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ON RELATIONS AMONG VARIOUS
CLASSES OF I A. E. CONTINUOUS

DARBOUX FUNCTIONS

Abstract

This paper is devoted to relationships among various classes of I-a.e.
continuous functions (i.e., of functions whose sets of discontinuity points
belong to certain σ-ideals I consisting of boundary sets). For instance,
if K is the σ-ideal of first category sets and I denotes the σ-ideal of all
sets that are: of Lebesque measure zero, σ-porous, or countable, then
the set of I-a.e. continuous functions is uniformly porous in the space of
all K-a.e. continuous Darboux functions from R2 into R2 equipped with
the metric of uniform convergence. As a tool in the proofs, symmetric
Cantor sets in R2 are used.

1 Introduction

The classes of functions connected with various σ-ideals are the subject of
many papers. They were investigated, for example, by Pawlak [4], Semadeni
[6], Mauldin [2, 3], and Ciesielski et al. in the monograph [1]. The present
paper is devoted to the classes of functions whose sets of discontinuity points
belong to certain σ-ideals consisting of boundary sets only. Such functions will
be called continuous I-almost everywhere (I-a.e.) with respect to a specified
σ-ideal. More precisely, in this paper we shall investigate mutual relations be-
tween classes of functions which are continuous I-a.e. with respect to various
σ-ideals. From [4, theorem 1.4] it follows that, in some spaces, every I-a.e.
continuous function is continuous K-a.e. with respect to the σ-ideal K of first
category subsets. It appears, for instance, that the set of functions continu-
ous L-a.e. (which are conventionally called functions continuous a.e.) with
respect to the σ-ideal L of subsets of Lebesgue measure zero is topologically
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small in the space of continuous K-a.e. functions, namely, they form a uni-
formly porous set. This property is proved in the space of Darboux functions
mapping R2 into R2 and it is the main result of Section 3. To obtain it, we
make use of certain sets called in this paper Cantor-like sets in R2 and so
Section 2 is devoted to the description of their properties.

The notation used throughout this paper is standard. In particular, R
denotes the set of real numbers, N = 1, 2, ..., I = [0, 1]. In this paper we
shall use the Euclidean metric d in the space R2 and the metric of uniform
convergence ρ in the space of Darboux functions. In these spaces, we shall
consider open balls B(x, r) of radius r centered at x. By Cf (Df ) we shall
denote the set of continuity (discontinuity) points of a function f . The symbols
int(A), cl(A), diam(A) stand for the interior, the closure, and the diameter
of the set A ⊂ R2, respectively. If A is a Lebesgue measurable subset of R2,
we denote its measure by m(A). Let x = (x1, x2) ∈ R2, c > 0, and define
K(x, c) = (x1 − c, x1 + c) × (x2 − c, x2 + c). The set K(x, c) will be called
a two-dimensional open cube with center x = (x1, x2) and side 2c, and its
boundary will be denoted by F (x, c). We shall use the symbol xy→ to denote
a half-line starting at x and passing through y.

2 Symmetric Cantor Sets in R2

A sketch of the construction of a symmetric Cantor set in R can be found, for
example, in [8]. It is similar to the construction of the Cantor ternary set.

Let (αn)n∈N be a sequence of real numbers αn ∈ (0, 1) and let J be a
closed interval whose length will be denoted by β1. In the first step of the
construction, we remove from J the concentric open interval (a1

1, b
1
1) of length

α1β1. Let F 1 = J \ (a1
1, b

1
1). In the n-th (n > 1) step of the construction, from

the remaining 2n−1 closed intervals of length equal to

βn =
β1

2n−1
(1− α1)(1− α2) · · · (1− αn−1)

we remove the concentric open intervals (ani , b
n
i ), i = 1, 2, . . . , 2n−1, of length

αn · βn =
αnβ1

2n−1
(1− α1)(1− α2) · · · (1− αn−1). (1)

In this way we obtain 2n closed intervals whose union is denoted by Fn. The
set C(αn) =

⋂∞
n=1 F

n is called the symmetric Cantor set with respect to the
sequence (αn)n∈N. Of course, the set C( 1

3 ) is the classical Cantor ternary set.
From the construction it is clear that the set C(αn) is closed, nowhere

dense, and uncountable. Other properties are connected with the sequence
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(αn)n∈N. The following facts will be needed to investigate symmetric Cantor
sets in R2.

Lemma 2.1. Let (αn)n∈N be a sequence of real numbers αn ∈ (0, 1). Then

∞∑
n=1

αn =∞ ⇐⇒ lim
n→∞

(1− α1)(1− α2) · · · (1− αn) = 0.

Lemma 2.2. [7] The set C(αn) has the Lebesgue measure zero if and only if∑∞
n=1 αn =∞.

