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ITERATIVE ROOTS WITH BIG GRAPH

Abstract

Let g : X → X be a bijection and n ≥ 2 be a fixed integer. We
consider the equation of iterative roots ϕn(x) = g(x) and we look for
its solution with big graph: big from the point of view both of topology
and measure theory.

1 Introduction

Let X and Y be two sets and R be a family of subsets of X × Y . We say
that ϕ : X → Y has a big graph with respect to R if the graph Grϕ of ϕ
meets every set of R. We are interested in finding conditions under which the
functional equation of iterative roots

ϕn(x) = g(x) (1)

has a solution with big graph with respect to a sufficiently large family. Well
known results on additive functions with big graph are due to F. B. Jones [6]
(see also [12]). Solutions with big graph for some iterative functional equation
were obtained in [8], [16], [1]–[4].

2 Main Result

Let X be a nonempty set, g : X → X be a given bijection (one-to-one and
onto) and n ≥ 2 be an integer. We start with recalling the well known theorem
of S.  Lojasiewicz ([15], [11], [19]) concerning the iterative roots. To formulate
it, for every positive integer k let Lk denote the (cardinal) number of k-cycles
of g and L0 denote the number of infinite orbits of g. Note that any infinite
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orbit of g is simply the sequence of the form (gk(x) : k ∈ Z) and every finite
orbit of g is a cycle. Put d0 = n and dk = n

nk
for k ∈ N \ {0}, where nk is the

largest divisor of n relative prime to k.

Theorem (S.  Lojasiewicz). Equation (1) has a solution ϕ : X → X iff for
every nonnegative integer k either Lk is infinite or Lk is divisible by dk.

We are interested in finding special solutions of equation (1) and it is
obvious that our assumptions must be stronger than  Lojasiewicz ones: they
read as follows.

(H1) The set X is uncountable and g : X → X is a bijection.

(H2) There exists a k0 ∈ N such that

cardX = Lk0 , (2)∑
k 6=k0

Lk < cardX (3)

and for k 6= k0 either Lk is infinite or Lk is divisible by dk.

For any set R ⊂ X×X and y ∈ X, Ry denotes horizontal section of R, i.e.,
the set {x ∈ X : (x, y) ∈ R}. The following is the main result of this paper.

Theorem 1. Assume (H1), (H2) and let R be a family of subsets of X ×X
such that

cardR ≤ cardX (4)

and

card{y ∈ X : cardRy = cardX} = cardX for R ∈ R. (5)

Then there exists a solution ϕ : X → X of (1) which has a big graph with
respect to R.

Proof. We start with some notations. The set of all periodic points of g with
period p will be denoted by Per(g, p), i.e.,

Per(g, p) = {x ∈ X : gp(x) = x, gk(x) 6= x for k = 1, . . . , p− 1};

moreover we put Perg =
⋃∞
p=1 Per(g, p). Let

A =

{
Per(g, k0), if k0 6= 0,
X \ Perg, if k0 = 0,
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where k0 ∈ N satisfies the requirements stated in (H2). According to (2) and
(H1) we have

cardA =

{
k0 · Lk0 , if k0 6= 0,
ℵ0 · L0, if k0 = 0,

= Lk0 = cardX. (6)

Hence and from (3) for A−1 = X \A we get

cardA−1 < cardX. (7)

Applying  Lojasiewicz’s theorem to the function g|A−1 we obtain a function
ϕ−1 : A−1 → A−1 such that ϕn−1 = g|A−1.

Let γ be the smallest ordinal such that its cardinal γ̄ equals that of R and
let (Rα : α < γ) be a one-to-one transfinite sequence of all the elements of
R. Similarly, let δ be the smallest ordinal with δ̄ = cardA and (xα : α < δ)
be a one-to-one sequence of all the elements of A. According to (4) and (6),
γ ≤ δ. Define now a sequence (Aα : α < δ) of countable subsets of A and a
sequence (ϕα : α < δ) of functions ϕα : Aα → Aα such that for every α < δ
the following conditions (8)-(11) hold:

g(Aα) = Aα, (8)
ϕnα = g|Aα , (9)

Aβ ∩Aα = ∅ for β < α, (10)

{xβ : β ≤ α} ⊂
⋃
β≤α

Aβ , (11)

and, for every α < γ,

Grϕα ∩Rα 6= ∅. (12)

Suppose α < δ and that we have already defined suitable Aβ ’s and ϕβ ’s
for every β < α. According to (H1) we have

card(
⋃
β<α

Aβ) ≤ ᾱ · ℵ0 = max{ℵ0, ᾱ} < δ̄ = cardA. (13)

Let η < δ be the first ordinal such that xη 6∈
⋃
β<αAβ . Then η ≥ α. Let C1

be the orbit generated by xη, i.e., C1 = {gk(xη) : k ∈ Z}. Since g(
⋃
β<αAβ) =⋃

β<αAβ , we have
⋃
β<αAβ and C1 disjoint, and according to (13) we can

choose (n − 1) different orbits C2, . . . , Cn disjoint with
⋃
β<αAβ ∪ C1. Note
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that all the orbits C1, . . . , Cn, as the subset of A, are simultaneously either
k0–cycles (if k0 6= 0) or infinite (if k0 = 0). Put C =

⋃n
i=1 Ci.

