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A REPRESENTATION OF MARTINGALE
DIFFERENCES AND ORTHONORMAL

SYSTEMS OF UNCONDITIONAL
CONVERGENCE ALMOST EVERYWHERE

Abstract

We establish a special representation of uniformly bounded martin-
gale differences and give some examples of its application. In particular,
we prove that any uniformly bounded ONS {fk} contains a subsystem
{fkn} (kn ≤ 2n) of unconditional convergence with exponential estima-
tion of majorants.

1 Introduction

Let {Ω, F, P} be a probability space and {Fk} be a sequence of increasing sub-
σ-algebras of F . In what follows, ϕk, k = 1, 2, . . . ,are martingale differences;
that is, ϕk is Fk-measurable and E{ϕn|Fk} = 0 almost everywhere (a.e.) if
n > k. We may assume that Eϕ1 = 0.

We say that random variables ηk, 1 ≤ k ≤ n are independent on a set
Q ⊂ Ω (P (Q > 0)) if for arbitrary sets Uk ⊂ R, 1 ≤ k ≤ n

P

(
Q ∩

n⋂
k=1

{ηk ∈ Uk}

)
= (P (Q))1−n

n∏
k=1

P ({ηk ∈ Uk} ∩Q) .

In other words, the restrictions of the random variables ηk, 1 ≤ k ≤ n to the
set Q are independent on the probability space {Q,F ′ , P ′} where F

′
is the

restriction of F to the set Q and P
′
(∗) =

P (∗)
P (Q)

. In Section 2, we prove the

following.
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Theorem 1. Let ϕk, k = 1, 2, . . . be martingale differences on a nonatomic
probability space {Ω, F, P}, |ϕk| ≤ Mk, and each ϕk assume a finite number
of values. Then for an arbitrary natural number K there exist independent
random variables ξk, k = 1, 2, . . . ,K with |ξk| = Mk and Eξk = 0, a partition
of Ω into N disjoint sets Qn, n = 1, 2, . . . , N, and random variables ηk,n, k =
1, 2, . . . ,K independent on Qn and equal to zero outside Qn such that

ϕk = ξk +
N∑
n=1

ηk,n, k = 1, 2, . . . ,K. (1.1)

This representation lets one extend some results on convergence of uni-
formly bounded independent random variables to uniformly bounded martin-
gale differences. In this paper, we limit ourselves to the problem of uncondi-
tional convergence. Let ψ = {ψn(x)}∞n=1be an orthonormal system of functions
(ONS) on a space X with a finite measure, say, µX = 1 and a = {an}∞n=1 be

a number sequence, ‖a‖2 =
∞∑
n=1

a2
n <∞.

The series
∞∑
n=1

anψn(x) (1.2)

is called unconditionally convergent a.e. if for every rearrangement of the
terms the resulting series converges a.e. The exceptional set of measure zero
where divergence is allowed may depend on the order of the terms.

If the series (1.2) converges unconditionally a.e. for every a, ‖a‖ <∞, the
system ψ is said to be a system of unconditional convergence (s.u.c.).

For a permutation σ of the set of natural numbers, let s∗(σ) denote the

majorant of the series
∞∑
n=1

anψσ(n); that is,

s∗(σ) ≡ s∗ (ψ, σ, a, x) sup1≤N<∞

∣∣∣∣ N∑
n=1

anψσ(n) (x)
∣∣∣∣

where σ (n) is the number corresponding n.

As the first application of the representation (1.1), we prove the following.

Theorem 2. Let ϕk, k = 1, 2, . . . , be martingale differences with |ϕk| ≤ Mk

and M2 =
∞∑
k=1

M2
k <∞. Then there exist absolute constants C, γ ≡ γ (M) > 0

such that for any permutation σ and for any number λ > 0 the majorant s∗ (σ)
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of the series
∞∑
k=1

ϕσ(k) satisfies the inequality

P (s∗ (σ) > λ) ≤ Ce−γλ
2
. (1.3)

The next result is a simple consequence of the exponential estimate in
(1.3).