Lemma 2.3. [7, 8] The set C(αn) is non σ-porous if and only if lim
n→∞

αn = 0.

We are now going to define the symmetric Cantor set F (αn) in R2. Let
x0 ∈ R2 and 0 ∈ C(αn) ⊂ [0,∞). Put F (αn) =

⋃
c∈C(αn) F (x0, c). (We

assume that F (x0, 0) = x0.) Of course,

F (αn) = clK(x0, β1) \
∞⋃
n=1

2n−1⋃
i=1

(K(x0, b
n
i ) \ clK(x0, a

n
i )). (2)

It appears that F (αn) has similar properties as the set C(αn).

Lemma 2.4. The set F (αn) is closed and nowhere dense in R2.

Proof. From (2) it follows that F (αn) is a closed set in R2. Let B be an
open set in R2 and x1 ∈ B \ x0. Notice that the mapping ν : [0,∞) → x0x

→
1

given by the formula ν(t) = x0x
→
1 ∩ F (x0, t) is a homeomorphism such that

ν(C(αn)) = x0x
→
1 ∩F (αn). Therefore the set x0x

→
1 ∩F (αn) is nowhere dense

in x0x
→
1 and so there exists x ∈ (x0x

→
1 ∩ B) \ (x0x

→
1 ∩ F (αn)) ⊂ B \ F (αn).

Finally, by the arbitrariness of B ⊂ R2, we obtain that F (αn) is nowhere dense
in R2.

Lemma 2.5. The set F (αn) has the Lebesgue measure zero if and only if∑∞
n=1 αn =∞.

Proof. Notice that, by the symmetric construction of the set C(αn), we have
ani + bn2n−1−i+1 = β1 for n ∈ N and i = 1, 2, . . . , 2n−1; hence

2n−1∑
i=1

(ani + bni ) =
2n−1∑
i=1

(ani + bn2n−1−i+1) = 2n−1 · β1. (3)

For simplicity of notation of the proof we can put α0 = 0. Then, from (2),
(1), (3) and Lemma 2.1 we have
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m(F (αn)) = 0⇐⇒
∞∑
n=1

2n−1∑
i=1

(
(2bni )2 − (2ani )2

)
= 4 · β2

1

⇐⇒
∞∑
n=1

2n−1∑
i=1

αnβ1

2n−1
·
n−1∏
j=0

(1− αj)

 · (ani + bni )

 = β2
1

⇐⇒
∞∑
n=1

αnβ1

2n−1
·
n−1∏
j=0

(1− αj)

 · (2n−1β1)

 = β2
1

⇐⇒
∞∑
n=1

αn · (1− α0) · (1− α1) · · · (1− αn−1) = 1

⇐⇒ lim
n→∞

((1− α1) · (1− α2) · · · (1− αn)) = 0

⇐⇒
∞∑
n=1

αn =∞.

Lemma 2.6. The set F (αn) is non σ-porous in R2 if limn→∞ αn = 0.

Proof. Let x0 = (x1
0, x

2
0). From Lemma 2.3 it follows that the set C(αn) is

non σ-porous in R. By [9, theorem 1] we obtain that the set (x1
0 + C(αn))×

(x2
0+C(αn)) is non σ-porous in R2. Since (x1

0+C(αn))×(x2
0+C(αn)) ⊂ F (αn),

we conclude that the set F (αn) is really non σ-porous in R2.

3 I-Almost Everywhere Continuous Darboux Functions

We shall denote by I a σ-ideal of subsets of any fixed topological space, but we
assume that nonempty open sets are excluded as the elements of the σ-ideal
under consideration. In particular, we shall consider the following σ-ideals:
L – the σ-ideal of subsets of Lebesgue measure zero, K – the σ-ideal of first
category subsets, N – the σ-ideal of countable subsets, and P – the σ-ideal of
σ-porous subsets.

Let X, Y be arbitrary topological spaces. We say that a function f :
X → Y is continuous I-almost everywhere (I-a.e. for short) if the set of
discontinuity points of the function f belongs to the σ-ideal I.

In this section we shall need the definition of the uniform porosity of a
set in a metric space (see [5]). Let P be a metric space, S ⊂ P , x ∈ P ,
R > 0, and γ(x,R, S) = sup{r > 0: ∃z∈PB(z, r) ⊂ B(x,R) \ S}. The number
p(S, x) = 2 · lim supR→0+

γ(x,R,S)
R is called the porosity of S at x (see [8]). We



Classes of I-a.e. Continuous Darboux Functions 699

say that S is porous at x if p(S, x) > 0, and S is uniformly porous if there
exists α ∈ (0, 1] such that p(S, x) ≥ α for each x ∈ S.

The following theorem is evident.

