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EXAMPLES ILLUSTRATING THE
INSTABILITY OF PACKING DIMENSIONS

OF SECTIONS

Abstract

We shall use the “iterated Venetian blind” construction to show that
the packing dimensions of plane sections of subsets of Rn can depend
essentially on the directions of the planes. We shall also establish the
instability of the packing dimension of sections under smooth diffeomor-
phisms.

1 Introduction and Notation

Let m and n be integers with 0 < m < n. We use the notation γn,m for
the unique orthogonally invariant Radon probability measure on the Grass-
mann manifold Gn,m consisting of all m-dimensional linear subspaces of Rn.
The uniqueness of γn,m implies that there is a positive and finite constant c
depending on m and n such that for all A ⊂ Gn,m

γn,m(A) = c(Hn × · · · × Hn)({(y1, . . . , ym) ∈ (Rn)m : |yi| ≤ 1
for all i = 1, . . . ,m and V (y1, . . . , ym) ∈ A})

(1.1)

where Hn is n-dimensional Hausdorff measure and V (y1, . . . , ym) is the m-
dimensional linear subspace spanned by the vectors y1, . . . , ym. For V ∈ Gn,m
we denote by projV the orthogonal projection onto V , by V ⊥ the orthogonal
complement of V , and by Va the m-plane {v + a : v ∈ V } for a ∈ V ⊥.
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For Borel sets E ⊂ Rn one has the following very precise information about
the Hausdorff dimension, dimH (for the definition see [F2, Chapter 2] or [Mat3,
Chapter 4], of projections and plane sections of E (see [K], [Mar], and [Mat1]):
for γn,m-almost all V ∈ Gn,m

dimH projV (E) = min{m, dimHE} (1.2)

and

Hn−m({a ∈ V ⊥ : dimH(E ∩ Va) = dimHE − (n−m)}) > 0 (1.3)

provided that in (1.3) dimHE ≥ n−m and 0 < HdimH E(E) <∞.
Note that for the Hausdorff and packing dimensions, dimH and dimp, (for

the definition see [F2, Chapter 3] or [Mat3, Chapter 5], of sections we have
the following natural upper bounds: if E ⊂ Rn and V ∈ Gn,m, then

dimH(E ∩ Va) ≤ max{0,dimHE − (n−m)} (1.4)

and
dimp(E ∩ Va) ≤ max{0,dimpE − (n−m)} (1.5)

for Hn−m-almost all a ∈ V ⊥ (see [F3, Lemma 5] and [Mat 3, Chapter 10]).
For the packing dimension, the formulae (1.2) and (1.3) are false, but there are
weaker results for both sets and measures (see [FH1], [FH2], [FJ], [FM], and
[JM]). Although there is no formula such as (1.2) for the packing dimensions of
projections, Falconer and Howroyd showed in [FH2] that given an analytic set
E ⊂ Rn, dimp projV (E) is almost surely a constant; that is, there is a number
dm(E) such that dimp projV (E) = dm(E) for γn,m-almost all V ∈ Gn,m. The
purpose of this paper is to show that there is no such result for plane sections.
We shall prove that there exists a compact set E ⊂ Rn and compact subsets A
and B of Gn,m with γn,m(A) > 0 and γn,m(B) > 0 such that for all V ∈ A we
have Hm(projV ⊥(E)) = 0; that is, E ∩ Va = ∅ for Hn−m-almost all a ∈ V ⊥,
and for all V ∈ B we have dimp(E ∩ Va) = m for points a in a non-empty
open subset of V ⊥. Quite likely, but perhaps with considerable technical
complications, it would be possible to show that given a Borel function f from
the space of affine m-planes in Rn into the closed interval [0,m] there is a Borel
set E ⊂ Rn such that dimp(E ∩ V ) = f(V ) for almost all affine m-planes V .
This would be analogous to the results of Davies [D] and Falconer [F1] where
AV ⊂ V is given in an arbitrary but measurable way and then E is found
such that for γn,m-almost all V ∈ Gn,m projV (E) agrees with AV up to a set
of m-dimensional measure zero. (After completing this paper we learned that
Csörnyei [C] has extended our results by proving this conjecture in the plane.)
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In Section 5 we shall establish the instability of the packing dimensions of
sections under smooth “bending” diffeomorphisms. We shall show that given
a C2-diffeomorphism f : A → B between two plane domains A and B which
does not map every line segment onto a line segment there is a compact subset
E of A such thatH1(projL(E)) = 0 for γ2,1-almost all L ∈ G2,1; that is, almost
all sections E∩La are empty, but for all L ∈ G2,1 we have dimp(f(E)∩La) = 1
for all points a in some non-empty open subset of L⊥.