Corollary. . Let {ϕk} be martingale differences, |ϕk| ≤ M, 1 ≤ k < ∞.
Then {ϕk}∞k=1 is a system of unconditional convergence a.e., and for any
permutation σ and for every a, ‖a‖ ≤ 1 the majorant s∗ (σ) of the series
∞∑
k=1

akϕσ(k) satisfies the inequality

E
(
eρ(s

∗(σ))2
)
<∞ for some ρ > 0. (1.4)

In section 3, we apply the representation (1.1) to establish one property
of uniformly bounded ONS. In the theory of orthogonal series the following
questions are known. (We put them here in general form.)

1 Given an ONS f = {fk} belonging to a certain class, is there a subsequence
ψ = {fkn} of the ONS, which satisfies a certain property (A) ? (For example,
is ψ a system of convergence?)

2 Does there exist a number sequence {ln} such that for any ONS in the class
one can find a subsequence ψ = {fkn} with that property (A) and with
indices kn growing not faster than ln ?

The first question goes back to the thirties, to classical works of Menshov
and Marcinkiewicz. The second appeared in the eighties. The history of the
problems and some results can be found in [1]-[4] .

As is known every ONS contains a subsequence ψ that is s.u.c. (Kom-
los, [5]). The best estimation of s∗ (ψ, σ) one can expect in general case is
s∗ (ψ, σ) ∈ L2 [2] , but, to our knowledge, it has not proved yet. If f = {fk} is
ONS and fk ∈ Lp for all k and some p > 2, then s∗ (ψ, σ) ∈ Lp (see [6]). This
result is a consequence of two theorems. According to the first, Banach’s the-
orem (see [3]), every ONS f mentioned above contains an Sp-system. (ONS

ψ = {ψn} is an Sp- system if any polynomial T =
N∑
n=1

anψn satisfies the

condition ‖T‖p ≤ C ‖a‖ where ‖∗‖p is the Lp- norm and C is an absolute
constant.) According to the second theorem, proven by Erdős for the trigono-
metric system and by Stechkin (by analogous method) for arbitrary systems,
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all majorants s∗ (σ) of an Sp- system ψ belong to Lp ([6], p. 322). Note also
the following result.

Every uniformly bounded ONS {fk (x)}∞k=1 contains a subsequence {fkn (x)}∞n=1

such that
eγs

2(x) ∈ L for ∀γ > 0 (1.5)

where s (x) =
∞∑
n=1

anfkn(x).

This theorem was announced by Gaposhkin in [3]. The proof was commu-
nicated by Gaposhkin to Astashkin and published in [7] with his permission.

All the results mentioned above answer only the first question. As for the
second question, it is shown in [8] (for even numbers p) that an Sp-system
{fkn} can be chosen so that kn ≤ nβ , β = β( p).

In Section 3, we consider the class of uniformly bounded ONS and property
(A) of unconditional convergence with exponential estimation of majorants
and give an affirmative answer to the second question.

Theorem 3. Let {fk (x)}∞k=1 be an orthogonal system of uniformly bounded
functions, |fk| ≤M , on a space X with a finite measure, say, µX = 1. Then
there exist a subsequence ψ = {ψn (x)}∞n=1 ≡ {fkn (x)}∞n=1 with indices kn ≤
2n and positive constants C and γ (depending only on M) such that for any
permutation σ, any number λ > 0 and any a, ‖a‖ <∞ the majorant s∗ (σ) of

the series
∞∑
n=1

anψσ(n) (x) satisfies the inequality µ ({s∗ (σ) > λ}) ≤ Ce−
γλ2

‖a‖2 .

Remark. V. F. Gaposhkin communicated to the author that the “weak”
version of Theorem 3, without condition kn ≤ 2n , can be also obtained by
combining the following results. The first, which he established and used
for the proof of (1.5), states that every uniformly bounded ONS contains a
subsequence for which ‖s‖p ≤ C

√
p ‖a‖ for all p > 2 and a. The second,

an Erdős -type result, states that the inequality ‖s‖p ≤ Cp ‖a‖ implies ‖s∗‖p
≤ ACp ‖a‖ where A does not depends on p.

