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PROCESSES OF ANALYSIS

Abstract

The paper deals with divergence phenomena for various approxima-
tion processes of analysis such as Fourier series, Lagrange interpolation,
Walsh-Fourier series. We prove the existence of superdense (meaning
residual, dense and uncountable) families of functions in appropriate
function spaces over an interval T ⊂ R. One proves that for each function
in the family, the corresponding approximation process is unboundedly
divergent on a superdense subset of T of full measure.

1 Introduction

A subset T0 of a topological space T is called superdense in T if it is residual
(i.e. its complement is of first Baire category) uncountable and dense in T.
A general principle of double condensation of singularities proved in [3] was
applied to obtain superdense unbounded divergence for superdense families of
functions in various approximation processes of analysis as Lagrange interpo-
lation, Fourier series, Walsh-Fourier series, quadrature formulae etc. (see [2],
[3], [10]). A good account of convergence and divergence phenomena in these
approximation processes is given in the survey paper [11].

The general framework of all of these results is as follows. Let X = X(T )
be a Banach space of scalar functions defined on an interval T ⊂ R. For a
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sequence An : X → X, n ∈ N, of continuous linear operators and x ∈ X let

UD(x) = {t ∈ T : sup
n
|Anx(t)| =∞}

be the set of unbounded divergence of the sequence (Anx). By a double con-
densation of singularities for the sequence (An) we understand the existence
of a superdense subset X0 of X such that UD(x) is superdense in T for every
x ∈ X0, meaning unbounded divergence on large subsets of T in the topological
sense. There are also well known results emphasizing unbounded divergence
on large sets with respect to Lebesgue measure. The first ones of this kind are
the famous examples of A. N. Kolmogorov [7], [8] (see also [12]) of Lebesgue
integrable functions with Fourier series unboundedly divergent a.e. on T, re-
spectively on the whole T, T = [0, 2π]. The aim of the present paper is to
prove a principle of triple condensation of singularities emphasizing the exis-
tence of a superdense subset X0 of X such that UD(x) is superdense in T and
of full measure, for every x ∈ X0.

2 Preliminary Results

Concerning the existence of superdense subsets we mention the following re-
sult.

Theorem 2.1. [1, Th. 2.2] If T is a T1−separated topological space without
isolated points, then every residual subset of T is superdense in T.

Remark. If T is a Baire space, then every intersection of dense open subsets
of T is residual and dense in T. Conversely, every residual subset of T contains
a dense Gδ−subset of T.

Now let (T,A, µ) be a positive measure space; i.e., T is a nonvoid set, A
is a σ-algebra of subsets of T and µ : A → [0,∞] a σ-additive measure on
A. Denote by S(T ) the vector space of all equivalence classes (with respect to
equality µ-a.e.) of measurable µ-a.e. finite functions defined on T and taking
values in K = R = R∪{+∞,−∞} or K = R+iR. For x, y, z ∈ S(T ) denote by
the corresponding Greek characters ξ, η, ζ finite functions belonging to these
classes, respectively. For a measurable function ξ : T → R and α ∈ R let
{ξ > α} = {t ∈ T : ξ(t) > α}. The sets {ξ ≥ α}, {ξ = ∞} etc. are defined
similarly. Since the measures of these sets depend only on the equivalence class
x generated by the function ξ we can use the notation µ{x > α} = µ{ξ > α}
etc. Let also |x| denote the class generated by the function |ξ|.

A sequence (xn) in S(T ) is called µ-convergent (or convergent in measure)
to x ∈ S(T ) provided limn µ{|xn − x| ≥ ε} = 0 for every ε > 0.



Superdense a.e. Unbounded Divergence 503

A mapping B from a metric space X to S(T ) is called µ-continuous at
x ∈ X if (Bxn) is µ-convergent to Bx for every sequence (xn) in X converging
to x. The mapping B is called µ-continuous on X if it is continuous at each
x ∈ X.

