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DENJOY-YOUNG-SAKS THEOREM FOR
APPROXIMATE DERIVATIVES REVISITED

Abstract

We note that the restriction of any measurable mapping f : R→ R
n

to the set of points at which it possesses a finite approximate derived
number maps Lebesgue null sets to sets of zero linear measure. As a
corollary we deduce an optimal version of Denjoy-Young-Saks theorem
for approximate derivatives valid up to exceptional sets of zero linear
measure in the graph.

Denjoy-Young-Saks Theorems are results saying that except for x belong-
ing to a small set the Dini (extreme unilateral) derivatives satisfy certain
non-trivial relations. For example, the Dini derivatives of an arbitrary func-
tion f : R→ R satisfy one of the following four relations at almost every point
x:

(i) f̄+(x) = f̄−(x) = f+(x) = f−(x) is finite.

(ii) f̄+(x) = f−(x) is finite, f+(x) = −∞, f̄−(x) =∞.
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(iii) f+(x) = f̄−(x) is finite, f̄+(x) =∞, f−(x) = −∞.

(iv) f̄+(x) = f̄−(x) = +∞, f+(x) = f−(x) = −∞.

Similarly, the approximate Dini derivatives of any measurable function f :
R→ R satisfy, at almost every point x, one of the two relations (i) and (iv).

For ordinary Dini derivatives, Theorems 9.4.2–9.4.4 in [1] contain not only
the almost everywhere version of Denjoy-Young-Saks Theorem but also its
version with exceptional sets of zero linear measure in the graph: In the latter
case the complete list of relations is obtained by deleting the phrase “is finite”
from (i)–(iv). However, for approximate Dini derivatives we are aware only of
the almost everywhere version, which follows immediately from the Denjoy-
Khintchine Theorem [1, Theorem 9.10.1]). Here we intend to complete the
picture by finding all relations among the approximate Dini derivatives valid
up to sets of zero linear measure in the graph.

It is easy to see that the missing piece of information is related to a version
of Lusin’s property (N). In [1, Theorem 9.9.1-9.9.7] one can find a beautiful
argument showing that the restriction of any measurable function f : R→ R to
the set E of points at which at least one approximate derived number is finite
has Lusin’s property (N), i.e. it maps Lebesgue null subsets of E to Lebesgue
null sets. Unfortunately, the argument is purely one-dimensional, while we
need to know that the (vector-valued) mapping x 7→ (x, f(x)) maps Lebesgue
null subsets of E to planar sets of linear (Hausdorff) measure zero. Our main
observation says that this holds even for arbitrary mappings between Euclidean
spaces. To formulate it, we denote by Lk and Hk the outer Lebesgue measure
in Rk and the k-dimensional outer Hausdorff measure in Rn, respectively, by
α(k) the Lebesgue measure of the unit ball in Rk, and by Bn(x, r) the ball
centered at x ∈ Rn with radius r.

Theorem 1. Let F : Rk → R
n be an arbitrary mapping and let E ⊂ Rk and

ε > 0 be such that for every x ∈ E and δ > 0 there are arbitrarily small values
of r for which the set Bk(x, δ)∩f−1(Bn(F (x), r)) has inner Lebesgue measure
at least εα(k)rk. Then

Hk(F (E)) ≤ N

ε
Lk(E),

where N is the constant in the n-dimensional version of Besicovitch’s covering
theorem.

Proof. Let us fix δ > 0 and an open set A which contains E and satisfies
Lk(A) ≤ Lk(E) + δ, and consider the covering F of F (E) given by all balls
Bn(F (x), r) with x ∈ E and 0 < r < δ/2 taken so that the set E(x, r) =
A ∩ F−1(Bn(F (x), r)) has inner Lebesgue measure at least εα(k)rk. By the
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Besicovitch covering theorem, we can extract N disjoint subfamilies Fi which
still cover F (E).

Fix i for the time being. Since the balls B = Bn(F (x), r) in Fi are disjoint,
so are the corresponding sets E(x, r) and therefore

Lk(E) + δ ≥ Lk(A) ≥
∑
Lk(E(x, r)) ≥

∑
εα(k)rk

= ε
∑
B∈Fi

α(k)2−kdiamk(B).

Then
N
(
Lk(E) + δ

)
≥ εHkδ (F (E)),

and the statement follows by letting δ → 0.

Corollary 2. Let f : R → R be a measurable function. Then there is a set
E ⊂ R such that H1{(x, f(x)) : x ∈ E} = 0 and for every x ∈ R \ E one of
the following two relations holds:

(i) f has a finite approximate derivative at x.

(ii) All four approximate Dini derivatives of f at x are infinite.

Proof. The set E of points at which none of the two relations holds is
of Lebesgue measure zero by Denjoy-Young-Saks theorem for approximate
derivatives, and, by [1, Theorem 9.9.1], there is a decomposition E =

⋃∞
n=1En

such that En satisfies the assumptions of our main theorem with ε = 1/n. So
the graph of f above E has H1 measure zero.

Remark 3. Except for the obvious inequalities between lower and upper u-
nilateral derivatives, the above relations fully describe the behavior of approx-
imate Dini derivatives up to the required type of exceptional sets. To see
this, denote by Ef (α1, α2, α3, α4) the set of the points x at which the approx-
imate unilateral derivatives f̄+

app, f
+

app
, f̄−app, f

−
app

are α1, α2, α3, α4, respective-
ly. Then for every choice α1, α2, α3, α4 ∈ {−∞,+∞} such that α1 ≥ α2

and α3 ≥ α4 we may construct a continuous function f for which the set
f(Ef (α1, α2, α3, α4)) has positive Lebesgue measure; consequently, the graph
of f above Ef (α1, α2, α3, α4) has positive H1 measure.

Indeed, let C denote the ternary Cantor set and let f0 be the Cantor
function on [0, 1]. Then

L1(Ef0(∞,∞,∞,∞)) = 1.

We fix a number 1/2 < c < 1, define

f1(x) = f2(x) = f3(x) = f0(x) for x ∈ C
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and, whenever [a, b] = [`/3k, (`+ 1)/3k] is a contiguous interval of C,

f1(x) = f0(x)− ck for x ∈ [a+ (b− a)/3, a+ 2(b− a)/3];

f2(x) =

{
f0(x) x ∈ [a, a+ (b− a)/4],
f0(x)− ck x ∈ [a+ 2(b− a)/4, a+ 3(b− a)/4];

f3(x) =

{
f0(x) + ck x ∈ [a+ (b− a)/5, a+ 2(b− a)/5],
f0(x)− ck x ∈ [a+ 3(b− a)/5, a+ 4(b− a)/5].

Finally, we extend the functions f1, f2, f3 linearly to all intervals on which
they have not been defined yet.

It is straightforward to check that the sets f1(Ef1(−∞,−∞,+∞,+∞)),
f2(Ef2(+∞,−∞,+∞,+∞)) and f3(Ef3(+∞,−∞,+∞,−∞)) have Lebesgue
measure one. By replacing the functions fi(x) by −fi(x), fi(−x) and −fi(−x)
we obtain examples for all the other cases.

Incidentally, for f0, f2 and f3 the approximate and ordinary Dini deriva-
tives coincide, so these functions also form pertinent examples to the case of
ordinary derivatives. Of course, this is impossible for f1, which illustrates the
case when both unilateral approximate derivatives are infinite and of opposite
sign.
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