2 Representation of Martingale Differences

Proof of Theorem 1. For given natural K, it follows from the assumptions
of Theorem 1 that there exists a partition of Ω into sets Qn , 1 ≤ n ≤ N, such
that each ϕk (1 ≤ k ≤ K) is a constant on each of them. Let ck,n denote the
value of ϕk on Qn. Now, following [6] (chapter 8, the proof of Theorem 3), we
define random variables ηk,n (1 ≤ k ≤ K) independent on Qn, which satisfy
the conditions:
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1
∫
Qn

ηk,nP (dω) = 0;

2 ηk,n assumes on Qn only two values: −Mk + ck,n and Mk + ck,n;

3 ηk,n (ω) = 0 for ω /∈ Qn.

We set

ξk = ϕk −
N∑
n=1

ηk,n (k = 1, 2, . . . ,K). (2.1)

Conditions 2 and 3 yield |ξk| = Mk. Conditions 1 and 3 lead to Eξk = 0. Let
us introduce the sets

Q−k,n = {ω ∈ Qn | ηk,n (ω) = −Mk + ck,n}

and
Q+
k,n = {ω ∈ Qn | ηk,n (ω) = Mk + ck,n}.

Since ηk,n (1 ≤ k ≤ K) are independent random variables on Qn, we have for
any 1 ≤ i ≤ K

P
(
Q−1,n ∩Q

−
2,n ∩ · · · ∩Q

−
i,n

)
= (P (Qn))1−i

i∏
k=1

P
(
Q−k,n

)
(2.2)

The analogous identity holds for the sets Q+
k,n.

Next, choose one of the values of ϕk and denote it by ck. Let Tk ≡ Tk (ck)
denote the union of all those Qn for which ck,n = ck. By definition of the
random variables ηk,n , it follows that for any Qn ⊂ Tk and Qm ⊂ Tk

P
(
Q−k,n

)
P (Qn)

=
P
(
Q−k,m

)
P (Qm)

≡ α−k ,
P
(
Q+
k,n

)
P (Qn)

=
P
(
Q+
k,m

)
P (Qm)

≡ α+
k (2.3)

The ratios depend only on ck.
Let us first prove that ξk, k = 1, 2, . . . ,K are martingale differences; that

is, for any integer j (2 ≤ j ≤ K) and any set S of the kind of {ξ1 = ε1M1, ξ2 =
ε2M2, . . . , ξj−1 = εj−1Mj−1} where εk = ±1,∫

S

ξjP (dω) = 0. (2.4)

We limit ourselves to the case S = {ξ1 = M1, ξ2 = M2, . . . , ξj−1 = Mj−1}.
The remaining cases can be treated in the same manner. We set

T ≡ T (c1, c2, . . . , cj−1) = T1 ∩ T2 ∩ · · · ∩ Tj−1
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Since S can be expressed as the union of the pairwise disjoint sets S∩T ; namely,
S =

⋃
{c1,...,ck,...,cj−1}

S∩T , it suffices to prove that
∫

S∩T
ξjP (dω) = 0. Let Dn =

S∩T ∩Qn. This set is either empty or equal to Q−1,n∩Q
−
2,n∩· · ·∩Q

−
j−1,n. Using

Condition 1 and the fact that ηj,n is independent of ηi,n, i = 1, 2, . . . , j−1, we
have

∫
Dn

ηj,nP (dω) = 0. Denoting the value of ϕj on Qn by ϕnj and keeping

Condition 3, (2.2), and (2.3) in mind, we obtain for nonempty Dn∫
Dn

ξjP (dω) =
∫
Dn

ϕjP (dω) = ϕnj

∫
Dn

P (dω)

= ϕnj P
(
Q−1,n ∩Q

−
2,n ∩ · · · ∩Q

−
j−1,n

)
= ϕnj (P (Qn))2−j

j−1∏
k=1

P
(
Q−k,n

)

= ϕnj α
−
1 α
−
2 . . . α

−
j−1 (P (Qn))2−j

j−1∏
k=1

P (Qn)

= ϕnj α
−
1 α
−
2 . . . α

−
j−1

∫
Qn

P (dω) = α−1 α
−
2 . . . α

−
j−1

∫
Qn

ϕjP (dω) .