Theorem 3.1. Let X and Y be arbitrary metric spaces. If a function f :
X → Y is continuous N -a.e. or P-a.e. then it is continuous K-a.e. (and
L-a.e. if X = Rn).

On the basis of [4, theorem 1.4] we obtain a more general case.

Theorem 3.2. Let X be an arbitrary topological space and Y be a second
countable space possessing a regular neighborhood system. If a function f :
X → Y is continuous I-a.e. with respect to some σ-ideal of subsets of the
space X, then it is continuous K-a.e.

If I is the σ-ideal of countable, σ-porous, or Lebesgue measure zero sets,
then the converse isn’t true, because there exist functions continuous K-a.e.
which are not continuous I-a.e. with respect to any of the above-mentioned σ-
ideals. Moreover, these functions form the set which is not topologically small
in the space of functions continuous K-a.e. We have the following theorem.

Theorem 3.3. Let KD be the space of Darboux K-a.e. continuous functions
f : I2 → I2 endowed with the metric of uniform convergence. Then the follow-
ing subsets of KD are uniformly porous: L – of functions continuous L-a.e.,
P – of functions continuous P-a.e., and N – of functions continuous N -a.e.

Proof. We shall show that L is a uniformly porous set with a constant α ≥
0.2. Let ε > 0 and h ∈ L∩KD be given. Choose an arbitrary x0 ∈ Ch ∩ int I2

and put h0 = h(x0). Let δ be a positive real number such that K(x0, δ) ⊂ I2

and

h (cl K(x0, δ)) ⊂ B
(
h0,

4ε
10

)
.

We shall construct a Darboux continuous K-a.e. function f : I2 → I2 satisfying
the condition B

(
f, ε10

)
⊂ B(h, ε) and show that the set of discontinuity points

of an arbitrary function f1 ∈ B
(
f, ε10

)
has positive Lebesgue measure.

Let us consider the symmetric Cantor set C = C(1/2n) in the interval
J = [0, δ]. Since

∑∞
n=1 1/2n = 1, we conclude that the set F = F (1/2n)

has positive Lebesgue measure by Lemma 2.5. Moreover, from Lemma 2.4 it
follows that the set F is nowhere dense in R2. Therefore F ∈ K \ L.

Let us divide the set C \ {δ} into continuum subsets which are pairwise
disjoint and dense in C. Denote by U the family of all those subsets. Without
loss of generality we may assume that there exists one set U0 ∈ U containing
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all one-sided accumulation points of the set C. Let g : U → B(h0, ε/2) be a
one-to-one function such that g(U0) = h0. Now, we can define the function
f : I2 → I2 as

f(x) =


h(x) when x 6∈ K(x0, δ)
g(Ucx

) when x ∈ F (x0, cx) and cx ∈ C \ {δ}
h0 when x ∈

⋃
c∈J\C F (x0, c)

where Ucx
is the set containing cx and belonging to the family U . Observe

that the function f is continuous at each point of the set
⋃
c∈J\C F (x0, c).

Therefore Df ∩K(x0, δ) is a first category set. By the definition of f and h,
we conclude that Df \ cl K(x0, δ) is a first category set, too, and finally, that
the function f is continuous K-a.e.

In order to prove that f is a Darboux function, we shall show that the
image of any arcA ⊂ I2 is a connected set. We must consider the following
cases:

1. A ⊂ I2 \K(x0, δ); then f(A) is a connected set because f |I2\K(x0,δ) =
h|I2\K(x0,δ) and h is a Darboux function.

2. A ⊂ clK(x0, b
n
i ) \ K(x0, a

n
i ) for n ∈ N and i ∈ {1, . . . , 2n−1}. In this

case f(A) = {h0}.

3. A ⊂ F (x0, c) where c ∈ C \ {δ}. Then f(A) ⊂ g(Uc).

4. A ⊂ K(x0, δ) and there exist c1, c2 ∈ C \ {δ} such that F (x0, ci) ∩
∩A 6= ∅ , i = 1, 2 , and at least one of the above two points is a bilateral

accumulation point of C. Then f(A) = B(h0,
ε
2 ).

5. A∩K(x0, δ) 6= ∅ 6= A\K(x0, δ). Let δ′ = inf{δ1 > 0 : A∩K(x0, δ1) 6= ∅}.
The interval (δ′, δ) contains a continuum of points of the set C. For this
reason, there exist c1, c2 ∈ C ∩ (δ′, δ) such that Uc1 ∩ Uc2 = ∅ and
F (x0, c1)∩A 6= ∅ 6= F (x0, c2)∩A. From the previous case it follows that
f(A ∩K(x0, δ)) = B(h0, ε/2).

