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POINTS GENERATING THE PRINCIPAL
MEASURE OF CHAOS

Abstract

The principal measure of chaos of a continuous map of an interval is
generated by a pair of points at least one of which belongs to an omega
limit set of the second kind if such set exists, or is zero in the case that
such set does not exist.

For f : I → I continuous and I a real compact interval let f i denote the
ith iterate of f . The sequence {f i(x)}∞i=0 is called the trajectory of the point x

and the set Orb(J) =
∞⋃
i=0

f i(J) is the orbit of J for any set J ⊂ I . It is periodic

if for some nonnegative integer n, fn(J) = J. In the case that J = {x}, x is
a periodic point of f. For any x ∈ I, ω(x) is the ω-limit set, that is, the set
of all limit points of the trajectory {f i(x)}∞i=0. There are several definitions of
chaos for a dynamical system generated by f. We are going to discuss some
features of distributional chaos introduced in [7] and studied in [5] and [6]. It
is based on the behavior of upper and lower distribution functions defined as
follows.

For any sequences of real numbers {an} and {bn}, where an, bn ∈ I, denote

ξan,bn(t) = lim inf
1
n

#{i < n : /ai − bi/ < t}

ξ∗an,bn(t) = lim sup
1
n

#{i < n : /ai − bi/ < t}
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Since both ξan,bn and ξ∗an,bn are nondecreasing (hence measurable),0 ≤
ξan,bn(t) ≤ ξ∗an,bn(t) ≤ |I| , where |I| denotes the length of interval I, we can
consider

µ(an, bn) =
1
|I|

|I|∫
0

ξ∗an,bn(t)− ξan,bn(t) dt

which is a number in [0, 1]. Let µ(f, x, y) = µ(fn(x), fn(y)). Then the principal
measure of chaos is the number

µ(f) = sup
x,y∈I

µ(f, x, y).

The function f is distributionally chaotic if µ(f) > 0, otherwise it is nonchaot-
ic. Furthermore, in compliance with [7], we shall set Fx,y(t) = ξfn(x),fn(y)(t)
and F ∗x,y(t) = ξ∗fn(x),fn(y)(t).

Properties of ω-limit sets and their classification by Sharkovsky will be
important in what follows. For basic properties of ω-limit sets see [4]. Let
ω(f) be the system of all ω−limit sets of f. For any ω ∈ ω(f), ω is a closed
nonempty subset of I and f(ω) = ω. Consider the Hausdorff metric defined
on =x=, where = is the space of all closed subsets of I, in the following way.
For any A,B ∈ = let

h(A,B) = sup{d(x,B);x ∈ A}

where

d(x,B) = inf{|x− y|; y ∈ B}

and put

H(A,B) = max{h(A,B), h(B,A)}.

Then H is the Hausdorff metric and the metric space (=, H) is compact. In [3]
it was also shown that ω(f) equipped with the Hausdorff metric is a compact
subspace of (=,H). Furthermore (see [3]), for any nondecreasing sequence
{ωn}∞n=1 of ω-limit sets the closure of their union is also an ω-limit set. An
ω-limit set is maximal if it is not properly contained in any other ω-limit set.
A maximal ω-limit set is of the second kind if it contains a periodic point and
it is infinite; otherwise, it is a maximal ω-limit set of the first kind. An ω-limit
set ω has a periodic decomposition of period k if there is a compact periodic
interval J ⊂ I of period k such that Orb (J) ⊃ ω and such that for 0 ≤ i ≤ k
the convex hulls of the set Pi = f i(J) ∩ ω are nonoverlapping; that is, they
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have at most one endpoint in common. Sets Pi are called periodic portions of
ω. Periodic portion Pi = f i(J) ∩ ω is minimal if there is no periodic interval
properly contained in J such that its orbit contains ω. An ω-limit set can
be finite - then it is an orbit of a periodic point - or infinite. The following
theorem is a restatement of results from [7] concerning the characterization of
infinite ω-limit sets that will be important for our considerations.

