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Abstract

This note concerns the generalized Riemann integrals using free
tagged subdivisions, and leading to theories of absolute integration. We
first establish an approximation theorem by step functions. This re-
sult will allow us to define a natural notion of equi-integrability in the
Lebesgue space L1. Some applications, such as a new characterization
of compact parts of L1, are presented.

We first establish some approximation results of integrable functions by
step functions. The framework will be a generalized Riemann integral devel-
oped in [Fea 1], equivalent to the McShane integral [9] when functions are
valued in a finite dimension Banach space.

Those results lead naturally to concepts of gauges and equi-integrability
for the space of class functions L1. Using these concepts, we then characterize
the compact parts of L1. Some theorems can be expressed in the Lebesgue
theory while others require the gauge formalism.

Lastly, we use the approximation theorems to prove the equivalence of a
generalized Riemann integral and those of the Lebesgue or Bochner theories.

1 Definitions and Notation

In the following, (X, ‖ ‖) refers to a Banach space.

1. Gauges and Subdivisions

- Let [a, b] be an interval of R (a < b). A gauge on [a, b] is a function
δ from [a, b] to R∗+.

Key Words: Gauge, McShane integral, step functions, equi-integrability
Mathematical Reviews subject classification: 26A39, 28B05
Received by the editors July 7, 2000

471



472 Jean-Christophe Feauveau

- A subdivision of [a, b] is a sequence x = (xi)06i6n of [a, b] such that
a = x0 < . . . < xn = b, and we set τ(x) = Max

16i6n
(xi − xi−1). A

tagged subdivision is a couple (x, c) such that x = (xi)06i6n is a
subdivision and c = (ci)16i6n a sequence of [a, b].

- A free tagged subdivision subordinate to a gauge δ is a tagged
subdivision (x, c) which satisfies

∀i ∈ {1 . . . , n}, ci − δ(ci) 6 xi−1 < xi 6 ci + δ(ci).

It is a bounded tagged subdivision subordinate to δ if

∀i ∈ {1 . . . , n}, ci − δ(ci) 6 xi−1 6 ci 6 xi 6 ci + δ(ci).

Without indication, a tagged subdivision (x, c) subordinate to δ
will suppose to be free.

- For a tagged subdivision (x, c) of [a, b], the Riemann sum of f :
[a, b]→ X for this subdivision is

Sf (x, c) =
∑
i

(xi − xi−1)f(ci).

Let us recall that, for every gauge δ, we can find a tagged subdivision
(free or bounded) subordinate to δ [8].

2. A generalized Riemann integral

The framework of this article is the integral theory developed in [4].

Theorem and definition. A function f : [a, b]→ E is called integrable
if, for each ε > 0, we can find a gauge δε such that∑

i

‖(xi − xi−1)(f(ci)− f(c′i))‖ 6 ε

whenever (x, c) and (x, c′) are tagged subdivisions of [a, b] subordinate to
δε.

For an integrable function f , a gauge satisfying this property for ε is said
to be ε-adapted (to f).

In this case, for every family of tagged subdivisions ((xε, cε))ε>0 respec-
tively subordinate to (δε)ε>0, the function ε → Sf (xε, cε) has a limit
when ε goes to 0 and this limit does not depend on the sequence chosen.

By definition, it is the integral of f on [a, b] and it is denoted by
∫ b

a

f .
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We know that an almost everywhere null function is integrable with a
null integral. Accordingly, the integrals of two integrable functions equal
almost everywhere are the same.

The resulting theory is easily seen to be equivalent to the McShane
integral when X is a finite dimension space (and also equivalent to the
Lebesgue integral). It is equivalent to the Bochner theory in the general
case. These properties, and the results used in the following are proved
in [4].

3. Functional spaces

- A function f : [a, b] → X is a step function if there exists a sub-
division x = (xi)06i6n of [a, b] such that every restriction of f to
an interval ]xi, xi+1[ is constant. In this case, the subdivision x is
adapted to f (and f is adapted to x). The set of step functions
from [a, b] to X is denoted by E([a, b], X).

- We denote E([a, b], X) the quotient of E([a, b], X) by the negligibil-
ity relation. The elements of E([a, b], X) are class of functions. If
F ∈ E([a, b],X) and f ∈ F is a step function adapted to a subdi-
vision x, we shall say that x is adapted to F (and F is adapted to
x).

- We denote L1([a, b],X) the set of integrable functions and we set
‖f‖1 =

∫ b
a
‖f‖ for every f ∈ L1([a, b],X).

