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A REVERSE BMO-HARDY INEQUALITY

Abstract

This note provides a reverse Hardy inequality associated with BMO-
norm.

Throughout this note, denote by R and R+ the real axis and the positive
half real axis, respectively. For p ∈ (1,∞) let Lp(R+) be the space of Lebesgue
measurable functions f : R+ → R with

‖f‖Lp(R+) =

[∫
R+

|f(x)|p dx

] 1
p

<∞.

As is well known, L∞(R+) denotes the space of Lebesgue measurable functions
f : R+ → R satisfying

‖f‖L∞(R+) = ess supx∈R+
|f(x)| <∞.

L∞(R+) may be viewed as a limit space of Lp(R+) as p → ∞ in some sense
(for instance, duality). However, in most cases, L∞(R+) is replaced by the
space BMO(R+) of John and Nirenberg, which consists of those functions
f ∈ L1

loc(R+) with bounded mean oscillation

‖f‖BMO(R+) = sup
I⊂R+

1
|I|

∫
I

|f(x)− fI | dx <∞,
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where the supremum is taken over all subintervals I of R+, fI stands for the
mean value of f on I, fI = 1

|I|
∫

I
f(x) dx, and |I| denotes the length of I,

|I| =
∫

I
dx. It is clear that L∞(R+) ( BMO(R+) 6⊆ Lp(R+), p ∈ (1,∞).

Now, for f ∈ L1
loc(R+) consider the Hardy operator

(Pf)(x) =
1
x

∫ x

0

f(t) dt, x ∈ R+.

It is well known that this operator plays an important role in the study of
weighted norm inequalities for the classical maximal operators of harmonic and
complex analysis. It is easy to see that P is bounded on Lp(R+), p ∈ (1,∞].
In fact, the Minkowski inequality for integrals implies Hardy’s inequality (cf.
[8, p.240])

‖Pf‖Lp(R+) ≤ Cp‖f‖Lp(R+),

where Cp = p/(p− 1) or 1 (which is the best possible) if p ∈ (1,∞) or p =∞.
It is unfortunate that this operator is not invertible on Lp(R+), and therefore
it is not possible to find a constant cp depending on p only such that a reverse
Lp(R+)-Hardy inequality

‖Pf‖Lp(R+) ≥ cp‖f‖Lp(R+)

holds generally. Nevertheless, suppose f is positive and decreasing in R+.
Then the last inequality is true with cp = [p/(p− 1)]1/p resp. 1 for p ∈ (1,∞)
resp. p =∞. Moreover, the constant cp is sharp (cf. [3], [9] and [11]). A short
proof for the preceding reverse inequality was given in [10].

The purpose of this note is to extend the above two inequalities from
Lp(R+) to BMO(R+). To the best of our knowledge, the BMO(R+) setting
is new, nontrivial and of independent interest. The major result is the following

Theorem. The Hardy operator is bounded on BMO(R+); i.e.,

‖Pf‖BMO(R+) ≤ ‖f‖BMO(R+).

Moreover, the reverse BMO-Hardy inequality

‖Pf‖BMO(R+) ≥
1
17
‖f‖BMO(R+)

is valid for any positive, decreasing function f in L1
loc(R+).

Proof. In what follows, for any function f : R+ → R let ft(x) = f(tx), t > 0.
And, for any subinterval I = (α, β) ⊂ R+ let tI be the interval (tα, tβ).
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First of all, one verifies the boundedness of P acting on BMO(R+). If
f ∈ BMO(R+), then for any x ∈ R+,

(Pf)(x) =
∫ 1

0

fx(u)du. (1)

With (1), one has for any subinterval I ⊂ R+ and C = (fu)I ,

1
|I|

∫
I

|(Pf)(x)− C| dx =
1
|I|

∫
I

∣∣∣∣∫ 1

0

[fx(u)− C] du
∣∣∣∣ dx

≤
∫ 1

0

[
1
|I|

∫
I

|fu(x)− C |dx
]
du

≤
∫ 1

0

‖fu‖BMO(R+) du.