2 The Basic Result for Hyperplanes in Rn

In this section we begin a two-stage induction process that proves the result
on which our first construction is based. Here we consider hyperplanes in Rn
and in the next section we work with general m-planes in Rn.

Let P ⊂ [0, 1]n be a non-degenerate closed parallelepiped. We name the
edges of P such that the shortest parallel edges are called 1-edges, the second
shortest parallel edges are 2-edges and so on. This numbering distinguishes
edges which are not parallel; that is, if two edges have the same length but
they are not parallel, then they have different numbers. For all i = 1, . . . , n
we call P 1

i and P 2
i the (n − 1)-faces of P which are generated by the edges

numbered by 1, . . . , i− 1, i+ 1, . . . , n.
For our purposes it is enough to consider a specific class of subparal-

lelepipeds of [0, 1]n. Let {x1, . . . , xn} be the standard basis of Rn. For all i =
1, . . . , n we let Wi be the hyperplane spanned by {x1, . . . , xi−1, xi+1, . . . , xn}.
We call P ⊂ [0, 1]n a hyperregular parallelepiped in Rn if P 1

i and P 2
i are par-

allel to Wi for all i 6= n − 1; let P 1
i be the one that is nearest to Wi. For a

hyperregular parallelepiped P and δ > 0 we define

An,n−1(P ) = {V : V is an affine (n− 1)-plane meeting both

P 1
i and P 2

i for all i 6= n but not P 1
n and P 2

n}

and

Aδn,n−1(P ) = {V ∈ An,n−1(P ) : dist(V ∩ P, P 2
n) ≥ δ}

where dist(V ∩P, P 2
n) = inf{|a−b| : a ∈ V ∩P, b ∈ P 2

n} is the distance between
V ∩ P and P 2

n .
The following lemma from [Mat2] describes the plane case underlying the

basic construction for hyperplanes in higher dimensions.

Lemma 2.1. There are disjoint compact sets A, B ⊂ G2,1 with γ2,1(A) > 0
and γ2,1(B) > 0 such that for all hyperregular parallelograms P ⊂ [0, 1]2 and
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for all ε > 0 there exists a finite family Pε of hyperregular subparallelograms
of P with the following properties:

1. H1(projL⊥(∪Pε)) ≤ ε for all L ∈ A.

2. There is δ > 0 such that if L ∈ A2,1(P )∩A2,1([0, 1]2) is parallel to some
line belonging to B, then there exists Q ∈ Pε such that L ∈ Aδ2,1(Q).

Proof. See [Mat2, Lemma 2]. Note that in the plane we can parametrize
the lines through the origin by the angle they make with the positive x1-
axis. Using this parametrization [Mat2, Lemma 2] gives A = [a, a + b] and
B = [0, a− b] ∪ [a+ 2b, π] where a and b are real numbers with 0 < b < a and
a+ 2b < π.

Next we prove the higher-dimensional version of Lemma 2.1 for hyper-
planes.