The set K = A \ K(x0, δ) is closed in I2, so we can consider the family
S of all components of the set K. Obviously, each component S ∈ S is a
closed set. Let ζ be a homeomorphism mapping I onto A and let S ∈ S.
Put p1 = inf ζ−1(S) and p2 = sup ζ−1(S). Notice that ζ([p1, p2]) = S. Thus
S is an arc or a one-point set. From the above we conclude that f(S) is a
connected set because f |I2\K(x0,δ) is a Darboux function.

We shall show that S ∩ F (x0, δ) 6= ∅. By the assumptions of 5), we have
that p1 6= 0 or p2 6= 1. Without loss of generality we may assume that p1 6= 0.



Classes of I-a.e. Continuous Darboux Functions 701

Hence there exists a sequence {qn}n∈N ⊂ [0, p1) such that limn→∞ qn = p1

and ζ(qn) ∈ K(x0, δ) for each n ∈ N. Clearly, limn→∞ ζ(qn) = ζ(p1) ∈ S.
Thus ζ(p1) ∈ F (x0, δ). Hence S ∩ F (x0, δ) 6= ∅ and f(ζ(p1)) ∈ B(h0, 4ε/10).
So we have shown that f(S) is a connected set and f(S) ∩ B(h0, ε/2) 6= ∅.
Consequently, f(A) = B(h0, ε/2)∪

⋃
S∈S f(S) and, finally, f(A) is a connected

set. We have proved that f is a Darboux function.
Next, since we have f |I2\K(x0,δ) = h|I2\K(x0,δ), f(K(x0, δ)) = B

(
h0,

ε
2

)
,

and h(clK(x0, δ)) ⊂ B
(
h0,

4ε
10

)
, we can deduce that

ρ(f, h) ≤ sup
x∈K(x0,δ)

(d(h0, f(x)) + d(h0, h(x))) <
9ε
10

and B
(
f, ε10

)
⊂ B(h, ε).

To complete the proof we have to show that B(f, ε10 )∩L = ∅. Let us take
f1 ∈ B(f, ε10 ), c1 ∈ C, and x1 ∈ F (x0, c1). For ε1 < 2ε

10 we have

diam
(
B
(
h0,

ε

2

)
∩ I2

)
≥
√

2
2
· ε,

diam
(
B
(
f1 (x1) , ε1 +

ε

10

))
≤ 2 · 3ε

10
,

and therefore,

diam
(
B
(
h0,

ε

2

)
∩ I2

)
> diam

(
B
(
f1 (x1) , ε1 +

ε

10

))
.

Hence there exists

y2 ∈ B
(
h0,

ε

2

)
\B

(
f1 (x1) , ε1 +

ε

10

)
. (4)

By definition, g(U) = B(h0,
ε
2 ); so there exists Uγ ∈ U such that g(Uγ) = y2.

Let δ1 > 0, c2 ∈ (c1 − δ1, c1 + δ1) ∩ Uγ and x2 ∈ B(x1, δ1) ∩ F (x0, c2). Then
f(x2) = y2, and since f1 ∈ B(f, ε10 ), we have f1(x2) ∈ B(y2, ε10 ). Moreover,
from (4) it follows that f1(x2) 6∈ B(f1(x1), ε1). In this way, we have proved
that, for an arbitrary δ1 > 0, f1(B(x1, δ1)) 6⊂ B(f1(x1), ε1). Hence Df1 ⊃ F
and, finally, the function f1 ∈ B(f, ε10 ) is not continuous L-a.e.

We have proved that B(f, ε10 ) ⊂ B(h, ε)\L, and consequently the porosity
of L at h is not less than 0.2. Finally, by the arbitrariness of h ∈ L and ε > 0,
we have shown that the set L is uniformly porous in the space KD.

From Lemma 2.6 it follows that F is not σ-porous in R2. Of course, F
is not countable, therefore the proof of the fact that the sets P and N are
uniformly porous in the space KD is analogous to the above proof.

It remains to investigate relations between the classes of functions contin-
uous L-a.e. and P-a.e.
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Theorem 3.4. In the space LD of Darboux and L-a.e. continuous functions
(with the metric of uniform convergence) mapping I2 into I2, the set P ∪ N
of functions continuous P-a.e. or N -a.e. is uniformly porous.

Proof. Let us consider the symmetric Cantor set with respect to the sequence
with general term αn = 1

n+1 . Since limn→∞
1

n+1 = 0 and
∑∞
n=1

1
n+1 =∞, by

Lemmas 2.5 and 2.6, the set F ( 1
n+1 ) ∈ L\ (P ∪N ). The rest of the proof runs

analogously to the proof of Theorem 3.3.
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[9] L. Zaj́ıček, Products of non-σ-porous sets and Foran systems, Atti Sem.
Mat. Fis Univ. Modena, XLIV, (1996) 497–505.


