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EVERY ALMOST CONTINUOUS
FUNCTION IS POLYGONALLY ALMOST

CONTINUOUS

Abstract

We show that every almost continuous function f : I → R is also
polygonally almost continuous. This solves a problem posed by Agron-
ski, Ceder and Pearson (see [ACP]).

1 Preliminaries

By R we denote the set of all reals, by I we denote the interval [0, 1]. For every
set A, by cl(A) we will denote closure of A.

We will consider following classes of functions from the interval I to R:

AC A function f : I→ R is almost continuous (AC) if whenever U ⊂ I×R is
an open set containing the graph of f , then U contains the graph of a
continuous function g : I→ R.

PAC A function f : I → R is polygonally almost continuous (PAC) if when-
ever U ⊂ I×R is an open set containing the graph of f , then U contains
the graph of a polygonal (piecewise linear continuous) function h : I→ R
with all its vertices on f .

D A function f : I→ R is Darboux (D) if the image of C ⊂ I is connected in
R whenever C is connected in I.

For properties of these and other Darboux-like classes see e. g. the survey
[GN]. In particular, it is known that AC ⊂ D. Clearly every PAC function is
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AC. Recently Agronsky, Ceder and Pearson asked whether the opposite im-
plication holds ([ACP]). In this note we give a positive answer this question.
(We would like to thank Professor Kenneth Kellum for drawing the author’s
attention to this problem. In particular, Kellum proved that every extend-
able function as well as every AC function with dense graph is PAC (private
communication)).

2 The Result

Theorem 1. Every AC function f : I→ R is PAC.

Proof. Let f : I→ R be AC. Suppose, f is not PAC. For every x ∈ I, let

Hx = {h : [0, x]→ R | h is polygonally continuous with all its vertices on f}.

Let G ⊂ I × R be an open set such that f ⊂ G and there does not exist a
polygonal function h1 ∈ H1, h1 ⊂ G. Define:

• E = {(x, y) ∈ f | (∃hx ∈ Hx) hx ⊂ G};

• N = {(x, y) ∈ f | (¬∃hx ∈ Hx) hx ⊂ G}.

Clearly E∪N = f , E∩N = ∅, (0, f(0)) ∈ E, and by the supposition (1, f(1)) ∈
N .

For S(x,y) being an open square with center (x, y) let 3 · S(x,y) denote the
open square with the center (x, y) and with the diagonal 3 times that of S(x,y).
For every (x, y) ∈ f let S(x,y) be an open square with the center (x, y) such
that:

(S1) 3 · S(x,y) ⊂ G ∩ ((0, 1)× R) for x ∈ (0, 1),
3 · S(0,f(0)) ∩ [0,+∞)× R ⊂ G,
3 · S(1,f(1)) ∩ (−∞, 1]× R ⊂ G;

(S2) either S(x,y) ∩ ([0, x) × R) ∩ f ⊂ E or S(x,y) ∩ ([0, x) × R) ∩ f ⊂ N , for
x > 0;

(S3) either S(x,y) ∩ ((x, 1] × R) ∩ f ⊂ E or S(x,y) ∩ ((x, 1] × R) ∩ f ⊂ N , for
x < 1.

Such a S(x,y) exists for every (x, y) ∈ f . Indeed, suppose for example, there
exists (x, y) ∈ f such that for every S(x,y) ⊂ G there exist x1 ∈ [0, x) and x2 ∈
[0, x)) such that (x1, f(x1)) ∈ E ∩S(x,y) and (x2, f(x2)) ∈ N ∩S(x,y). Now we
can find (p, f(p)) ∈ E∩S(x,y)∩([0, x)×R) and (q, f(q)) ∈ N∩S(x,y)∩((p, x)×R).
Then p < q, but (p, f(p))→ (q, f(q)) ⊂ S(x,y) ⊂ G, with α → β denoting the
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line segment linking α and β for every α ∈ I × R, β ∈ I × R, α < β. So, we
can extend the polygonal function hp ∈ Hp, hp ⊂ G to a polygonal function
hq ∈ Hq, hq ⊂ G, contrary to q ∈ N .

For every (x, y) ∈ f let R(x,y) ⊂ S(x,y) be an open rectangular neighbor-
hood of (x, y) fulfilling the following conditions (with xl denoting inf{a | (a, b) ∈
R(x,y)}, xr denoting sup{a | (a, b) ∈ R(x,y)}, yl denoting inf{b | (a, b) ∈ R(x,y)},
yu denoting sup{b | (a, b) ∈ R(x,y)}):

(1) If x > 0 and S(x,y) ∩ ([0, x)× R) ∩ f ⊂ E, then f(xl) ∈ (yl, yu).

(2) If x < 1 and S(x,y) ∩ ((x, 1]× R) ∩ f ⊂ N , then f(xr) ∈ (yl, yu).

Such a R(x,y) always exists, because (x, y) is a left side limit point of f for
every x ∈ (0, 1] and (x, y) is a right side limit point of f for every x ∈ [0, 1) (f
is Darboux; so it satisfies Young’s condition, see e. g. [GN]).