Therefore, since T belongs to the algebra Fj−1 and the random variables {ϕk}
are martingale differences,∫
S∩T

ϕjP (dω) =
∑

n:Qn⊂T

∫
Dn

ϕjP (dω) =
∑

n:Qn⊂T
α−1 α

−
2 . . . α

−
j−1

∫
Qn

ϕjP (dω)

= α−1 α
−
2 . . . α

−
j−1

∫
T

ϕjP (dω) = 0.

Thus (2.4) is true, and ξk (1 ≤ k ≤ K) are martingale differences. From this,
under the conditions Eξk = 0 and |ξk| = Mk, it easily follows by induction
that they are independent random variables. Indeed, assume that ξk, 1 ≤
k ≤ s (where s < K) are independent; that is, for any set D of the kind of
{ξk1 = ε1Mk1 , ξk2 = ε2Mk2 , . . . , ξkr = εrMkr} (1 ≤ r ≤ s), its probability
P (D) = 2−r. Taking

∫
D

ξs+1P (dω) = 0 into account, we get

P (D ∩ {ξs+1 = εs+1Ms+1}) =
1
2
P (D) = 2−r−1.

This means that ξk, 1 ≤ k ≤ s+ 1 are independent.
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Remark. V. F. Gaposkin communicated to the author a sketch of another
proof of the representation. The functions {ξk}K1 are a weakly multiplicative
system; i.e., E (ξ1 . . . ξs) = 0. Any weakly multiplicative system {ξk} where
ξk = ±Mk with probability of 1

2 is a system of independent random variables.
Indeed from the estimates it follows that

E ≡ E
(
ξl11 . . . ξlss

)
= Eξl11 . . . Eξlss = M l1

1 . . .M ls
s if all li are even;

E = 0 if at least one li is odd.

These estimates in turn imply E exp
(
iλ

m∑
k=1

ξk

)
=

m∏
k=1

E exp (iλξk) for all

m,λ. Therefore, ξk, 1 ≤ k ≤ K are independent.

Proof of Theorem 2. We write s∗ (ϕ, σ) instead of s∗(σ) in order to show
that the majorant is related to the series with respect to a system ϕ = {ϕk}.

For any natural K, let s∗K (ϕ, σ) = sup1≤i≤K

∣∣∣ i∑
k=1

ϕσ(k)

∣∣∣. Let λ > 0 be an

arbitrary number. One can find a natural number K such that the following
inequality holds

P (s∗ (ϕ, σ) > λ) ≤ 2P (s∗K (ϕ, σ) > λ) (2.5)

Suppose first Ω to be nonatomic and ϕk (1 ≤ k ≤ K) to assume a finite number
of values. Applying formula (1.1) and letting ξ = {ξk}Kk=1, ηn = {ηk,n}Kk=1,
we obtain

s∗K (ϕ, σ) ≤ s∗K (ξ, σ) +
N∑
n=1

s∗K (ηn, σ) .

Therefore, since the supports of the systems ηn (1 ≤ n ≤ N) are disjoint,

P (s∗K (ϕ, σ) > λ) ≤ P
(
s∗K (ξ, σ) >

λ

2

)
+

N∑
n=1

P
(
s∗K (ηn, σ) >

λ

2

)
(2.6)

It is known that the exponential estimation of the majorants for the sum
of uniformly bounded independent random variables holds. (See, for example,
[6], chapter 2, Theorem 5 and inequality (56).) Namely, there are absolute
constants C and γ = γ (M) > 0 (not depending on ξ, K, and σ) such that

P
(
s∗K (ξ, σ) >

λ

2

)
≤ Ce−γλ

2
. (2.7)
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(From now on absolute constants C and γ can be different in different inequal-
ities.) Since |ηk,n| ≤ 2Mk, k = 1, 2, . . . ,K the following inequality holds for
independent on Qn random variables.