An example of a µ-continuous linear operator is given in the following
proposition. As usually, for 1 ≤ p < ∞, denote by Lp(T ) = Lp(T,A, µ) the
Banach space of all equivalence classes of p−integrable functions, normed by

‖x‖p =
(∫

T

|ξ(t)|pdµ(t)
)1/p

for x ∈ Lp(T ) and ξ ∈ x. Since any p−integrable function is µ-a.e. finite, it
follows that Lp(T ) is a subspace of S(T ). Moreover we have the following.

Proposition 2.2. ([9, Th. 0.18]) The canonical embedding operator J :
Lp(T )→ S(T ), defined by Jx = x, is linear and µ-continuous.

Proof. Let (xk)k∈N be a sequence in Lp(T ) converging to x ∈ Lp(T ) with
respect to the p-norm. Choose finite functions ξk ∈ xk, k ∈ N, and ξ ∈ x and
let

T kε = {|ξk − ξ| ≥ ε} = {|ξk − ξ|p ≥ εp}.

Then
‖xk − x‖pp ≥

∫
Tkε

|ξk(t)− ξ(t)|pdµ(t) ≥ εp · µ(T kε ),

implying that limk→∞ µ(T kε ) = 0, for every ε > 0; i.e., the sequence (Jxk)
converges in measure to Jx.

Remark. Usually, measurable functions and classes of measurable functions
are identified. This identification causes no measure theoretical troubles, but
the topological properties of sets defined by measurable functions may change
when passing from a function to a µ-equivalent one. For this reason we have
to distinct functions from classes of measurable functions. The same caution
is taken in [9], too.

If (yn) is a sequence in S(T ), then y∗ = supn |yn| is defined as the class gen-
erated by the function η∗ = supn |ηn|, where ηn ∈ yn, n ∈ N, N = {1, 2, . . . }.
Note that the A-measurable function η∗ may not be µ-a.e. finite, but its
equivalence class does not depend on the particular choice of the functions ηn.
For a sequence An : X → S(T ), n ∈ N, of µ-continuous mappings, define by
A∗x = supn |Anx|, the maximal operator associated to the sequence (Anx).

The following result of A. del Junco and J. Rosenblatt [6] will be essential
in the proof of our main result (Theorem 3.1 below).
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Theorem 2.3. ([6, Th. 1.1]) Let X be a real normed space which is a Baire
space and BX its closed unit ball. Also let (T,A, µ) be a positive measure
space. Suppose that An : X → S(T ), n ∈ N, is a sequence of µ-continuous
linear mappings satisfying

(JR) ∀ε > 0 ∀M > 0 ∃x0 ∈ BX such that µ{A∗x > M} ≥ µ(T )− ε.

Then there exists a superdense subset X0 of X such that for every x ∈ X0

µ{A∗x =∞} = µ(T ). (2.1)

We shall need also the following result of W. Orlicz [13] (also see [17]).

Theorem 2.4. ([13, Hilfsatz 1]). Let T be a topological space which is of
second Baire category and let fn : T → [0,∞), n ∈ N, be a sequence of
positive continuous functions. If there exists a dense subset T0 of T such that
supn fn(t) = ∞ for every t ∈ T0, then S = {t ∈ T : supn fn(t) = ∞} is
residual, contains T0 and, of course, is dense in T.

3 Triple Condensation of Singularities

First we prove a general principle of triple condensation of singularities, from
which we shall derive triple condensation of singularities results in concrete
situations.

For a topological space T, denote by C(T ) the space of all scalar (meaning
real or complex) valued continuous functions on T and by B(T ) the σ-algebra
of Borel subsets of T, i.e. the σ-algebra generated by the open subsets of T.

Let (T,A, µ) be a finite measure space such that A ⊃ B(T ) and let X
be a normed space. Further let An : X → S(T ), n ∈ N, be a sequence of
µ-continuous mappings such that

C(T ) ∩Anx 6= ∅ (3.1)

for every x ∈ X and every n ∈ N. For x ∈ X put

UD(x) = {t ∈ T : sup
n
|ξn(t)| =∞}

where ξn stands for the unique element in C(T ) ∩Anx.
The main result of this paper is the following theorem.