Lemma 2.2. There are disjoint compact sets A, B ⊂ Gn,n−1 with γn,n−1(A) >
0 and γn,n−1(B) > 0 such that for all hyperregular parallelepipeds P ⊂ [0, 1]n

and for all ε > 0 there exists a finite family Pε of hyperregular subparal-
lelepipeds of P with the following properties:

1. H1(projV ⊥(∪Pε)) ≤ ε for all V ∈ A.

2. There is δ > 0 such that if V ∈ An,n−1(P ) ∩ An,n−1([0, 1]n) is parallel
to some hyperplane belonging to B, then there exists Q ∈ Pε such that
V ∈ Aδn,n−1(Q).

Proof. If n = 2, the result is a restatement of Lemma 2.1. We assume
inductively that the claim holds in Rn−1 and deduce the result in Rn.

We may restrict our consideration to hyperregular parallelepipeds P with
P 1

1 ⊂ W1. We use the notation γW1,n−2 for the invariant measure on the
Grassmann manifold GW1,n−2 of all (n − 2)-dimensional linear subspaces of
W1. Applying the induction hypothesis to W1 which is identified with Rn−1

and defining AW1,n−2(P̃ ) and AδW1,n−2(P̃ ) in the obvious way for hyperregular
parallelepipeds P̃ ⊂ [0, 1]n−1 in W1 and for δ > 0, we find disjoint compact
sets Ã, B̃ ⊂ GW1,n−2 with γW1,n−2(Ã) > 0 and γW1,n−2(B̃) > 0 such that for
all hyperregular parallelepipeds P̃ ⊂ [0, 1]n−1 and for all ε > 0 there exists a
finite family P̃ε of hyperregular subparallelepipeds of P̃ such that

H1(projV ⊥,W1 (∪P̃ε)) ≤ ε (2.1)

for all V ∈ Ã. Here projV ⊥,W1 : W1 → V ⊥,W1 is the orthogonal projection onto
the orthogonal complement V ⊥,W1 ∈ GW1,1 of V . Further, there is δ > 0 such
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that if V ∈ AW1,n−2(P̃ )∩AW1,n−2([0, 1]n−1) is parallel to some (n− 2)-plane
belonging to B̃, then

V ∈ AδW1,n−2(Q̃) (2.2)

for some Q̃ ∈ P̃ε.
Define

A = {V ∈ Gn,n−1 : V ∩W1 ∈ Ã}

and

B = {V ∈ Gn,n−1 : V ∩W1 ∈ B̃, 0 ≤ angle(x1, V ∩ (V ∩W1)⊥) ≤ π/4},

where angle(x1, V ∩ (V ∩W1)⊥) is the angle between the x1-axis and the line
V ∩ (V ∩W1)⊥ measured on (V ∩W1)⊥ ∈ Gn,2. Here the positivity of the
angle is determined by requiring that the half-line

V ∩ (V ∩W1)⊥ ∩ {(y1, . . . , yn) ∈ Rn : y1 ≥ 0}

intersects the (n − 1)-plane where xn = 1. In this way we fix the positive
direction of the angle for all (V ∩W1)⊥ ∈ Gn,2 which are not subsets of Wn.
For the rest of the 2-planes (V ∩W1)⊥ we do this in some fixed sense; it turns
out that either of the two possibilities will do.

Clearly A and B are disjoint. Since γW1,n−2(Ã) > 0 and γW1,n−2(B̃) > 0,
it is easy to see from (1.1) that γn,n−1(A) > 0 and γn,n−1(B) > 0.

Let P ⊂ [0, 1]n be a hyperregular parallelepiped with P 1
1 ⊂ W1 and let

ε > 0. Since P̃ = P∩W1 is a hyperregular parallelepiped in W1, there exists by
the induction hypothesis a finite family P̃ε of hyperregular subparallelepipeds
of P̃ such that (2.1) and (2.2) hold. Let V ∈ A. Since

projV ⊥(∪P̃ε) = projV ⊥ proj(V ∩W1)⊥(∪P̃ε) = projV ⊥ proj(V ∩W1)⊥,W1 (∪P̃ε)

we obtain from (2.1) that

H1(projV ⊥(∪P̃ε)) ≤ ε. (2.3)

Let Pε be a finite family of hyperregular subparallelepipeds of P obtained by
extending the parallelepipeds of P̃ε to very thin parallelepipeds to the direction
of the positive x1-axis. Then (1) holds by (2.3).