Assume first that α ≥ γ and define Aα = C. Then (8), (10) and (11) hold,
and we construct suitable ϕα in this case α ≥ γ as follows. Fix ui in Ci for
i = 1, . . . , n and define ϕα : Aα → Aα by putting (in both cases: k0 6= 0 and
k0 = 0)

ϕα(gk(ui)) = gk(ui+1), ϕα(gk(un)) = gk+1(u1)

for i = 1, . . . , n− 1 and for k ∈ Z. Clearly, (9) holds.
Consider now the case where α < γ. According to (5) and (7) we have

card{y ∈ A : cardRyα = cardX} = cardX

whereas (13) gives card(
⋃
β<αAβ ∪ C) < cardA. This allows us to fix a y ∈

A \ (
⋃
β<αAβ ∪C) such that cardRyα = cardX. Consequently, denoting D2 =

{gk(y) : k ∈ Z}, we can find an

x ∈ Ryα \ (
⋃
β<α

Aβ ∪ C ∪D2 ∪A−1). (14)

Put D1 = {gk(x) : k ∈ Z} and choose now (n− 2) different orbits D3, . . . , Dn

disjoint from
⋃
β<αAβ ∪ C ∪ D1 ∪ D2 ∪ A−1. Let Aα = C ∪

⋃n
i=1Di and

construct now (similarly to the case α ≥ γ fixing additionally vi ∈ Di with
v1 = x, v2 = y) a function ϕα : Aα → Aα such that

ϕα(x) = y (15)

and (9) hold. Then (12) follows from (14) and (15).
According to (11) we have X = A−1 ∪

⋃
α<δ Aα, and since the summands

are disjoint, the formula ϕ = ϕ−1 ∪
⋃
α<δ ϕα defines a function ϕ : X → X

which is clearly a solution of (1) and has a big graph with respect to R.

Following [10] consider now a more general equation

ϕn+m(x) = g(ϕm(x)). (16)

Clearly, every n-th iterative root of g is a solution of (16). This simple obser-
vation allows us to derive from Theorem 1 the following corollary.

Corollary 1. Assume m ∈ N. If (H1), (H2) hold and a family R of subsets
of X×X satisfies (4) and (5), then there exists a solution ϕ : X → X of (16)
which has a big graph with respect to R.
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Applying Theorem 1 in the case where g is simply the identity we obtain
the following corollary concerning the Babbage equation

ϕn(x) = x (17)

which belongs to the oldest functional equations (see [11, Ch. XV, §1], [13,
11.7]).

Corollary 2. Assume X is an uncountable set and R is a family of subsets
of X×X which satisfies (4) and (5). Then for every integer n ≥ 2 there exists
a solution ϕ : X → X of the Babbage equation (17) which has a big graph with
respect to R.

In the case there g is an involution, i.e., g2(x) = x we have the following
corollary which in the very special case of X = (0,+∞), g(x) = 1/x and n = 2
generalizes Proposition 5.1 of [5].

Corollary 3. Assume X is uncountable and g : X → X is an involution with
L1 6= L2 ≥ ℵ0. Let R be a family of subsets of X ×X which satisfies (4) and
(5). Then for every integer n ≥ 2 there exists a solution ϕ : X → X of (1)
which has a big graph with respect to R.

The following two remarks give some other conditions which ensure that
(H2) holds.

Remark 1. Assume that a nonempty set X is equipped with an order ≤. If
g : X → X is a bijection and g(x) < x for every x ∈ X, then Lk = 0 for k ≥ 1;
consequently (H2) holds.

Remark 2. Assume that an uncountable set X is equipped with a linear
order and g : X → X is a bijection.

(i) If g is strictly increasing, then Lk = 0 for k ≥ 2; if moreover g has less
than cardX of fixed points, then (H2) holds.

(ii) If g is strictly decreasing, then Lk = 0 for k ≥ 3; if moreover n is odd
and g2 has less than cardX of fixed points, then (H2) holds.

Remark 3. Clearly (cf. also [11, Lemma 15.5] ) any iterative root ϕ of a
bijection g : X → X maps k–cycles onto k–cycles and infinite orbits onto
infinite orbits and so its graph is a subset of

(X \ Perg)2 ∪
∞⋃
k=1

Per(g, k)2. (18)



396 Lech Bart lomiejczyk

Therefore, looking for theorems on the existence of n–th iterative roots with
big graph in X ×X we have to assume that the set (18) is big in X ×X. Our
assumption (H2) is in this direction.

