Radu Miculescu, University of North Texas, Department of Mathematics, Denton, Texas, 76203, U.S.A. and University of Bucharest, Department of Mathematics, 14 Academiei Street, 70109, Bucharest, Romania. e-mail: miculesc@netscape.net

APPROXIMATION OF CONTINUOUS FUNCTIONS BY LIPSCHITZ FUNCTIONS

Abstract

Georganopoulos (see [1]) has shown that a continuous function $f: X \to B$, where X is a compact metric space and B a convex subset of a real normed space Y, is the uniform limit of a sequence of Lipschitz maps from X to B.

In this note we obtain a similar result, namely we show that a continuous function $f: X \to \mathbb{R}$, where X is a metric space, is a uniform limit of a sequence of locally Lipschitz maps from X to \mathbb{R} .

When X is compact and $B = Y = \mathbb{R}$, we get the Georgan opoulos' result.

1 Introduction

Definition 1. A map f of a metric space (X, d) into a metric space (Y, d') is said to be Lipschitz, if there is a constant $M \ge 0$ such that $d'(f(x), f(y)) \le M \cdot d(x, y)$ for all x, y in X.

If every $x \in X$ has a neighborhood U such that $f_{|U}$ is Lipschitz, f is said to be locally Lipschitz (abbreviated LIP).

Definition 2. A LIP-partition of unity, subordinated to an open cover $(U_j)_{j \in J}$ of a metric space X, is a family $(\varphi_j)_{j \in J}$ of LIP maps $\varphi_j : X \to [0,1]$ such that:

i) the supports $spt \ \varphi_j = \overline{\varphi_j^{-1}(0,1]}$ form a locally finite family,

ii) spt $\varphi_j \subseteq U_j$ for all $j \in J$ and

Key Words: Lipschitz functions, continuous function, approximation Mathematical Reviews subject classification: 26A16, 54C30 and 41A30 Received by the editors March 10, 2000

⁴⁴⁹

iii) $\sum_{j \in J} \varphi_j(x) = 1$ for all $x \in X$.

Theorem 1. (LIP- partition of unity, see [2]) Let $(U_j)_{j \in J}$ be an open cover of a metric space X. Then, there is a LIP-partition of unity, subordinated to this cover.

$\mathbf{2}$ The Result

Theorem 2. Let X be a metric space. Then, given a continuous function $f: X \to \mathbb{R}$, there exists a sequence of LIP functions $(f_n)_{n \ge 1}$, $f_n: X \to \mathbb{R}$, such that $f_n \xrightarrow{u} f$

PROOF. For each $r \in \mathbb{Q}$, let us consider the set

$$U_r^1 = \{ y \in X \mid f(y) - 1 < r \} \cap \{ y \in X \mid r < f(y) + 1 \}.$$

Due to the fact that f is continuous, U_r^1 is open for all $r \in \mathbb{Q}$. As $(U_r^1)_{r \in \mathbb{Q}}$ is an open cover of X, we can consider, according to Theorem 1, $(\varphi_r^1)_{r \in \mathbb{Q}}$ a LIPpartition of unity subordinated to this cover. Then, let us consider $f_1: X \to \mathbb{R}$ given by

$$f_1(y) = \sum_{r \in \mathbb{Q}} r \cdot \varphi_r^1(y).$$

It is clear that f_1 is LIP because φ_r^1 are LIP. For $y \in X$, if $y \in spt\varphi_{r_i}^1 \subseteq U_{r_i}^1$, $i \in \{1, ..., n\}$ and $y \notin spt\varphi_r^1$ for $r \notin$ $\{r_1, ..., r_n\}$, then

$$\begin{aligned} f(y) - 1 &= \sum_{i=1}^{n} \varphi_{r_i}^1(y) \cdot (f(y) - 1) < \sum_{i=1}^{n} r_i \cdot \varphi_{r_i}^1(y) \\ &= f_1(y) < \sum_{i=1}^{n} \varphi_{r_i}^1(y) \cdot (f(y) + 1) = f(y) + 1, \end{aligned}$$

i.e.

$$f(y) - 1 < f_1(y) < f(y) + 1$$

for all $y \in X$.