Theorem 3.1. Let T be a T1-separated Baire topological space without isolated
points. Let A ⊃ B(T ) be a σ-algebra of subsets of T and let µ : A → [0,∞) be
a finite positive measure on A such that

µ(U) > 0 (3.2)
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for every nonvoid open subset U of T.
Further let X be a Baire normed space and let An : X → S(T ), n ∈ N, be

a sequence of µ-continuous linear operators satisfying (3.1). If there exists an
element y0 ∈ X such that

µ(UD(y0)) = µ(T ), (3.3)

then there exists a superdense subset X0 of X such that for every x ∈ X0

µ(UD(x)) = µ(T ), and (3.4a)
UD(x) is superdense in T. (3.4b)

Proof. We intend to apply Theorem 2.3. In order to show that condition (JR)
of this theorem is satisfied let ε > 0 and M > 0 be given and let x0 = δy0,
where δ = 1/‖y0‖. (Observe that, by (3.3), y0 6= 0.) Let ηn ∈ C(T ) ∩
Any0, ξn = δηn, n ∈ N, ξ∗ = supn |ξn| and η∗ = supn |ηn|. It follows that
ξ∗ = δη∗ and {η∗ =∞} = {ξ∗ =∞} ⊂ {ξ∗ > M} which, by (3.3), gives

µ{A∗x0 > M} = µ{ξ∗ > M} ≥ µ{ξ∗ =∞}
= µ{η∗ =∞} = µ{A∗y0 =∞} = µ(T ) > µ(T )− ε.

It follows that there exists a superdense subset X0 of X such that (3.4a) holds,
for every x ∈ X0.

To prove (3.4b) we shall apply Theorem 2.4 to the functions fn = |ξn|,
where ξn ∈ C(T ) ∩ Anx, for n ∈ N and x ∈ X0. Put T0 = UD(x) and show
that T0 is dense in T. Indeed, the existence of an element t0 ∈ T \ T0 would
imply the existence of an open neighborhood U of t0 such that U ∩ T0 = ∅.
But then , by (3.2), µ(U) > 0 and

µ(T ) ≥ µ(T0 ∪ U) = µ(T0) + µ(U) > µ(T0),

contrary to µ(T ) = µ(T0). Now, by Theorem 2.3, the set T0 is residual in T
and, by Theorem 2.1, it is superdense in T.

Remark. Condition (2.1) is equivalent to the condition supp(µ) = T, where
supp(µ) denotes the support of the measure µ, given by

supp(µ) = T \
⋃
{U : U ⊂ T open and µ(U) = 0}

(see [14, p. 57]).
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4 Applications

4.1 Fourier Series

Let T = [0, 1] and let {ek : k ∈ Z} be the trigonometric orthonormal system
on T given by ek(t) = exp(2πikt), t ∈ T, k ∈ Z, (i2 = −1). For x ∈ L1(T )
and ξ ∈ x, let ck =

∫
T
ξ(t)ek(t)dt, k ∈ Z, denote the Fourier coefficients of x

and let Fn : L1(T ) → C(T ) denote the Fourier partial sum operator defined
by

Fnx =
n∑

k=−n

ckek, n ∈ Z+.

Finally, let
F ∗x = sup

n
|Fnx|

be the Fourier maximal operator. The triple condensation of singularities for
Fourier series in L1 has the following form.

Theorem 4.1. There exists a superdense subset X0 of L1(T ) such that

λ{F ∗x =∞} = 1, and {F ∗x =∞} is superdense in T,

for every x ∈ X0, where λ denotes the Lebesgue measure on T.