On the other hand, having a bijection for which (H2) does not hold we
can ask whether there are solutions having big graph in a subset of X × X
only, e.g., in (18). It turns out that our Theorem 1 jointly with  Lojasiewicz’s
theorem may help in this, as the following corollary shows.

Corollary 4. Assume (H1), and for every k ∈ N, either Lk is infinite or
divisible by dk. Let R be a family of subsets of (18) such that (4) holds and
for every R ∈ R we have either

card{y ∈ X \ Perg : cardRy = cardX} = cardX

or there exists a k such that

card{y ∈ Per(g, k) : cardRy = cardX} = cardX.

Then there exists a solution ϕ : X → X of (1) which has a big graph with
respect to R.

Proof. Put

R0 = {R∩(X\Perg)2 : R ∈ R, card{y ∈ X\Perg : cardRy = cardX} = cardX}

and

Rk = {R∩Per(g, k)2 : R ∈ R, card{y ∈ Per(g, k) : cardRy = cardX} = cardX}

for k ≥ 1. Fix k ∈ N. If Rk 6= ∅ then an application of Theorem 1 to the
function g|Per(g,k) (or to g|X\Perg if k = 0) gives a function ϕk which has a big
graph with respect to Rk and such that ϕnk = g|Per(g,k) (or ϕnk = g|X\Perg if
k = 0). If Rk = ∅, then using  Lojasiewicz’s theorem we get a function ϕk such
that ϕnk = g|Per(g,k) (or ϕnk = g|X\Perg if k = 0). Putting now ϕ =

⋃+∞
k=0 ϕk

we obtain a solution ϕ : X → X of (1) which has a big graph with respect
to R.

Example 1. Consider the bijection g on (−1, 1) given by g(x) = x for x ∈
(−1, 0] and g(x) = x2 for x ∈ (0, 1). According to Corollary 4 there exists a
solution ϕ : (−1, 1) → (−1, 1) of (1) which has a big graph with respect to
any fixed family R of subsets of (−1, 0]2 ∪ (0, 1)2 for which (4) and (5) holds
with X = (−1, 1).
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3 Properties of Functions with Big Graph

Given a topological space X, consider the family

{R ∈ B(X ×X) : {y ∈ X : Ry is uncountable} is uncountable} (19)

where B(X × X) denotes the σ-algebra of all Borel subsets of X × X. The
following remark is a consequence of the theorem of Alexandrov–Hausdorff
([14, p. 427], [9, 13.6]), the theorem of Mazurkiewicz–Sierpiński ([9, 29.19])
and the fact that there are not more than 2ℵ0 many Borel sets in a Polish
space.

Remark 4. If X is an uncountable Polish space, then the family (19) satisfies
all the requirements of Theorem 1.

The following observation shows that if a function ϕ : X → X has a big
graph with respect to the family (19), then its graph is big from the topological
point of view.

Proposition 1. Assume T1–space X has a countable base and has no isolated
point. If ϕ : X → X has a big graph with respect to the family (19), then the
set (X ×X) \Grϕ contains no subset of X ×X of second category having the
property of Baire.

Proof. Assume (X×X)\Grϕ contains a set F of second category having the
property of Baire. Let G be a second category Gδ subset of X ×X contained
in F . Consider the sets⋃

{Gy × {y} : Gy is countable},
⋃
{Gy × {y} : Gy is uncountable}

summing up to G. Since G is not in (19), the second one is a countable sum
of Borel sets. Consequently both these sets are Borel. Since all the sections
of the first one are of first category, the set itself is of first category according
to the Kuratowski-Ulam Theorem (see [17, Theorem 15.4], [9, 8.41]). Hence
{x ∈ X : Gx is uncountable} is uncountable, i.e., G belongs to the family
(19), a contradiction.

Making use of the Fubini Theorem, instead of that of Kuratowski-Ulam,
(and the fact that B(X ×X) = B(X)×σ B(X) if X has a countable base) we
obtain the following measure-theoretic analogue of Proposition 1.

Proposition 2. Assume X is the T1–space with a countable base. Let µ and ν
be σ-finite Borel measures on X vanishing on all the singletons. If ϕ : X → X
has a big graph with respect to the family (19), then the set (X × X) \ Grϕ
contains no Borel subset of X ×X of positive product measure µ× ν.
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In other words (µ× ν)∗(X×X \Grϕ) = 0 and, consequently, (µ× ν)∗(B∩
Grϕ) = (µ×ν)(B) for every B ∈ B(X×X). Here λ∗ and λ∗ denote inner and
outer measures, respectively, generated by a Borel measure λ; cf. [7, Sec. 14].

It is worth while to mention that if a Polish space has no isolated point
then there are lot of Borel measures on it vanishing on all the singletons [18,
p. 55].
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