P

(
s∗K (ηn, σ) >

λ

2

)
≤ Ce−γλ

2
P (Qn) (n = 1, 2, . . . , N) (2.8)

(C and γ do not depend on ηn,K, σ) Therefore, we obtain from (2.6)-(2.8)

P (s∗K (ϕ, σ) > λ) ≤ Ce−γλ
2

(2.9)

The assertion of the theorem follows from (2.5).

Now we get rid of the assumptions. The martingale differences ϕk ,
k = 1, 2, . . . ,K can be approximated by martingale differences ϕk assuming

only a finite number of values so that
K∑
k=1

∣∣ϕk− ϕk∣∣ < 1 a.e. This inequal-

ity implies (2.9) if the corresponding inequality holds for
{
ϕk
}

. If Ω is not
nonatomic, we denote the sets of constancy of

{
ϕk
}

by Qn, n = 1, . . . , N and
consider a probability space {Ω′, F ′, P ′} with continuous measure P ′, martin-

gale differences
{
ϕ
′

k

}
, and sets Q′n, n = 1, . . . , N such that P ′(Q′n) = P (Qn);

ϕ
′

k (ω′) =ϕk (ω) for ∀ω′ ∈ Q′n, ∀ω ∈ Qn (1 ≤ k ≤ K, 1 ≤ n ≤ N).

Proof of the Corollary. The exponential estimation (1.3) implies that

s∗ (ϕ, σ) < ∞ a.e. Therefore, the series
∞∑
k=1

ϕσ(k) converges a.e. Inequality

(1.3) also implies (1.4). This proves the Corollary.

3 Subsystems of Unconditional Convergence

It suffices to prove Theorem 3 for the number sequences a with ‖a‖ ≤ 1. Let
us first reduce Theorem 3 to the case of finite orthogonal systems {fk}Kk=1

(Proposition 3, below). Let σr denote a permutation of the first r natural
numbers.

Proposition 1. Let there exist a sequence kn ≤ 2n, n = 1, 2, . . . and absolute
constants C, γ ≡ γ(M )̇ > 0 such that for any integer K > 0 the subsequence
{fkn}Ln=1 ≡ {ψn}Ln=1 = ψL (L ≡ L (K) = max{n| kn ≤ K}), extracted from
the system {fk}Kk=1, satisfies

(A)
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for any σL and a′ = {a′n}Ln=1 with ‖a′‖ ≤ 1,

µ(s∗L(ψL, σL, a′) > λ) ≤ Ce−γλ
2

(3.1)

Then the assertion of Theorem 3 is true (for ψ = {ψn} = {fkn}∞n=1).

Proof. Indeed, for given σ and a, ‖a‖ ≤ 1 , one can choose a number N such
that

µ{s∗N (ψ, σ, a) > λ} ≥ 1
2
µ{s∗ (ψ, σ, a) > λ} (3.2)

Let K be a number such that L > max1≤n≤Nσ (n) . Define σL. Let σL(n) =
σ(n) for 1 ≤ n ≤ N. For n = N+1, . . . , L we subsequently set σL(n) equal to a
value in the set {1, 2, . . . , L}, which is different from the values determined be-
fore. We also set a

′

n = an (n = 1, 2, . . . , N) , a
′

n = 0 (N < n ≤ L) and denote
{a′n} by a

′
. Inequality (3.1) holds for s∗L

(
ψL, σL, a

′) . Since s∗L
(
ψL, σL, a

′) =
s∗N (ψ, σ, a) , inequality (3.2) completes the proof of Theorem 3.

Proposition 2. Suppose that for every K there exists a subsequence ψL =
{fkn}Ln=1 (kn ≡ kn (K) ≤ 2n, n = 1, 2, . . . , L = L(K), kL ≤ K, 2L+1 > K)
of the system {fk}Kk=1 such that condition (A) holds. Then the assertion of
Theorem 3 is true.