Proof. For x ∈ L1(T ), ξ ∈ x and s ∈ T, we have

|Fnx(s)| ≤
n∑

k=−n

(
∫
T

|ξ(t)||ek(t)|dt) · |ek(s)|

= (2n+ 1)
∫
T

|ξ(t)|dt = (2n+ 1)‖x‖L1 ,

implying ‖Fnx‖C ≤ (2n + 1)‖x‖L1 , which is equivalent to the continuity of
the linear operatorFn : L1(T )→ C(T ). It follows that (Fnxk)k∈N is uniformly
convergent to Fnx, for every sequence (xk) converging in L1(T ) to x. Since the
uniform convergence of sequences of measurable functions implies convergence
in measure, it follows that the operator An := j ◦ Fn : L1(T ) → S(T ), is µ-
continuous, where j denotes the canonical embedding operator of C(T ) into
S(T ). Now, appealing to Kolmogorov’s example [7], there is an element y0 ∈
L1(T ) such that λ{F ∗y0 = ∞} = 1. But then, for A∗y0 = supn |Any0|, we
have λ{A∗y0 = ∞} = λ{F ∗y0 = ∞} = 1. Since Lebesgue measure satisfies
the condition (3.2), we can apply Theorem 3.1 to obtain the conclusions of the
theorem.
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4.2 Lagrange Interpolation

For a triangular matrix T of nodes t1n < · · · < tnn, n ∈ N, in the interval T =
[−1, 1] and x ∈ C(T ) denote by Lnx the Lagrange interpolation polynomial
given by Lnx =

∑n
k=1 x(tkn)lkn where lkn(t) = ωn(t)/[(t − tkn)ω′n(tkn)], and

ωn(t) = (t−t1n) · · · (t−tnn). Also let L∗x = supn |Lnx| be the Lagrange maximal
operator and let

UDL(x) = {t ∈ T : L∗x(t) =∞}

denote the set of unbounded divergence of the sequence (Lnx)n∈N. In this case,
the triple condensation of singularities takes the following form.

Theorem 4.2. For any triangular matrix T of nodes in the interval T =
[−1, 1] there exists a superdense subset X0 of C(T ) such that for every x ∈ X0

λ(UDL(x)) = 2, and UDL(x) is superdense in T.

Proof. Denote again by j the canonical embedding operator of C(T ) in S(T )
and let An := j ◦ Ln : C(T )→ S(T ). For any x ∈ C(T ) we have

|Lnx(t)| ≤
n∑
k=1

|lkn(t)||x(tkn)| ≤ λn‖x‖C ,

where ‖x‖C = supt∈T |x(t)| is the uniform norm in C(T ) and

λn = sup
t∈T

n∑
k=1

|lkn(t)|

denotes the Lebesgue constant. Consequently ‖Lnx‖C ≤ λn‖x‖C , implying
the continuity of Ln : C(T ) → C(T ). Reasoning as in the proof of Theorem
4.1 (uniform convergence implies convergence in measure) we infer that the
operator An : C(T ) → S(T ) is linear and µ-continuous, for each n ∈ N. By a
result of P. Erdős and P. Vértesi [4], there exists a function y0 ∈ C(T ) such
that λ(UDL(x)) = 2 = λ(T ). The theorem is an immediate consequence of
Theorem 3.1.

4.3 Walsh-Fourier Series

For a detailed and thorough presentation of Walsh harmonic analysis (also
called dyadic harmonic analysis) we recommend the treatise [15], which we
shall follow in the sequel.

Let r be the function defined on [0, 1) by r(t) = 1 for t ∈ [0, 1/2) and by
r(t) = −1 for t ∈ [1/2, 1), and extended by periodicity of period 1 to the whole
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of R. The Rademacher system r = {rn : n ∈ Z+} is defined by rn(t) = r(2nt)
for t ∈ R and n ∈ Z+. (Recall that Z+ = {0, 1 . . . } and N = {1, 2, . . . }).
For n ∈ Z+ let n =

∑∞
k=0 nk2k be the binary expansion of n. The numbers

nk ∈ {0, 1} are called the binary coefficients of n. Obviously nk = 0 for 2k > n.
The Rademacher system is orthonormal (with respect to Lebesgue measure)
but not complete in L2[0, 1). Starting from the Rademacher system several
complete orthonormal systems were obtained by J. L. Walsh in 1923, R. E.
A. C. Paley in 1932 and A. Schneider in 1948 (see [15]). All these systems
contain the same functions and differ only by their enumeration.