Let δ > 0 be as in (2.2). If V ∈ An,n−1(P ) ∩ An,n−1([0, 1]n) is par-
allel to some hyperplane belonging to B, then V ∩ W1 ∈ AW1,n−2(P̃ ) ∩
AW1,n−2([0, 1]n−1) is parallel to some (n − 2)-plane belonging to B̃. Using
(2.2), we find Q̃ ∈ P̃ε such that V ∩W1 ∈ AδW1,n−2(Q̃). Since 0 ≤ angle(x1, V ∩
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(V ∩W1)⊥) ≤ π/4 and since we may choose the length of the 1-edges of the par-
allelepipeds of Pε to be less than δ/2, we have V ∈ Aδ/2n,n−1(Q) where Q ∈ Pε
is the enlargement of Q̃. Note that since here V ∈ An,n−1([0, 1]n) is parallel to
some Vp ∈ B, the xn-axis cannot be a subset of Vp ∩W1. Thus (Vp ∩W1)⊥ is
not a subset of Wn. In this case the positiveness of angle(x1, Vp ∩ (Vp ∩W1)⊥)
is explicitly defined.

3 The Extension of the Basic Result to m-Planes in Rn

In order to extend the result of Lemma 2.2 for general m-planes in Rn we do
a two-stage induction process: first we use the results of the previous section
for hyperplanes and then we prove the general case. As before we restrict our
attention to a certain class of parallelepipeds. We say that a non-degenerate
closed parallelepiped P ⊂ [0, 1]n is an m-regular parallelepiped in Rn if P is of
the form S×[0, 1]n−(m+1) where S ⊂ [0, 1]m+1 is a hyperregular parallelepiped
in Rm+1. We number the edges of P in the same way as before and define
for all i = 1, . . . , n the (n − 1)-faces P 1

i and P 2
i as before. Note that for all

i 6= m both P 1
i and P 2

i are parallel to Wi. For an m-regular parallelepiped
P ⊂ [0, 1]n we set

An,m(P ) = {V : V is an affine m-plane meeting both P 1
i and P 2

i

for all i = 1, . . . ,m but not P 1
i and P 2

i when i = m+ 1, . . . , n}.

Lemma 3.1. There are disjoint compact sets A, B ⊂ Gn,m with γn,m(A) > 0
and γn,m(B) > 0 such that for all m-regular parallelepipeds P ⊂ [0, 1]n and
for all ε > 0 there exists a finite family Pε of m-regular subparallelepipeds of
P with the following properties:

1. Hn−m(projV ⊥(∪Pε)) ≤ ε for all V ∈ A.

2. If V ∈ An,m(P ) ∩An,m([0, 1]n) is parallel to some m-plane belonging to
B, then there exists Q ∈ Pε such that V ∈ An,m(Q).

Proof. If n = m+ 1, the result is a consequence of Lemma 2.2. Keeping m
fixed, we assume inductively that the result holds in Rn−1 and prove it in Rn.

Identifying Wn with Rn−1 and using the induction hypothesis, we find
disjoint compact sets Ã, B̃ ⊂ GWn,m with γWn,m(Ã) > 0 and γWn,m(B̃) > 0
such that for all m-regular parallelepipeds P̃ ⊂ [0, 1]n−1 and for all ε > 0 there
exists a finite family P̃ε of m-regular subparallelepipeds of P̃ such that for all
V ∈ Ã

Hn−1−m(projV ⊥,Wn (∪P̃ε)) ≤ ε. (3.1)
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Further, if V ∈ AWn,m(P̃ ) ∩ AWn,m([0, 1]n−1) is parallel to some m-plane
belonging to B̃, then

V ∈ AWn,m(Q̃) (3.2)

for some Q̃ ∈ P̃ε.
Define

A = {V ∈ Gn,m : projWn
(V ) ∈ Ã}

and
B = {V ∈ Gn,m : projWn

(V ) ∈ B̃}.
Clearly A and B are disjoint compact sets with γn,m(A) > 0 and γn,m(B) > 0.