Theorem 1. Let A1(f), A2(f) be the classes of infinite maximal ω-limit sets
of f of the first and second kind, respectively. Let ω(x) be an infinite ω-limit
set.

(i) If ω(x) has no minimal periodic portions, then ω(x) has periodic de-
compositions of arbitrarily high period.

(ii)If ω(x) has a minimal periodic portion, then ω(x) ⊂ ω for some ω ∈
A2(f).

(iii) If ω1 ∈ A1(f) and ω1 6= ω for some ω ∈ A1(f)∪A2(f), then ω1∩ω = ∅.
In particular, two distinct periodic portions of sets in A1(f) with the same
period have no common points.

(iv) The intersection of any two distinct sets in A2(f) is finite, and if
nonempty, it is the orbit of a periodic point . More precisely, if P1 and P2 are
distinct periodic portions of any two sets in A2(f), and if U =conv(P1) and
V =conv(P2), then U ∩ V = ∅, or U and V have just one point in common,
or U ⊂ int(V ) or V ⊂ int(U).

(v) Let ω ∈ A2(f). Then there is a minimal compact periodic interval U of
period m ≥ 1 such that Orb(U) ⊃ ω. Moreover, if J,K are compact intervals
such that J ∩ ω is infinite and K ⊂ int(U), then f i+jm(J) ⊃ K for some i
and any sufficiently large j. This situation is described by saying that f | ω is
strongly transitive in U.

By applying mentioned results of [3] and [7], any ω-limit set is contained
in some maximal ω-limit set. Furthermore, in [7], it was shown that if x, y
are such that ω(x), ω(y) are contained in finite or infinite maximal sets of the
first kind, then µ(f, x, y) = 0. Thus, in the case that f has no infinite set of
the second kind, µ(f) = 0. Our main aim is to show

Theorem 2. For any continuous f : I → I there are points x0, y0 ∈ I such
that

µ(f) = µ(f, x0, y0).

We shall consider sequences {xn}, {yn} of points in I such that

µ(f) = limµ(f, xn, yn)

and {µ(f, xn, yn)} is nondecreasing. With respect to mentioned results ([7]),
if µ(f) > 0, the sequence {xn} can be chosen so that for any n, ω(xn) is
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contained in some maximal ω-limit set of the second kind ωn. Moreover, (see
for example [7]) , we can assume that the points xn belong to this ω-limit set
because for any z ∈ I and for any t ∈ I

Fxnz(t) = Fuz(t) for some u ∈ ωn.

Let δ > 0 be such that µ(f) > δ. The next lemma shows that sequences
{xn}, {yn} and maximal ω-limit sets ωn, can be chosen such that for any n
there is a periodic portion of ωn of length greater than δ/2.

Lemma 3. Let ω, ω1 be maximal ω limit sets with periodic portions P0 . . . Pk−1

and P 1
0 . . . P

1
s−1 respectively. If diam Pi < δ and diam P 1

j < δ for any
i = 0, ..., k − 1 and j = 0, ..., s− 1, then

µ(f, x, y) < 2δ

for any x ∈ ω, y ∈ ω1.

Proof. Take x ∈ ω, y ∈ ω1. The statement is evident if k = 1 and s = 1

since µ(f, x, y) ≤ 1
|I|

|I|∫
0

F ∗xy(t)− Fxy(t) dt < 2δ. If k > 1 or s > 1, take m = ks

and consider g = fm. We show that

F ∗xy(t) ≤ 1
m

m−1∑
j=0

ξ∗gn(fj(x)),gn(fj(y))(t)

which together with the fact that µ(gn(f j(x)), gn(f j(y))) < 2δ implies the
result. Denote

An(t) = #{0 ≤ i < n : /f i(x)− f i(y)/ < t}
Anj(t) = #{0 ≤ i < n : j ≡ i (mod m) and |f i(x)− f i(y)| < t}

We have An(t) =
m−1⋃
j=0

Anj(t) and #An(t) ≤
m−1∑
j=0

#Anj(t). For any real number

a let [a] denote the integer part of a. It is easy to see that # Anj(t) ≤ #Bnj(t),
where