Proof. We will show that a sequence kn ≤ 2n, n = 1, 2, . . . can be chosen
independent of K, and, therefore, the assumptions of Proposition 1 will be
satisfied. We use a diagonal process. Choose one of the numbers (1 or 2)
that occurs in the sequence k1 (K) , K = 1, 2, . . . infinitely many times and
denote it by k1. Let T1 = {K | k1 (K) = k1}. Suppose ks and Ts have already
defined. Then we set ks+1 equal to a number that occurs in the subsequence
{ks+1 (K)}K∈Ts infinitely many times and put Ts+1 = {K ∈ Ts| ks+1 (K) =
ks+1}. The sequence kn, n = 1, 2, . . . is the desired one because if K ′ < K and
the subsequence {fkn}

L(K)
1 satisfies the assumption of Proposition 2 , then the

subsequence {fkn}
L(K′)
1 also satisfies the assumption.

Thus it is enough to prove the following.

Proposition 3. Let {fk}Kk=1 be an orthogonal system of functions, |fk| ≤M.
Then there exists a subsequence ψ = {fkn}Ln=1 ≡ {ψn}Ln=1 ( kn ≤ 2n, n =
1, 2, . . . , L, kL ≤ K, 2L+1 > K) such that for any a = {an}Ln=1, ‖a‖ ≤ 1, and
an arbitrary permutation σ = σL µ{s∗L (ψ, σ, a) > λ} ≤ Ce−γλ2

.

Proof. We may suppose that the functions fk (1 ≤ k ≤ K) assume a finite
number of values. Indeed, let fk be a function of this kind sufficiently close to
fk. The Schmidt orthogonalization of

{
fk

}
yields an orthogonal system {f∗k}
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with
K∑
k=1

|fk (x)− f∗k (x)| < 1 a.e. This implies the assertion of Proposition 3

if it is true for {f∗k}.
Also, it suffices to prove Proposition 3 for kn ≤ 8n, n = 1, 2, . . . , L (8L+1 >

K). Indeed, if Proposition 3 holds for such {kn}, we can subsequently extract
a subsequence ψ1 from {fk}Kk=1, a subsequence ψ2 from {fk}Kk=1\ ψ1, and ψ3

from {fk}Kk=1\ (ψ1 ∪ ψ2) so that each of them satisfies the assertion of the
proposition with kn ≤ 8n. Uniting the functions from ψ1, ψ2, and ψ3 in one
sequence and adding (if needed) f1, f2, . . . , f6 to it , we obtain a subsequence
ψ that satisfies Proposition 3 with kn ≤ 2n. We may assume M = 1as well.

We first consider the case |fk| = 1 (1 ≤ k ≤ K) and define the required
subsequence by induction. Suppose that functions ψn ≡ fkn , kn ≤ 8n (1 ≤
n ≤ s, 8s+1 < K) have already been chosen and the following conditions hold.

1 There exist martingale differences ϕn, 1 ≤ n ≤ s such that

µ
(
|ψn − ϕn| > 2−

n
8
)
< 2−

n
4 , n = 1, 2, . . . , s;

2 |ϕn| ≤ 2;

3 For n = 1, 2, . . . , s, let Qn1 , . . . , Q
n
r (r ≡ r (n)) be the sets of the maximal

measure, on which every function ψν (1 ≤ ν ≤ n) is constant. Then the
function ϕn is constant on each Qnν , 1 ≤ ν ≤ r.

Since every function ψn (1 ≤ n ≤ s) assumes only 2 values, r = r (s) ≤ 2s.
We now choose ψs+1. Denote the characteristic function of the set Qν ≡ Qsν
by χν and apply Bessel’s inequality to it. We have

µ(Qν) ≥
K∑
k=1

(χν , fk)2 ≥
8s+1∑

k=8s+1

(χν , fk)2
, ν = 1, 2, . . . , r,

whence it follows that at least for one number k, 8s + 1 ≤ k ≤ 8s+1,

(χν , fk)2 ≤ µQν
4s

for all ν ≤ r. (3.3)

We denote this number by ks+1 and set ψs+1 = fks+1 . Let ψ̄ν be the average
value of the function ψs+1 on the set Qν . Let Q′ be the union of those Qν for
which

µQν ≥ 2−
3
2 s. (3.4)