Now, for each $r \in \mathbb{Q}$, let us consider the set

$$U_r^2 = \{ y \in X \mid \max\{f(y) - \frac{1}{2}, f_1(y) - \frac{1}{2}\} < r \} \cap$$
$$\cap \{ y \in X \mid r < \min\{f(y) + \frac{1}{2}, f_1(y) + \frac{1}{2} \}.$$

Due to the fact that $f(y) - \frac{1}{2}$, $f_1(y) - \frac{1}{2}$, $f(y) + \frac{1}{2}$ and $f_1(y) + \frac{1}{2}$ are continuous, U_r^2 is open for all $r \in \mathbb{Q}$. As $(U_r^2)_{r \in \mathbb{Q}}$ is an open cover of X,

450

we can consider, according to Theorem 1, $(\varphi_r^2)_{r \in \mathbb{Q}}$ a LIP-partition of unity subordinated to this cover. Let us consider $f_2 : X \to \mathbb{R}$ given by

$$f_2(y) = \sum_{r \in \mathbb{Q}} r \cdot \varphi_r^2(y).$$

Exactly as above we have that f_2 is LIP and

$$\max\{f(y) - \frac{1}{2}, f_1(y) - \frac{1}{2}\} < f_2(y) < \min\{f(y) + \frac{1}{2}, f_1(y) + \frac{1}{2}\}.$$

Continuing these process we obtain for each $n \in N$ a LIP function $f_n: X \to \mathbb{R}$ such that

$$\max\{f(y) - \frac{1}{2^{n-1}}, f_{n-1}(y) - \frac{1}{2^{n-1}}\} < f_n(y) < \\ < \min\{f(y) + \frac{1}{2^{n-1}}, f_{n-1}(y) + \frac{1}{2^{n-1}}\}.$$

It is clear that

$$|f_n(y) - f_{n-1}(y)| < \frac{1}{2^{n-1}}.$$

Consequently, for each $n, p \in \mathbb{N}$ and for each $y \in X$ we have

$$|f_{n+p}(y) - f_n(y)| < \frac{1}{2^{n-1}} \cdot (1 - \frac{1}{2^p}) < \frac{1}{2^{n-1}}$$

Hence $(f_n(y))_{n \in \mathbb{N}}$ is uniformly Cauchy, so $(f_n(y))_{n \in \mathbb{N}}$ is uniformly convergent. Moreover for each $n \in \mathbb{N}$ and for each $y \in X$ we have

$$f(y) - \frac{1}{2^{n-1}} < f_n(y) < f(y) + \frac{1}{2^{n-1}}.$$

This implies that $\lim_{n \to \infty} f_n(y) = f(y)$ uniformly.

Remark. There exists continuous functions that cannot be the uniform limit of a sequence of Lipschitz functions. So, in this sense, our result is the best one can obtain.

For example, the continuous function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$, has the above property. Indeed, let us suppose that there exists a sequence of Lipschitz functions $f_n : \mathbb{R} \to \mathbb{R}$ such that $f_n \to f$ uniformly. Then there exists an integer n_0 so that

$$|f_{n_0}(x) - f(x)| < \frac{1}{2}$$
 for every $x \in \mathbb{R}$.

Since f_{n_0} is Lipschitz there exists a constant M_{n_0} such that

$$|f_{n_0}(x) - f_{n_0}(y)| < M_{n_0} |x - y|$$
 for every $x, y \in \mathbb{R}$.

Hence, for every $x, y \in \mathbb{R}$, we have

$$|f(x) - f(y)| \le |f_{n_0}(x) - f(x)| + |f_{n_0}(x) - f_{n_0}(y)| + |f_{n_0}(y) - f(y)|$$

so, we obtain

$$|f(x) - f(y)| < 1 + M_{n_0} |x - y|.$$

According to the mean value theorem, for every $x,y\in\mathbb{R},$ there exists ζ between x and y such that

$$f(x) - f(y) = f'(\zeta)(x - y).$$

Hence

$$|x - y| \left(e^{\zeta} - M_{n_0} \right) < 1.$$

Choosing y = n + 1 and x = n, where n is an arbitrary integer, we have

$$e^n - M_{n_0} < 1$$
 for each $n \in \mathbb{N}$.

The last relation obviously is not true.

References

- G. Georganopoulos, Sur l'approximation des fonctions continues par des fonctions lipschitziennes, C. R. Acad. Sci. Paris, Ser A, 264(7) (1967), 319–321.
- [2] J. Luukainnen and J. Vaisala, *Elements of Lipschitz Topology*, Ann. Acad. Sci. Fenn. Ser. A.I., Math. 3(1977), 85–122.