Bnj(t) = {km+ j : k = 0, 1..., [
n

m
] and /gk(f j(x))− gk(f j(y))/ < t}.
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We obtain

F ∗xy(t) = lim sup
1
n

#An(t) ≤ lim sup
1
n

m−1∑
j=0

Anj(t)

≤
m−1∑
j=0

lim sup
1
n

#Bnj(t) ≤
1
m

m−1∑
j=0

lim sup
1

[ nm ]
#Bnj(t)

≤ 1
m

m−1∑
j=0

ξ∗gn(fj(x)),gn(fj(y))(t)

Lemma 4. The number of ω-limit sets of the second kind possessing periodic
portion of diameter ≥ δ is finite.

Proof. Follows immediately from Theorem 1.

The following theorem is a modification of Lemma 5.2 from [6].

Theorem 5. Let f ∈ C(I, I) , ω be a maximal ω-limit set of the second kind,
f | ω strongly transitive in intU , U a periodic interval and p ∈ I a periodic
point. Then for any sequence {xn}, where xn ∈ intω there is x ∈ ω with

Fxp ≤ inf
n
Fxnp and F ∗xp ≥ sup

n
F ∗xnp (1)

Proof. The monotonicity of Fxnp and F ∗xnp enables us to take a countable
set T, T dense in I and such that both Fxnp , F ∗xnp are continuous at any
t ∈ T for any n ∈ N. Let {tj} and {x(j)} be sequences of points from T and
{xn} respectively, such that for any t ∈ T and any xn, t = tj and xn = xj for
infinitely many j. Using induction we construct a sequence of positive integers

k(1) < q(1) < k(2) < q(2) < ... < k(i) < q(i) < ...

and a decreasing sequence of compact intervals {Ui}∞i=1 with lim diam Ui = 0
and such that for any x ∈ Un and j ≤ n

1
k(j)

#{0 ≤ i < k(j) : /f i(x)− f i(p)/ < tj} ≤ Fx(j)p(tj) +
1
j

(2)

1
q(j)

#{0 ≤ i < q(j) : /f i(x)− f i(p)/ < tj} ≥ F ∗x(j)p(tj)−
1
j

(3)
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Take U1 = U , k(1) = 1, q(1) = 2 and assume that Un, k(n), q(n) have been
defined such that f j(Un) ∩ ω is infinite whenever j is sufficiently large. Since
both U and p are periodic and f | ω is strongly transitive in intU there is
some m > q(n) such that x(n+ 1) ∈ fm(Un) and fm(p) = p. Let a ∈ Un such
that fm(a) = x(n + 1). Then Fap = Fx(n+1)p and F ∗ap = F ∗x(n+1)p. Now take
as Un+1 ⊂ Un a compact neighborhood of a with diam Un+1 <

1
2 diamUn such

that (2), (3) hold for any x ∈ Un+1. This is possible using the continuity of
Fxnp and F ∗xnp at points of T (see Lemma 5.1 in [7]). Similarly as in [7] a, Un+1

can be chosen so that fm(Un+1)∩ω is infinite. Now take x ∈
⋂∞
j=1 Uj . For any

t ∈ T and xn take j such that t = tj and xn = x(j). Since x ∈ Uj , (2) and (3)
are satisfied. The fact that j can be arbitrarily large implies Fxp(t) ≤ Fxnp(t)
and F ∗xp(t) ≥ F ∗xnp(t) for any t ∈ T. However, T is dense in I which implies
(1) is also satisfied for any t ∈ I. The argument that x can be chosen in ω is
the same as in the proof of Lemma 5.2 in [7].

Lemma 6. Let ωn be a sequence of finite ω-limit sets such that diamωn >
D > 0 for all n. Assume that ωn converges in the Hausdorff metric to an ω-
limit set contained in a maximal ω -limit set of the second kind ω. Let {pn}∞n=1

be a sequence of periodic points , pn ∈ ωn. Then for any ε > 0 and any δ > 0
there is m0 such that for any m ≥ m0 there is a periodic point q(m) ∈ ω with
#{i < n : /f i(q(m))− f i(pm)/ > δ} < nε for any nonnegative integer n.