Let P ⊂ [0, 1]n be an m-regular parallelepiped and let ε > 0. Using the
induction hypothesis for the m-regular parallelepiped P̃ = P ∩Wn in Wn we
find a finite family {P̃ 1

ε , . . . , P̃
k
ε } of m-regular subparallelepipeds of P̃ such

that (3.1) and (3.2) hold. Now Pε = {P̃ 1
ε × [0, 1], . . . , P̃ kε × [0, 1]} is a finite

family of m-regular subparallelepipeds of P . Consider V ∈ A. Note that for
W = projWn

(V ) ∈ Ã we have W⊥,Wn ⊂ V ⊥. Since Hn−m(projV ⊥(∪Pε))
≤ 2nHn−1−m(projW⊥,Wn (∪Pε)) and projW⊥,Wn (∪Pε) = projW⊥,Wn (∪P̃ε), we
obtain (1) from (3.1). Finally, if V ∈ An,m(P ) ∩ An,m([0, 1]n) is paral-
lel to some m-plane belonging to B, then for all i = 1, . . . , n − 1 we have
projWn

(V ∩P ji ) = projWn
(V )∩P̃ ji for j = 1, 2. Since projWn

(V ) ∈ AWn,m(P̃ )∩
AWn,m([0, 1]n−1) is parallel to some m-plane belonging to B̃, we obtain by
(3.2) that projWn

(V ) ∈ AWn,m(P̃ lε) for some 1 ≤ l ≤ k giving V ∈ An,m(P̃ lε ×
[0, 1]).

4 The Main Construction

Using Lemma 3.1 we prove our main result:

Theorem 4.1. There exist compact sets E ⊂ Rn and A, B ⊂ Gn,m with
γn,m(A) > 0 and γn,m(B) > 0 such that

1. for all V ∈ A we have Hn−m(projV ⊥(E)) = 0, and

2. for all V ∈ B there exists a non-empty open subset UV of V ⊥ such that
dimp(E ∩ Va) = m for all a ∈ UV .

Proof. Let A, B ⊂ Gn,m be as in Lemma 3.1. Setting P1,1 = [0, 1]n and
using Lemma 3.1 we find m-regular parallelepipeds Q2,1, . . . , Q2,l2 ⊂ P1,1 such
that for all V ∈ A

Hn−m(projV ⊥(
l2⋃
q=1

Q2,q)) ≤
1
2
.
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Further, if V ∈ An,m(P1,1) is parallel to some m-plane belonging to B, then
V ∈ An,m(Q2,q) for some 1 ≤ q ≤ l2. For all 1 ≤ q ≤ l2 and 1 ≤ i ≤ m let
ei(Q2,q) be the length of the i-edges of Q2,q. Let k2 be the smallest positive
integer such that for all 1 ≤ q ≤ l2

k2 ≥ e1(Q2,q)−2m+1.

Dividing each Q2,q into (k2)m m-regular parallelepipeds with all the edges
parallel to the corresponding edges of Q2,q and with the length of the i-edges
equal to 1

k2
ei(Q2,q) for all 1 ≤ i ≤ m, we obtain m-regular parallelepipeds

P2,1, . . . , P2,N2 where N2 = l2(k2)m. Clearly

Hn−m(projV ⊥(
N2⋃
q=1

P2,q)) ≤
1
2

for all V ∈ A. By Lemma 3.1 we find for all 1 ≤ q ≤ N2 m-regular paral-
lelepipeds Qq3,1, . . . , Q

q
3,lq3
⊂ P2,q such that for all V ∈ A

Hn−m(projV ⊥(
lq3⋃
p=1

Qq3,p)) ≤
1

3N2
. (4.1)