- The set L1([a, b], X) is the quotient of L1([a, b], X) by the negligibil-
ity relation. We also denote ‖ ‖1 the usual norm for L1([a, b],X).

- Let f ∈ L1([a, b], X) and x = (xi)06i6n be a subdivision of [a, b].
We denote by T (f, x) the step function equal to f on the elements
of x, and such that

∀i ∈ {1, . . . , n}, ∀t ∈]xi−1, xi[, T (f, x)(t) =
1

xi − xi−1

∫ xi

xi−1

f.

- If F ∈ L1([a, b], X) and f ∈ F , the class of T (f, x) is also denoted
by T (F, x), for every subdivision x of [a, b].

2 The Approximation Theorems

Theorem 1. Let f : [a, b] → X be an integrable function and ε > 0. For
every gauge δ which is ε-adapted to f , we have∑

i

∫ xi

xi−1

‖f(t)− f(ci)‖dt 6 ε
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whenever (x, c) is a free tagged subdivision subordinate to δ.

Proof. Let ε > 0 and δ be a gauge which is ε-adapted to f . We fix a free
tagged subdivision (x, c) = ((xi)06i6p, (ci)16i6p) subordinate to δ and choose
a sequence of gauges (δn)n∈N such that δn is 2−n-adapted to f and which
satisfies δn 6 δ for every n ∈ N.

Let i ∈ {1, . . . , p}. For all n ∈ N, let (xni, cni) be a free tagged subdivision
of [xi−1, xi] subordinate to the restriction of δn at this segment. Obviously, we
can merge the p tagged subdivisions to provide a tagged subdivision (xn, cn)
of [a, b] subordinate to δn and δ.

We can also consider the free tagged subdivision (xn, dn) built by merging
the tagged subdivisions (xni, dni), 1 6 i 6 p, where for every i the tags of dni

are repetition of ci. This tagged subdivision (xn, dn) is also subordinate to δ.
Accordingly,∑

i

∑
j

(xnij −xnij−1)
∥∥f(cnij )− f(ci)

∥∥ =
∑
i

∑
j

(xnij −xnij−1)
∥∥f(cnij )− f(dnij )

∥∥ 6 ε
from which the conclusion follows when n increase to +∞.

The Saks-Henstock Theorem is an easy consequence of Theorem 1.

Theorem 2 (Saks-Henstock). Let f : [a, b] → X be an integrable function
and ε > 0. For every gauge δ ε-adapted to f , we have

∑
i

∥∥∥∥∥(xi − xi−1)f(ci)−
∫ xi

xi−1

f

∥∥∥∥∥ 6 ε.
whenever (x, c) is a free tagged subdivision subordinate to δ.

The ideas developed in the proof of Theorem 1 can be used to prove the
following approximation theorem by step functions.

Theorem 3. Let f ∈ L1([a, b], X). For all ε > 0 there exists a step function
fε such that

‖f − fε‖1 6 ε.

Moreover, if δ is a gauge which is
ε

2
-adapted to f , we can take fε = T (f, x)

whenever (x, c) is a bounded tagged subdivision subordinate to δ.

Proof. The former result is an obvious consequence of the later. Neverthe-
less, it can be proved from Theorem 1 by choosing a step function with value
f(ci) on every interval ]xi−1, xi[. We establish the second result.

Let ε > 0 and δ be a gauge which is
ε

2
-adapted to f , and fix a bounded

tagged subdivision (x, c) = ((xi)06i6p, (ci)16i6p) subordinate to δ. We can
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choose a sequence of gauges (δn)n∈N such that δn be 2−n-adapted to f and
T (f, x) with δn 6 δ for all n ∈ N.

Let i ∈ {1, . . . , p}. For all n ∈ N, let (xni, cni) be a tagged subdivision
of [xi−1, xi] adapted to the restriction of δn at this segment. We can merge
those p tagged subdivisions to provide a tagged subdivision (xn, cn) of [a, b]
subordinate to δn.