Proof. Using the Generalized specification property (GSP) from [2](stated
also in [6]) for any ε > 0, δ > 0 there is positive integer K such that for any
set {x1, ..., xs} of s ≥ 1 points in ω and any sequence

0 = k0 < k1 < ... < ks

of s + 1 integers with ki+1 − ki > K, there is a periodic point u in ω with
f2ks(u) = u, and for all xi we have

#{ki−1 < n ≤ k ≤ i : d(fn(u), fn(xi)) ≥ δ} < (ki − ki−1)ε,

#{ki−1 < n ≤ ki : d(fks+n(u), fn(xi)) ≥ δ} < (ki − ki−1)ε.

Put L = K + 1. By the uniform continuity of f, f2, ..., fL there is δ1 <
min{ δ2 ,

D
2 } such that |x− y| < δ1 implies |f i(x)− f i(y)| < δ

2 for i = 1, 2, ..., L.
Because ωn converges in the Hausdorff metric to a subset of ω , there is m0

such that the interval (pm−δ1, pm+δ1) contains a point of ω for any m ≥ m0.
Take x1 as such a point. We have |fL(x1) − fL(pm)| < δ

2 . Further, there is
a point from ω in (fL(pm) − δ1, f

L(pm) + δ1) - denote it as x2. We have
|fL(x2) − f2L(pm)| < δ

2 . Let tm be the period of pm. Similarly we construct
points x1, x2, ..., xr where r = [ tmL ] , that is tm = rL+ l, l ≤ L. Now we shall
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apply the GSP on {x1, ..., xr} and sequence k0 = 0, k1 = L, k2 = 2L, ..., kr =
rL+ l so that there is q(m) ∈ ω such that f2kr (q(m)) = q(m) and

#{i < n : |f i(q(m))− f i(pm)| > δ}

=
r∑
j=0

#{kj ≤ i ≤ kj+1 : |f i(q(m))− f i(pm)| > δ} < nε.

Lemma 7. Let {an}, {bn}, {cn} be arbitrary sequences of numbers in I and
ε > 0. Assume that for any n

#{i < n : bn 6= cn} < nε.

Then for any t ∈ R, we have

ξan,bn(t)− ξan,cn(t) < ε and ξ∗an,bn(t)− ξ∗an,cn(t) < ε.

Proof. ξan,bn(t) = lim inf 1
n#{i < n : |ai − bi| < t} ≤

lim inf 1
n{#{i < n : |an − cn| < t and bn = cn}+ nε} ≤

≤ lim inf 1
n#{i < n : |an − cn| < t}+ ε = ξan,cn(t) + ε.

The proof of the second part is similar.

Lemma 8. Let x, y ∈ I be such that for any nonnegative integer n, |fn(x)−
fn(y)| < δ. Then |µ(f, z, x)− µ(f, z, y)| < 2δ for any z ∈ I.

Proof. Since |fn(x) − fn(z)| < t implies |fn(z) − fn(y)| < t + δ for any t ,
we obtain the inequalities Fzx(t) ≤ Fzy(t+ δ) and F ∗zx(t) ≤ F ∗yz(t+ δ). Using
these we have

µ(f, z, x) = 1
|I|

∞∫
−∞

F ∗zx(t)− Fzx(t) dt ≤ 1
|I|

∞∫
−∞

F ∗zy(t+ δ)− Fzy(t− δ) dt =

µ(f, z, y) + 1
|I|

∞∫
−∞

Fzy(t+ δ)− Fzy(t− δ) dt < µ(f, z, y) + 2δ.

Similarly, µ(f, z, y) < µ(f, z, x) + 2δ, which implies the assertion.