Further, whenever V ∈ An,m(P2,q)∩An,m(P1,1) is an m-plane parallel to some
m-plane belonging to B, then V ∈ An,m(Qq3,p) for some 1 ≤ p ≤ lq3. As before,
divide each Qq3,p into (k3)m m-regular parallelepipeds with all edges parallel
to the corresponding edges of Qq3,p and with the length of the i-edges equal
to 1

k3
ei(Q

q
3,p) for all 1 ≤ i ≤ m. Here k3 is the smallest integer such that for

all 1 ≤ q ≤ N2 and 1 ≤ p ≤ lq3 we have k3 ≥ e1(Qq3,p)
−3m+1. This gives us

m-regular parallelepipeds P3,1, . . . , P3,N3 where N3 =
∑N2
q=1 l

q
3(k3)m. Since

N3⋃
q=1

P3,q ⊂
N2⋃
q=1

lq3⋃
p=1

Qq3,p,

by (4.1) we have Hn−m(projV ⊥(
⋃N3
q=1 P3,q)) ≤ 1

3 .

Continue in this way and define a compact set E =
⋂∞
p=1

⋃Np
q=1 Pp,q. If

V ∈ A, then for all positive integers p

Hn−m(projV ⊥(E)) ≤ Hn−m(projV ⊥(
Np⋃
q=1

Pp,q)) ≤
1
p
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giving the first claim.
Finally, let V ∈ An,m(P1,1) be parallel to some m-plane belonging to B.

By the construction for all j we have V ∈ An,m(Qqj,p) for some 1 ≤ q ≤ Nj−1

and 1 ≤ p ≤ lqj and therefore V ∈ An,m(Pj,i) for all Pj,i ⊂ Qqj,p. Since there
are (kj)m such parallelepipeds Pj,i and since E ∩ V ∩ Pj,i 6= ∅ for all of them,
we need at least (kj3 )m m-cubes with side-length

dj =
1
kj

min
1≤q≤Nj−1

1≤p≤lqj

e1(Qqj,p)

to cover E ∩ V . Using the fact that

kj ≥
(

min
1≤q≤Nj−1

1≤p≤lqj

e1(Qqj,p)
)−jm+1

we have (kj)jm ≥ (dj)1−jm which gives dimB(E ∩ V ) = m where dimB is the
upper box-counting dimension (for the definition see [F2, Chapter 3] or [Mat3,
Chapter 5]). Similarly we see that dimB(E ∩ V ∩ O) = m for all open sets
O ⊂ Rn with E∩V ∩O 6= ∅, and so [F2, Corollary 3.9] gives dimp(E∩V ) = m.
This completes the proof since in Lemma 3.1 the set B can be chosen in such
a way that for all V ∈ B the set {a ∈ V ⊥ : Va ∈ An,m(P1,1)} is open.

5 Bending Maps and Packing Dimensions of Sections

In this section we shall indicate another difference between the behavior of
Hausdorff and packing dimensions of sections of sets. By (1.3), (1.4), and
the preservation of Hausdorff dimension under smooth mappings, the typical
Hausdorff dimension of sections of a smooth image of a set is the same as the
typical Hausdorff dimension of sections of the original set. We shall show that
the packing dimensions of sections can change very radically under smooth
diffeomorphisms. For simplicity, we shall do this only in the plane, although
the techniques of the previous sections could certainly be used to prove similar
results in higher dimensions.

Theorem 5.1. Let f : A → B be a C2-diffeomorphism between open subsets
A and B of R2. Suppose that f does not map every line segment of A onto a
line segment. Then there is a compact subset E of A such that

1. H1(projL⊥(E)) = 0 for γ2,1-almost all L ∈ G2,1, and

2. for all L ∈ G2,1 we have dimp(f(E) ∩ La) = 1 for all a ∈ IL, where IL
is some non-empty open subinterval of L⊥.
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The proof is a slight modification of the methods of Section 4 and [Mat2]
and therefore we shall only sketch it. We recall some terminology and notation
from [Mat2]. From now on a parallelogram will always mean a non-degenerate
closed parallelogram in R2 whose shorter sides are parallel to the x1-axis.
Given a C1-curve C and a parallelogram P , we say that C ∈ Γ(P ) if C ∩P has
a connected component meeting both of the longer sides of P but neither of
the shorter ones. We denote by dir(C, x) the direction of the tangent of C at
x ∈ C. Finally, pθ = projl⊥θ where lθ = {t(cos θ, sin θ) : t ∈ R} for θ ∈ [0, π).