If cnij belong to x (as it is xi−1 or xi), then f(cnij )− T (f, x)(cnij ) = 0. We
let ∆ni denote the set of j such that cnij doesn’t belong to x, and compute

p∑
i=1

∑
j

∥∥(xnij − xnij−1)(f(cnij )− T (f, x)(cnij ))
∥∥ =

=
p∑
i=1

∑
j∈∆ni

∥∥(xnij − xnij−1)(f(cnij )− T (f, x)(cnij ))
∥∥

6

p∑
i=1

∑
j∈∆ni

∥∥(xnij − xnij−1)(f(cnij )− f(ci))
∥∥

+
p∑
i=1

∑
j∈∆ni

∥∥(xnij − xnij−1)(f(ci)− T (f, x)(cnij ))
∥∥

6

p∑
i=1

∑
j

∥∥(xnij − xnij−1)(f(cnij )− f(ci))
∥∥

+
p∑
i=1

∑
j

∥∥∥∥∥(xnij − xnij−1)

(
f(ci)−

1
xi − xi−1

∫ xi

xi−1

f

)∥∥∥∥∥.
The free tagged subdivision (xn, cn) is subordinate to δ as is (xn, dn) ob-

tained by setting dnij = ci for every j. Accordingly, the former of the two

terms is lesser than
ε

2
, because δ is

ε

2
-adapted to f , and the same majoration

is obtained for the later term by application of the Saks-Henstock theorem.
From this it follows that ‖f − T (f, x)‖1 6 ε when n increases to infinity.

An easy and important consequence is the following approximation theo-
rem.

Theorem 4. Let f ∈ L1([a, b], X). For every ε > 0 there exists a function
fε ∈ C0([a, b],X) such that ∫ b

a

‖f − fε‖ 6 ε.
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Moreover, using a usual regularization process, we can choose the function
fε in C∞([a, b],X). This theorem is very classical in the Lebesgue theory,
but the usual proofs use the Lusin Theorem, itself proved after some delicate
topological results (Urysohn’s Lemma [10] or Tietze’s Extension Theorem [7]).

Theorem 5. Let f ∈ L1([a, b],X). For every ε > 0, there exists η > 0 such
that

‖f − T (f, x)‖1 6 ε

whenever x = (xi)06i6q is a subdivision of [a, b] satisfying τ(x) 6 η.

Proof. Let ε > 0. There exits g ∈ C0([a, b], X) such that ‖f − g‖1 6
ε

3
, and

hence we can find η > 0 such that

∀(u, v) ∈ [a, b]2, |u− v| 6 η ⇒ |g(u)− g(v)| 6 ε

3(b− a)
.

Let x = (xi)06i6q be a subdivision of [a, b] such that τ(x) 6 η. Then∫
[a,b]

|g − T (g, x)| =
q∑
i=1

∫ xi

xi−1

∣∣∣∣∣g(u)− 1
xi − xi−1

∫ xi

xi−1

g(v)dv

∣∣∣∣∣du
6

q∑
i=1

∫ xi

xi−1

1
xi − xi−1

∫ xi

xi−1

|g(u)− g(v)|dvdu

6
ε

3
.

Moreover,∫
[a,b]

|T (g, x)− T (f, x)| 6
q∑
i=1

(xi−xi−1)

[
1

xi − xi−1

∫ xi

xi−1

|g(u)− f(u)|du

]
6
ε

3
.

Finally, we have

‖f − T (f, x)‖1 6 ‖f − g‖1 + ‖g − T (g, x)‖1 + ‖T (g, x)− T (f, x)‖1 6 ε.

Let us notice that this theorem can be generalized for a finite family
(fk)06k6p of L1([a, b],X). For all ε > 0, there exists η > 0 such that

∀k ∈ {0, . . . , p}, ‖fk − T (fk, x)‖1 6 ε

for every subdivision x = (xi)06i6n of [a, b] satisfying τ(x) 6 η.
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3 Gauges Adapted to an Element of L1

In some sense, approximation theorems by step functions are a generalization
of an integral using the Riemann definition, and this point of view leads us to
give a definition of a gauge which is ε-adapted to an element of L1([a, b],X).

Definition 6. A subdivision x = (xi)06i6p of [a, b] is subordinate to a gauge
δ if there exists a set of tags c = (ci)16i6p such that (x, c) be a bounded tagged
subdivision subordinate to δ.

Definition 7. Let F ∈ L1([a, b], X) and ε > 0. A gauge δ is ε-adapted to the
class of functions F if

‖F − T (F, x)‖ 6 ε

whenever x is a subdivision subordinate to δ.

Theorem 8. Let F ∈ L1([a, b],X). For all ε > 0, there exists a gauge δ wich
is ε-adapted to F .

In fact, if f ∈ F and δ is a gauge which is ε/2-adapted to f , (in the
function meaning), then δ is a gauge which is ε-adapted to F (in the class
of functions meaning). Moreover, for all ε > 0, we can find constant gauges
which are ε-adapted to F .