We define ϕs+1 by

ϕs+1 (x) =

{
ψs+1 (x)− ψ̄ν for x ∈ Qν ⊂ Q′

0 for x ∈ Qν * Q′.
(3.5)
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It follows from (3.5) that Assumptions 2 and 3 hold for n = s + 1 and the
average value of ϕs+1 (x) on each Qν equals zero. In view of Condition 3, ϕk
(1 ≤ k ≤ s+1) are martingale differences. Taking (3.3) and (3.4) into account,
we have for each set Qν ⊂ Q′∣∣ψ̄ν∣∣ =

|(χν , ψs+1)|
µQν

≤ 1
2s
√
µQν

≤ 2−
s
4 ≤ 2−

s+1
8 (3.6)

Therefore, the inequality |ψs+1 (x)− ϕs+1 (x)| > 2−
s+1
8 can be true only for

x ∈ X \Q′. For the set Qν * Q′, the inequality opposite to (3.4) holds. Hence

µ (X \Q′) < 2−
3
2 sr ≤ 2−

3
2 s2s = 2−

s
2 ≤ 2−

s+1
4

Thus, by induction, we can define functions ψn (x) , n = 1, 2, . . . , L (kn ≤ 8n,
8L+1 > K) for which Conditions 1-3 holds.

Fix an arbitrary λ > 0, σ = σL and a sequence a = {an}Ln=1, ‖a‖ ≤ 1.
Denoting the permutation inverse to σ by τ, we have for l = min

([
λ
2

]2
, L
)

sup1≤i≤L

∣∣∣∣∣
i∑

n=1

anψσ(n) (x)

∣∣∣∣∣ ≤
l∑

n=1

∣∣aτ(n)

∣∣ |ψn (x)|

+ sup1≤i≤L

∣∣∣∣∣
i∑

n=1

‘anψσ(n) (x)

∣∣∣∣∣ = I1 + I2

(3.7)

where the symbol “ ‘ ” means that the items with σ(n) ∈ {1, 2, . . . .l} are
omitted. Applying Cauchy’s inequality to I1(for l = 0, I1 = 0), we obtain

I1 ≤
√
l ≤ λ

2
. (3.8)

If l = L, then I2 = 0. For l < L

I2 (x) ≤ sup1≤i≤L

∣∣∣∣∣
i∑

n=1

‘anϕσ(n) (x)

∣∣∣∣∣+
L∑
n=1

‘ |an|
∣∣ϕσ(n) (x)− ψσ(n) (x)

∣∣ . (3.9)

Applying Cauchy’s inequality to the second sum and taking Condition 1 into
consideration, we convince ourselves that it does not exceed 20 for all x except,
perhaps,

x ∈ T1 ≡
L⋃

n=l̄+1

{
x | |ψn − ϕn| > 2−

n
8
}

;
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µ (T1) ≤
L∑

n=l+1

2−
n
4 < 10 · 2− l

4 ≤ Ce−γλ
2
. (3.10)

According to Theorem 2, for T2 =
{
x|sup1≤i≤L

∣∣∣ i∑
n=1

‘anϕσ(n)(x)
∣∣∣ > λ

2 − 20
}

we have
µ (T2) ≤ Ce−γλ

2
. (3.11)

It follows from (3.7)-(3.11) that

µ
{

sup1≤i≤L

∣∣∣ i∑
n=1

anψσ(n)(x)
∣∣∣ > λ

}
≤ µ (T1) + µ (T2) ≤ Ce−γλ

2

Thus the theorem is proved for the special case. The general case can be
reduced to the special case. Namely, we represent the functions fk, k =

1, 2, . . . ,K in the form fk = ξk +
N∑
n=1

ηk,n, k = 1, 2, . . . ,K, as it was done in

the proof of Theorem 1, with only one difference: now ξk, k = 1, 2, . . . ,K are
orthogonal functions. The theorem has been proved for them. For the inde-
pendent functions ηk,n (k = k1, k2, . . . , km) estimate (2.8) holds. This leads to
(3.1) and completes the proof.

In conclusion, the author thanks Professors A. M. Olevskii and B. F.
Gaposhkin for useful discussions.
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