical result, see [3], is also specified to \mathbb{R} .

Proposition 4. Let X be a normed space. Then the following assertions are equivalent:

- 1. For each function $f : [0,1) \to X$ differentiable on [0,1), it follows that the graph of f' is a connected subset.
- 2. X is a real normed space and $\dim_{\mathbb{R}} X = 1$.

Also, minor changes in the above proofs, show that, they are also true if instead of a normed space X, we suppose that X is a vector space endowed with a F-norm, or a p-norm (0 , see [2] for definitions.

Now a positive result for the classical L'Hôpital rule.

Theorem 1. (The L'Hôpital rule, cases $\begin{bmatrix} 0\\0 \end{bmatrix}$, resp. $\begin{bmatrix} -\infty\\\infty \end{bmatrix}$) Let X be a normed space, $(a,b) \subseteq \mathbb{R}$ be an open interval and $f: (a,b) \to X$, $g: (a,b) \to \mathbb{R}$ two functions with the properties:

- $1. \lim_{\substack{t \to a \\ t > a}} f(t) = 0 \text{ and } \lim_{\substack{t \to a \\ t > a}} g(t) = 0; \text{ (respectively } \lim_{\substack{t \to a \\ t > a}} |g(t)| = \infty);$
- 2. f is differentiable on (a, b) and g is differentiable on (a, b);
- 3. $g'(t) \neq 0, \forall t \in (a, b);$
- 4. The limit $\lim_{\substack{t \to a \\ t > a}} \frac{f'(t)}{g'(t)} \in X$ exists.

Then there exists

$$\lim_{\substack{t \to a \\ t > a}} \frac{f(t)}{g(t)} \in X \quad and \ in \ addition: \ \lim_{\substack{t \to a \\ t > a}} \frac{f(t)}{g(t)} = \lim_{\substack{t \to a \\ t > a}} \frac{f'(t)}{g'(t)} \, .$$

PROOF. Since g' has the Darboux property, by 3) and 2), it follows that g' has a constant sign on (a, b), hence g is strictly monotone on (a, b). Let

$$x = \lim_{\substack{t \to a \\ t > a}} \frac{f'(t)}{g'(t)} \in X \,.$$

Then for $\varepsilon > 0$, there is a $\delta > 0$ such that:

$$\left\|\frac{f'(t)}{g'(t)} - x\right\| < \varepsilon, \text{ hence: } \left\|f'(t) - xg'(t)\right\| < \varepsilon |g'(t)|,$$

on each compact subinterval $[u, v] \subset (a, a + \delta)$. By the Denjoy-Bourbaki Theorem, it follows that:

$$||f(v) - xg(v) - f(u) + xg(u)|| \le \varepsilon |g(v) - g(u)| .$$
 (*)

We prove the case $\begin{bmatrix} 0\\ 0 \end{bmatrix}$. By 1) and (*), for $u \searrow a$ it follows that:

$$\|f(v) - xg(v)\| \le \varepsilon |g(v)|, \text{ hence: } \|\frac{f(v)}{g(v)} - x\| < \varepsilon.$$

Therefore

$$\lim_{\substack{v \to a \\ v > a}} \frac{f(v)}{g(v)} = x \,.$$

We prove the case $[\frac{1}{\infty}]$. We may suppose that $g(t) \neq 0$ on [u, v]. By 1) and (*), we have:

$$\left\|\frac{f(u)}{g(u)} - x\right\| \le \frac{\|f(v) - xg(v)\|}{|g(u)|} + \epsilon \left|\frac{g(v)}{g(u)} - 1\right|,$$

792

hence :

$$\limsup_{u \to a, u > 0} \left\| \frac{f(u)}{g(u)} - x \right\| \le \epsilon \,.$$

Since ε is arbitrary, we obtain that:

$$x = \lim_{\substack{u \to a \\ u > a}} \frac{f(u)}{g(u)} \,.$$

References

- [1] N. Bourbaki, Fonctions d'une variable reele, Paris, Herman, 1961.
- [2] N. J. Kalton, N. T. Peck, J. W. Roberts, An F-space sampler, Cambridge Univ. Press, 1984.
- [3] K. Kuratowski, *Topology*, vol. II, Academic Press, 1968.

Dumitru Popa