Proof. Those results are straightforward consequences of Theorems 3 and
5.

4 Application 1: A Characterization of the Compact
Parts of L1

Throughout this section, X will denote a finite dimensional Banach space.

Definition 9. Let Γ be a part of L1([a, b],X)

- The set Γ is equi-integrable on [a, b] if for every ε > 0, there is a subdi-
vision x of [a, b] such that

∀F ∈ Γ, ∃Fx ∈ E([a, b], X) adapted to x such that ‖F − Fx‖1 6 ε.

- The set Γ is uniformly equi-integrable on [a, b] if for every ε > 0 there is
a real η > 0 such that

∀F ∈ Γ, ∃Fx ∈ E([a, b],X) adapted to x such that ‖F − Fx‖1 6 ε

whenever x is a subdivision with τ(x) 6 η.
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- The set Γ is strongly equi-integrable on [a, b] if for every ε > 0 there is
a subdivision x of [a, b] such that

∀F ∈ Γ, ‖F − T (F, x)‖1 6 ε.

- The set Γ is uniformly strongly equi-integrable on [a, b] if for every ε > 0
there is a real η > 0 such that

∀F ∈ Γ, ‖F − T (F, x)‖1 6 ε.

whenever x is a subdivision with τ(x) 6 η.

Notice that each of the previous properties is satisfied if and only if it is
satisfied for a sequence (εn) with null limit, for instance εn = 2−n.

Lemma 10. Let (Fn) be a sequence of E([a, b],X) such that there exists a
subdivision x = (xi)06i6p of [a, b], adapted at every term of (Fn). If (Fn) is
bounded in the ‖ ‖1 norm, we can extract a subsequence which converges in
(E([a, b], X), ‖ ‖1).

Proof. For all n, and for each i ∈ {1, . . . , p} we define a function fn ∈ Fn by

fn(t) = f in =

{
1

xi−xi−1

∫ xi
xi−1

Fn if t ∈]xi−1, xi[,

0 if t ∈ {x0, . . . , xp}.

Let M = sup
n∈N
‖Fn‖1 and α = Max

16i6p

1
xi − xi−1

. Then,

∀n ∈ N,∀i ∈ {1, . . . , p},
∥∥f in∥∥ 6Mα.

Hence, (f1
n, . . . , f

p
n)n∈N is a bounded sequence of Xp, and there exists a strictly

increasing sequence ϕ : N→ N such that (f1
ϕ(n), . . . , f

p
ϕ(n))n∈N converges. The

lemma is now follows easily.
Recall that a part Γ of a vector space is precompact if its closure Γ is

compact. The following is a characterization of compacts parts of L1([a, b], X).

Theorem 11. Let Γ be a part of L1(Ω). The following properties are equiva-
lent:

(i) Γ is precompact;

(ii) Γ is bounded and uniformly strongly equi-integrable;

(iii) Γ is bounded and strongly equi-integrable;



Approximation Theorems 479

(iv) Γ is bounded and uniformly equi-integrable;

(v) Γ is bounded and equi-integrable.

Proof. Proof of (i)⇒ (ii)
As a precompact part Γ of L1([a, b],X) is bounded, we need only prove the

uniform strong equi-integrability.
For a fixed ε > 0, there exist sets of functions G1, . . . , Gp ∈ L1([a, b], X)

such that Γ ⊂
p⋃
k=1

B
(
Gk,

ε

3

)
. From the remark following Theorem 5 we con-

clude that there exists η > 0 such that

∀k ∈ {0, . . . , p}, ‖Gk − T (Gk, x)‖1 6
ε

3

for all subdivision x of [a, b] with τ(x) 6 η.
For F ∈ Γ, there exists k ∈ {1, . . . , p} such that ‖F −Gk‖1 6

ε

3
. Then for

every i ∈ {1, . . . , n} and almost every t ∈]xi−1, xi[, we have

‖T (Gk, x)(t)− T (F, x)(t)‖ =
1

xi − xi−1

∥∥∥∥∥
∫ xi

xi−1

Gk − F

∥∥∥∥∥
6

1
xi − xi−1

∫ xi

xi−1

‖Gk − F‖.

We deduce ‖T (Gk, x)− T (F, x)‖1 6 ‖Gk − F‖1, and that

‖F − T (F, x)‖1 6 ‖F −Gk‖1 + ‖Gk − T (Gk, x)‖1 + ‖T (Gk, x)− T (F, x)‖1
6
ε

3
+
ε

3
+
ε

3
= ε.