Lemma 9. Let{an}, {bn} and {cn} be arbitrary sequences of numbers in I
with

#{i < n : |bn − cn| > δ} < nε . Then |µ(an, bn)− µ(an, cn)| < 2δ + 2ε.

Proof. Define c′n = bn if |bn − cn| ≥ δ and c′n = cn if |bn − cn| < δ. Then
by our previous lemma we have |µ(an, bn) − µ(an, c′n)| < 2δ and by Lemma
7, |µ(an, cn) − µ(an, c′n)| < 2ε. Thus we obtain |µ(an, bn) − µ(an, cn)| < 2δ +
2ε.
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Corollary 10. Let {µ(f, x, pn)}∞n=1 be a nondecreasing sequence, pn a peri-
odic point, Orb(pn) = ωn, where ωn converges in the Hausdorff metric to an
ω-limit set contained in a maximal ω-limit set of the second kind ω. Then for
any n there is qn ∈ ω such that supµ(f, x, pn) ≤ supµ(f, x, qn).

Proof. Let m be any nonnegative integer. Take ε, δ such that ε + δ < 1
2m .

By Lemma 6 there is nm such that for some periodic point qnm ∈ ω

#{0 ≤ i < n : |f i(qnm)− f i(pnm)| > δ} < εn.

Then by Lemma 9,

µ(f, x, pnm) < µ(f, x, qnm) +
1
m
.

Consequently, supµ(f, x, pnm) ≤ supµ(f, x, qnm), which implies the state-
ment.

Lemma 11. Let ω be an ω-limit set with periodic decompositon of arbitrarily
large period. Then for any x ∈ I there is y0 ∈ ω such that µ(f, x, y0) =
sup
y∈ω

µ(f, x, y).

Proof. Define ϕ : ω → [0, 1] by ϕ(y) = µ(f, x, y). By Lemma 8 and because
of the decomposability of ω, ϕ is continuous on ω, and since ω is compact it
achieves its maximum.

Proof of Theorem 2. With respect to Lemma 3 and Lemma 4 we can
assume that µ(f) = limµ(f, xn, yn), where xn ∈ ω, ω is a maximal ω-limit
set of the second kind and yn ∈ ωn, with ωn a maximal ω-limit set. We shall
establish our result by considering the following cases:

Case I. ωn is a periodic orbit.
Case Ia. diam Orb yn → 0. Then there is a fixed point p so that yn → p. By

Lemma 8 , for any δ > 0 there is n0 such that for all n ≥ n0 , |µ(f, x, yn) −
µ(f, x, p)| < δ. Then supµ(f, x, yn) ≤ µ(f, x, p), and using Theorem 5 we
obtain the result.

Case Ib. Assume that diam ωn > ε for all n. Let ωn converge in the
Hausdorff metric to an ω-limit set contained in ω, a maximal omega limit set.
We have to consider these possibilities: ω is a periodic orbit, an infinite set of
the first kind or a maximal ω-limit set of the second kind. The first possibility
is solved in Ia., the second follows from Lemma 11 and the last follows from
Lemma 5.2 of [7].

Case II. ωn is a maximal ω−limit set of the first kind for all n. In this case
ωn can be covered by a union of disjoint periodic intervals of diameter less
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than 1
2n , and let pn be a periodic point from this union. Then by Lemma 8

supµ(f, x, yn) = supµ(f, x, pn) and the result follows from I.
Case III. ωn is a maximal ω-limit set of the second kind for all n :
Case IIIa. For infinitely many n, diam ωn > ε. Then there is maximal

ω-limit set of the second kind ω∗ such that yn ∈ ω∗ for infinitely many n and
again we can use Lemma 5.2 of [7] to obtain the result.

Case IIIb. diam ωn → 0 for n → ∞. Then with respect to Corollary 10
there are pn periodic points, pn ∈ ωn with supµ(f, x, yn) = supµ(f, x, pn) and
the problem reduces to case I.

Remark 1. The result does not hold for maps of the unit square. This follows
from [1] where an example of a distributionally chaotic triangular map whose
principal measure is not generated by a pair of points is given.
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