(2)

Note that ‖fu‖BMO(R+) ≤ ‖f‖BMO(R+) for u > 0. As a matter of fact,

‖fu‖BMO(R+) = sup
I⊂R+

1
|I|

∫
I

∣∣∣∣f(ut)− 1
|I|

∫
I

f(ux) dx
∣∣∣∣ dt

= sup
I⊂R+

1
|uI|

∫
uI

∣∣∣∣f(y)− 1
|uI|

∫
uI

f(x) dx
∣∣∣∣ dy

≤ ‖f‖BMO(R+).

(3)

Thus, by (2) and (3) one gets ‖Pf‖BMO(R+) ≤ ‖f‖BMO(R+).
Next, one shows the opposite direction. Assume that f ∈ L1

loc(R+) is
positive and decreasing. By definition,

(Pf)(2x) =
1

2x

∫ x

0

f(t) dt+
1

2x

∫ 2x

x

f(t)dt

=
1
2

(Pf)(x) +
1

2x

∫ 2x

x

f(t) dt

≤ 1
2

(Pf)(x) +
1
2
f(x).

Obviously, (Pf)(x) ≥ f(x). Thus,

(Pf)(2x) ≤ 1
2

[(Pf)(x) + f(x)] ≤ (Pf)(x).

Put g(x) = 1
2 [(Pf)(x) + f(x)]. Then for any subinterval I ⊂ R+,

(Pf)(2x)− (Pf)I ≤ g(x)− (Pf)I ≤ (Pf)(x)− (Pf)I . (4)
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Once observing an elementary fact that if a ≤ c ≤ b, then |c| ≤ |a|+ |b|, with
the help of (4), one obtains

|g(x)− (Pf)I |
≤ |(Pf)(x)− (Pf)I |+ |(Pf)(2x)− (Pf)I |
≤ |(Pf)(x)− (Pf)I |+ |(Pf)(2x)− (Pf)2I |+ |(Pf)2I − (Pf)I |
≤ |(Pf)(x)− (Pf)I |+ |(Pf)(2x)− (Pf)2I |+ 2‖Pf‖BMO(R+).

(5)

From (5) it follows that ‖g‖BMO(R+) ≤ 8‖Pf‖BMO(R+). Since f = 2g − Pf ,
‖f‖BMO(R+) ≤ 17‖Pf‖BMO(R+).

Let Rn be n-dimensional Euclidean space and |E| the Lebesgue measure of
the set E ⊂ Rn. In their paper [4] Bennett, DeVore and Sharpley introduced
the weak-L∞ space W of functions f : Rn → R1 obeying the condition that
f∗∗−f∗ is bounded in R+, where f∗ means the decreasing (or non-increasing)
rearrangement of f

f∗(t) = inf{s > 0 : |{x ∈ Rn : |f(x)| > s}| ≤ t}

and f∗∗ = Pf∗ (cf. [1, p.60]). An application of our theorem to W produces
immediately and interesting consequence.

Corollary. Let f ∈W . Then f∗ ∈ BMO(R+) if and only if f∗∗ ∈ BMO(R+).

Proof. It is easy.

Remark. In fact, as long as f∗ ∈ L1
loc(R+), f∗ ∈ BMO(R+) is equivalent to

f∗∗ ∈ BMO(R+). It would be very interesting to compare our theorem with
Theorem 4.2 in [4]. In addition, it is not hard to finger out that the Hardy
operator acts boundedly on the BMO-type spaces of Milman and Sagher (cf.
[2]). Finally, one would mention that the constant 1/17 in the reverse BMO-
Hardy inequality is not sharp and it can be improved in a similar fashion. One
conjectures that the best constant is 1. But the previous approach cannot
prove this point. And so, it seems necessary that some other ideas will be
involved in order to reach the conjecture.
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