The proofs of (ii)⇒ (iii)⇒ (v) and (ii)⇒ (iv)⇒ (v) are obvious.
Proof of (v)⇒ (i)

Let Γ be a bounded and equi-integrable part of L1([a, b],X). Let us denote
M = Sup

F∈Γ
‖F‖1, and let (Fn) be a sequence of Γ.

For all p ∈ N, there exists a subdivision xp such that, for all n ∈ N,
there exists F pn ∈ E([a, b], X) adapted to the subdivision xp and satisfying
‖Fn − F pn‖1 6 2−p.

The end of the proof uses an application of Cantor diagonal process similar
to that used to prove Ascoli’s theorem . From Lemma 10 we can build a strictly
increasing application ϕ0 : N→ N such that

∀(n,m) ∈ N2,
∥∥∥F 0

ϕ0(n) − F
0
ϕ0(m)

∥∥∥
1
6 1.
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Then for every p, we build a strictly increasing application ϕp : N → N such
that

∀(n,m) ∈ N2,
∥∥∥F pϕ0◦...◦ϕp(n) − F

p
ϕ0◦...◦ϕp(m)

∥∥∥
1
6 2−p.

Let ϕ : N→ N the a strictly increasing application defined by ϕ(p) = ϕ0 ◦ . . .◦
ϕp(p). Then for every p < q we have∥∥Fϕ(p) − Fϕ(q)

∥∥
1
6

∥∥∥Fϕ(p) − F pϕ(p)

∥∥∥
1

+
∥∥∥F pϕ(p) − F

p
ϕ(q)

∥∥∥
1

+
∥∥∥F pϕ(q) − Fϕ(q)

∥∥∥
1

6 3 2−p.

The sequence (Fϕ(p)) is a Cauchy sequence, and Γ is a compact part of
L1([a, b]).

In a “gauge” formalism, we have the following theorem.

Theorem 12. A part Γ of L1([a, b], X) is precompact if and only if Γ is bound-
ed and, for all ε > 0, there exists a gauge δ ε-adapted to the elements of Γ (in
the class meaning).

Proof. If Γ is precompact, Γ is bounded and uniformly equi-integrable. Thus,
for all ε > 0, there exists a suitable constant gauge δε from Theorem 8.

Conversely, the result follows from the implication (v) ⇒ (i) of Theorem
11.

Notice the simplicity of those theorems, each isomorphic to the Ascoli
Theorem. They can be compared with the Fréchet-Kolmogorov Theorem ( [2,
p 72 and corollary IV-26 ], or [1, p. 31]) which characterizes the precompact
parts of L1([a, b],X).

We conclude this section by using Theorem 11 to prove a convergence
in mean result for sequence of functions. First recall a classical theorem in
Lebesgue’s theory.

Theorem 13. Let (fn) be a sequence of L1([a, b], X) and f ∈ L1([a, b], X)
such that lim

n→+∞
‖fn − f‖1 = 0.

Then there is a subsequence of (fn), which converges to f almost every-
where, with each term dominated by the same integrable function.

The proof can be found in [2] or [3] (in this last reference, the domination
is not mentioned, but appears clearly in the proof).

Theorem 14. Let (fn) be a bounded sequence of L1([a, b],X) which converges

almost everywhere to f ∈ L1([a, b], X). Then lim
n→+∞

∫ b

a

‖fn − f‖ = 0 if and

only if for every ε > 0 there exists a subdivision x such that∫ b

a

‖fn − T (fn, x)‖ 6 ε, for all n ∈ N
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.

Proof. We denote by F the class of f and Fn the class of fn.

If we have lim
n→+∞

∫ b

a

‖fn − f‖ = 0, then (Fn) converges to F in L1([a, b],X).

Thus, the union of terms of (Fn) with F is a compact set, that is, it is strongly
equi-integrable.

Conversely, suppose the set {Fn, n ∈ N} is bounded and strongly equi-
integrable; that is, it is precompact. Let (Fϕ(n)) be a subsequence of (Fn)
which converges to a limit, G. If g ∈ G, it follows from Theorem 13, that
there is a subsequence (fϕ◦ψ(n)) which converges to g almost everywhere on
[a, b]. So we have f = g almost everywhere, and F = G. Accordingly, (Fn)
converges to F , and the result follows.

5 Application 2: Integrable Functions are Lebesgue In-
tegrable

In this section, X will be a finite dimensional space.
It is easy to establish that Lebesgue integrable functions are integrable.

Just like in [8], this is a consequence of Dominated Convergence Theorem in
the generalized Riemann theories.