Lemma 5.2. Let P be a parallelogram, ε > 0, 0 < s < 1, 0 < α < π
10 , and

let kα ≥ 1 be the largest integer with 5(kα + 1)α < π. Then there is a finite
family P of subparallelograms of P with the following properties:

(1.) H1(pθ(∪P)) ≤ ε for 5iα ≤ θ ≤ (5i+ 1)α, i = 1, . . . , kα.

(2.) If C ∈ Γ(P ) with dir(C, x) /∈ ((5i − 1)α, (5i + 2)α) for all i = 1, . . . , kα,
x ∈ C, then there are parallelograms P1, . . . , Pl ∈ P having the same
side-length d for their shorter sides such that lds > 1 and C ∈ Γ(Pi) for
all i = 1, . . . , l.

Proof. [Mat2, Lemma 3] gives a finite family R of subparallelograms of P
for which (1) is satisfied and if C is as in (2), then C ∈ Γ(Q) for some Q ∈ R.
Subdividing each parallelogram of R into sufficiently many subparallelograms
we get the required family P.

We can now use the argument in [Mat2, pp. 307–309]. First we choose a
small open subset U of A such that f bends many line segments in U . We
may not be able to get this for all line segments in U , but if we stay away
from some exceptional directions as described in [Mat2, Lemma 1] we find a
subinterval I of [0, π) of length 1

2 such that for line segments J whose direction
is in I, f(J) is not a line segment. Using Lemma 5.2 we construct a compact
set F with the following properties:

(5.1) F =
⋂∞
m=1

⋃
Pm where (Pm) is a nested sequence of subparallelograms

of U .

(5.2) H1(pθ(F )) = 0 for almost all θ ∈ [0, π).

(5.3) For all θ ∈ I we have dimp(f(F ) ∩ (lθ + a)) = 1 for all a ∈ Iθ, where
Iθ ⊂ R is some non-empty open subinterval of l⊥θ .

The set F can be taken to be one of the sets En in [Mat2, p. 307] (for
example, F = E6 if we take ε = 1

6 in the application of [Mat2, Lemma 1] when
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choosing the set U above). Then (5.1) and (5.2) are satisfied. To get (5.3)
we choose a sequence sm ∈ (0, 1) with limm→∞ sm = 1. Proceed otherwise
exactly as in the last four lines of [Mat2, p. 307] and the first ten lines of
[Mat2, p. 308] but instead of applying [Mat2, Lemma 3] apply Lemma 5.2
with s = sm. This gives the family Pm+1. As in the last paragraph in [Mat2,
p. 308] we see that for all θ ∈ I we have f(F )∩ (lθ + a) 6= ∅ for a ∈ Iθ (which
is an open subinterval of l⊥θ ). (There is a misprint in [Mat2, p. 308]: the first
sentence of the last paragraph should read (lθ + a) ∩ f(En) 6= ∅ instead of
(lθ + a) ∩ f(En) = ∅.) Because of the stronger formulation of Lemma 5.2 we
now know more: for any open set U ′ with f(F ) ∩ U ′ 6= ∅ and for sufficiently
large m we need at the m-th stage at least lm intervals of length dm with
lm(dm)sm > 1 to cover f(F ) ∩ U ′ ∩ (lθ + a) for θ ∈ I and a ∈ Iθ. Further,
limm→∞ dm = 0, and therefore dimp(f(F )∩ (lθ +a)) = 1 for θ ∈ I and a ∈ Iθ.
Since I has length 1

2 , we can take as E the union of seven suitably rotated
copies of F .
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