Note also that (xl, f(xl)) is a right side limit point of f ; so if R(x,y) ∩
([0, x)×R)∩ f ⊂ E, then (from (1)) for every a ∈ (xl, x)∩ I there exists b < a
such that (b, f(b)) ∈ E ∩R(x,y).

Because (xr, f(xr)) is a left side limit point of f , if R(x,y)∩((x, 1]×R)∩f ⊂
N , then (from (2)) for every a ∈ (xl, xr) ∩ I there exists c > a such that
(c, f(c)) ∈ N ∩R(x,y); so R(x,y) ∩ ((a, xr)× R) ∩ f 6⊂ E. Now for every R(x,y)

we have:

(A) If R(x,y) ∩ ((a, x) × R) ∩ f ⊂ E for some a ∈ (xl, x) ∩ I, then R(x,y) ∩
([0, x)×R)∩f ⊂ E, and there exists b < a such that (b, f(b)) ∈ E∩R(x,y).

(B) If R(x,y) ∩ ((a, xr)× R) ∩ f ⊂ E for some a ∈ (xl, xr) ∩ I, then R(x,y) ∩
((x, 1]×R)∩f ⊂ E, and there exists b < a such that (b, f(b)) ∈ E∩R(x,y).

Let H =
⋃

(x,y)∈f R(x,y). H is open, H ⊂ G and f ⊂ H. So, there
exists a continuous function g : I → R, g ⊂ H. Because the graph of g is
compact, there exists a finite family of sets R ⊂ {R(x,y) | (x, y) ∈ f} such that
g ⊂

⋃
R. R(0,f(0)) ∈ R and R(1,f(1)) ∈ R. Indeed, for every 0 < x < 1 we

have 3 · S(x,y) ⊂ G ∩ ((0, 1) × R); so only the square S(0,f(0)) contains points
with abscissa 0, and only the square S(1,f(1)) contains points with abscissa 1.
Moreover, since R is finite, sup{x ∈ I | (x, y) ∈

⋃
(R\{R(1,f(1))})} < 1. Let

C = {x ∈ I | (∃R ∈ R) ((x, g(x)) ∈ R and (∃x1 ≤ x) (x1, f(x1)) ∈ E ∩R)},

let s = supC. From (S3) R(0,f(0)) ∩ f ⊂ E; so (0, g(0)) ∈ R(0,f(0)), C 6= ∅ and
s is well defined. Since (from (S2)) R(1,f(1)) ∩ f ⊂ N , 0 < s < 1.
R is finite and g is continuous, so there exists R(a,b) ∈ R such that

(s, g(s)) ∈ cl(R(a,b)) and there exists x1 ≤ s such that (x1, f(x1)) ∈ E∩R(a,b).
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There exists also an open set R(c,d) ∈ R such that (s, g(s)) ∈ R(c,d). Then
(s, g(s)) ∈ cl(R(a,b))∩R(c,d); so R(a,b) ∩R(c,d) 6= ∅. Note that R(a,b) ∪R(c,d) ⊂
3 · S(p,q), for S(p,q) being this square from S(a,b) and S(c,d) which has greater
diameter. Therefore we can connect every two points α, β of R(a,b)∪R(c,d) by
the line segment α→ β whole contained in 3 · S(p,q) ⊂ G.

In R(c,d) we can find x2 > s such that (x2, f(x2)) ∈ N . Indeed, suppose

R(c,d) ∩ ((s, 1]× R) ∩ f ⊂ E. (?)

R(c,d) is open and g is continuous; so there exists t > s such that (t, g(t)) ∈
R(c,d). We have two cases:

1. If t ≤ c, then s < c, and from (?) we have R(c,d) ∩ ((s, c)× R) ∩ f ⊂ E.
From (A) we have R(c,d) ∩ ([0, c)×R)∩ f ⊂ E and (∃w ≤ t) (w, f(w)) ∈
E ∩R(c,d). But now t ∈ C, supC ≥ t > s, a contradiction.

2. If t > c, then from (?) and (B) we have R(c,d) ∩ ((c, 1] × R) ∩ f ⊂ E
and (∃w ≤ t) (w, f(w)) ∈ E ∩ R(c,d). Now t ∈ C, supC ≥ t > s, a
contradiction.

Now we have x1 < x2, (x1, f(x1)) ∈ E ∩R(a,b), (x2, f(x2)) ∈ N ∩R(c,d); so we
can extend the polygonal function hx1 ∈ Hx1 , hx1 ⊂ G via the line segment
(x1, f(x1)) → (x2, f(x2)) contained in 3 · S(p,q) ⊂ G to a polygonal function
hx2 ∈ Hx2 , hx2 ⊂ G. Thus we have (x2, f(x2)) belongs to E rather than N .
This is a contradiction.

The following corollary gives a full answer to the question from [ACP].

Corollary 1. Given any ε > 0 and any open neighborhood G of an almost
continuous function f , there exists a polygonal function h with the length of
the longest line segment less than ε, such that h ⊂ G and all vertices of h
belong to f .

Proof. It is easy to modify previous proof, such that the length of every line
segment of polygonal function h ⊂ G will be less than ε.
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