The converse implication is more difficult, and the hard point is the measur-
ability of an integrable function. The standard proof uses a delicate theorem
about the almost everywhere derivability of the indefinite integral (see [7, p.
145] for instance). The same results can be obtained using Theorem 3 and
some standard theorems of Lebesgue theory.

Theorem 15. Let X be a finite dimensional vector space. If f : [a, b]→ X is
integrable, then f is Lebesgue integrable.

Proof. Let F be the class of f and (Fn) be a sequence of E([a, b], X) such
that ‖F − Fn‖1 6 2−n for every n ∈ N.

The generalized Riemann integral and Lebesgue integral coincide for the
step functions and thus, (Fn) is a Cauchy sequence in L1 (of Lebesgue’s the-
ory). As L1 is complete, the sequence (Fn) converges to a limit F ∗ in L1.

Let fn ∈ Fn for every n ∈ N and apply Theorem 13 in the Lebesgue
theory. In this way, we extract a subsequence from (fn) which converges to
an element f∗ of F almost everywhere, with a Lebesgue integrable function
which dominates all terms of this subsequence.

We deduce that f∗ is integrable and the Dominated Convergence Theorem
(in the generalized Riemann integral) leads to

∫ b
a
‖f − f∗‖ = 0. This result

implies f = f∗ almost everywhere [4] and the conclusion that f is measurable
and Lebesgue integrable now follows.
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6 Application 3: Integrable Functions are Bochner Inte-
grable

In this section, X will denote a general Banach space and µ, Lebesgue measure
on [a, b].

Definition 16. A function f : [a, b] → X is called simple if there exists
z1, z2, . . . , zn ∈ X and E1, E2, . . . , Ep, some measurable parts of [a, b], such

that f =
p∑
i=1

ziχEi , where χEi is the characteristic function of Ei.

A function f : [a, b] → X is measurable if it is an almost everywhere
pointwise limit of simple functions.

Definition 17. A measurable function f : [a, b] → X is called Bochner-
integrable if there exists a sequence of simple functions (fn) such that

lim
n→+∞

∫ b

a

‖fn − f‖dµ = 0.

In this case, the integral of f on [a, b] is defined by
∫ b

a

f = lim
n→+∞

∫ b

a

fn and

is independent of the defining sequence (fn).

The equivalence of the generalized Riemann theory used in this paper and
the Bochner theory was proved in [4]. Once more, it is easy to prove that
a Bochner integrable function is integrable, but the converse is harder. In
[4] we use a difficult Bochner characterization theorem, namely, a measurable
function f : [a, b] → X is Bochner-integrable if and only if ‖f‖ is Lebesgue
integrable. Theorem 3 will allow us to avoid this difficulty.

Theorem 18. If f : [a, b]→ X is integrable, then f is Bochner integrable on
[a, b].

Proof. It is easy to see using the triangle inequality that the integrability
of g : [a, b] → X implies the integrability of ‖g‖ : [a, b] → R on [a, b]. Thus,
‖g‖ : [a, b]→ R is Lebesgue integrable.

Let f : [a, b]→ X be an integrable function. It follows from the Theorem 3
that there exists a sequence of step functions (fn) such that (

∫ b
a
‖fn − f‖)n∈N

converges to 0. As the functions ‖fn − f‖ : [a, b] → R are Lebesgue inte-
grable, it follows from Theorem 13 that there exists a subsequence (gn) of (fn)
which converges to f almost everywhere. Accordingly, f is measurable and

lim
n→+∞

∫ b

a

‖f − gn‖dµ = 0. That is, the function f is Bochner integrable.
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7 Conclusion

The approximation theorems proposed in this paper can be obtained in the
Lebesgue theory. Nevertheless, their natural framework is in the general Rie-
mann theories and it is in this context that compacity theorems become clear.

The simplicity and the importance of Theorems 11 and 12 show the interest
of introducing the notion of equi-integrability. This notion, expressed without
reference to gauge, becomes a relevant tool in the Lebesgue theory as well.

In the measure theory framework, the compacity results proved in this
paper can be generalized in two directions [5].

- We can substitute a metrizable locally compact space with a Radon
measure for [a, b] with the Lebesgue measure. In this case, the notion of
partition in measurable sets must be used instead of subdivision.

- Approximation results and characterization of compact subset of Lp,
1 6 p < +∞, can be obtained.

Finally, the usefulness of this approach is validated by the extension of
some results concerning compact imbedding theorems for Sobolev spaces [6].
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