The Walsh-Paley system w = {wn : n ∈ Z+} is given by

wn =
∞∏
k=0

rnkk , n ∈ Z+ (4.1)

where nk are the binary coefficients of n ∈ Z+. Obviously w2n = rn and w is
closed under finite products ([15]).

The Walsh-Kaczmarz system v = {vn : n ∈ Z+}, defined by A. Schneider
[16] (see also [15, p. 2]) is given by v0 = 1 and

vn = rn

∞∏
k=0

r
nm−k−1
k , n ∈ N, (4.2)

where, for n ∈ N, the number m ∈ N satisfies 2m ≤ n < 2m+1.
The dyadic topology on [0, 1) is the topology generated by the dyadic in-

tervals
I(p, n) = [p2−n, (p+ 1)2−n), 0 ≤ p < 2n, p, n ∈ Z+. (4.3)

This topology is generated by a metric defined as follows. Let

x =
∞∑
k=0

xk2−k (4.4)

be the dyadic expansion of x ∈ [0, 1), where xk ∈ {0, 1} for k ∈ Z+. For
x ∈ Q2 := {p2−n : 0 ≤ p < 2n, n ∈ Z+}− the set of dyadic rationals in
[0, 1), by its dyadic expansion we mean the expansion of the form (4.4) which
terminates in zeros.

The dyadic addition of two numbers x, y ∈ [0, 1) is defined by

x⊕ y =
∞∑
k=0

|xk − yk| 2−k−1.
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It is easily seen that ρ(x, y) = x⊕y, x, y ∈ [0, 1) is a metric on [0, 1) generating
the dyadic topology (see [15, p. 11]). The dyadic intervals (4.3) are both open
and closed with respect to this topology, so that the dyadic topology differs
from the usual topology of [0, 1). Some of its basic properties are listed in the
next proposition.

Proposition 4.3. 1. For all x, y ∈ [0, 1) we have |x− y| ≤ x⊕ y.

2. The metric space ([0, 1),⊕) is Baire but not complete.

3. The metric space [0, 1) is separable and has no isolated points.

4. If λ denote the Lebesgue measure on [0, 1), then λ(U) > 0 for every
nonvoid open subset U of ([0, 1),⊕).

5. The Walsh-Kaczmarz functions (4.2) are continuous with respect to the
dyadic topology of [0, 1).

Proof. Assertions 1 to 3 were proved in [2, Th. 6.1]. Assertion 4 follows
immediately from the equality λ(I(p, n)) = 2−n > 0 and the fact that every
nonvoid open subset U of ([0, 1),⊕) contains a dyadic interval. (In fact, it is
the union of a countable family of such intervals.)

Since each Walsh function wn is a linear combination of characteristic
functions of dyadic intervals (see [15, p. 11]) and each dyadic interval is
open and closed with respect to the dyadic topology, each Walsh function is
continuous with respect to this topology. As the Walsh-Kaczmarz system v is
a rearrangement of the Walsh-Paley system w, the Walsh-Kaczmarz functions
are continuous with respect to the dyadic topology, too.

Denote by Cw[0, 1) the space of all real-valued functions on [0, 1) which
are continuous with respect to the dyadic topology and let W be the lin-
ear subspace of Cw[0, 1) spanned by the Walsh-Kaczmarz system v. For x ∈
L1[0, 1), ξ ∈ x and k ∈ Z+, let ck =

∫ 1

0
ξ(t)vk(t)dt, k ∈ Z+, denote the

Walsh-Kaczmarz coefficients of the function x and let Un : L1[0, 1) → W be
the Walsh-Kaczmarz partial sum operator defined by Unx =

∑n
k=0 ckvk.

Let also Vn := j ◦ Un : L1[0, 1) → L1[0, 1), where j denotes the canonical
embedding operator of W in L1[0, 1). Finally, for x ∈ L1[0, 1), let

UD(x) = {t ∈ T : sup
n
|Unx(t)| =∞}

the set of unbounded divergence of the sequence (Unx).
Now we can state the triple condensation of singularities theorem for

Walsh-Kaczmarz series.
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Theorem 4.4. There exists a superdense subset X0 of L1[0, 1) such that for
every x ∈ X0

λ(UD(x)) = 1, and UD(x) is superdense in ([0, 1),⊕) (4.5)

Proof. Since |vk(t)| = 1, we have

‖Vnx‖L1 ≤
∫ 1

0

n∑
k=0

|ck||vk(s)| ds

≤
n∑
k=0

∫ 1

0

|ξ(t)||vk(t)| dt = (2n+ 1)‖x‖L1

for every x ∈ L1[0, 1) and every ξ ∈ x. It follows that the linear operator
Vn : L1[0, 1)→ L1[0, 1) is continuous. By a result of L. A. Balashov (see [15],
Ch. 6, Th. 21), for any sequence (εn) of positive numbers decreasing to zero
there exists y0 ∈ L1[0, 1) such that

lim sup
n

|Un(y0(t)|
εn log(n+ 2)

=∞ (4.6)

a.e. on [0, 1).
Since, by Proposition 2.2, the canonical embedding operator J : L1[0, 1)→

S[0, 1) is linear and µ-continuous, it follows that the operator An := J ◦ Vn :
L1[0, 1)→ S[0, 1) is linear and µ-continuous and Cw[0, 1)∩Anx = {Unx}, for
all x ∈ L1[0, 1) and n ∈ Z+. Taking εn = 1/ log(n+ 2) in (4.6), it follows that
condition (3.3) of Theorem 3.1 holds, implying that the assertions (4.5) are
true.

Remark. Concerning the pointwise divergence of Walsh-Fourier series (i.e.,
Fourier series with respect to the Walsh-Paley system (4.1)), there are ex-
amples of Lebesgue integrable functions with Walsh-Paley series unboundedly
divergent on dense subsets of [0, 1) ([15], Ch. 6, Th. 18), a result used in
[2] to prove a double condensation of singularities for Walsh-Paley series. On
the other hand, there are examples of integrable functions with Walsh-Paley
series boundedly divergent a.e. on [0, 1), but we are unaware of examples of
integrable functions with a.e. unboundedly divergent Walsh-Paley series.

N. J. Fine [5] and N. Ja. Vilenkin [18] (see also [15]) proposed another
approach to Walsh analysis, namely as a special case of harmonic analysis on
a compact abelian group, in a way we shall briefly describe below.

Denote by Z2 the discrete cyclic group of order 2; i.e., the set {0, 1} with
addition modulo 2 and discrete topology. The dyadic group is the group
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G = Z2 ×Z2 × . . . , equipped with the product topology and addition x+ y =
(|xn − yn|)n∈Z+ , for x, y ∈ G. In fact, G is a vector space over the field Z2

and the formula |x|2 =
∑∞
k=0 xk2−k−1 for x = (xk) ∈ G, defines a norm on G

generating its topology. The measure µ on G, obtained as the product measure
from the discrete measure ν on Z2 assigning to each singleton the measure 1/2,
is a translation invariant measure (i.e., a Haar measure) on G with µ(G) = 1.
Since for xi ∈ {0, 1}, µ({x0}×{x1}×· · ·×{xn}×Z2×Z2× . . . ) = 2−n−1 > 0,
it follows that µ(U) > 0 for every nonvoid open subset U of G, i.e. condition
(3.3) holds.

Now, combining Theorems 9 and 12 from Chapter 4 in [15], we deduce
the existence of a function f0 ∈ L1(G) whose Fourier series is unboundedly
divergent µ-a.e. on G. Using this result and Theorem 4.1 one can prove the
following.

Theorem 4.5. There exists a superdense subset X0 of L1(G) such that for
every f ∈ X0

µ(UD(f)) = 1 and UD(f) is superdense in G.
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