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MORE ON COMPACTA WITH CONVEX
PROJECTIONS

Abstract

We obtain information about the structure of nonconvex compacta
C in Rn (n ≥ 3) having the property that every projection onto a
hyperplane is convex. We find that if dim(C) ≤ n− 2, then C contains
n + 1 copies of Sn−2 that are contained in distinct hyperplanes. If
dim(C) ≥ n − 1, then the existence of three and no more than three
hyperplanes that intersect C in an (n− 2)-sphere can be guaranteed.

Consider the vector space Rn for n ≥ 3. Let us call the image of a set X ⊂ Rn

under an orthogonal projection onto a hyperplane a shadow of X. Borsuk [1]
has shown that there exist Cantor sets in Rn such that all their shadows are
(n − 1)-dimensional. The projections of such Cantor sets contain (n − 1)-
dimensional convex bodies but the following result shows that these shadows
must be ‘frayed around the edges’. According to Cobb [2] every compactum
C in Rn with the property that all its shadows are convex bodies contains an
arc. Dijkstra, Goodsell, and Wright [3] improved on this result by showing
that such a C must contain an (n−2)-sphere; so in this case projections cannot
raise dimension by more than one. The estimate that dim(C) ≥ n − 2 was
also shown to be sharp.

Our aim in this paper is to obtain precise information about the number
of ‘essentially distinct’ (n− 2)-spheres that can be found in these sets:

Theorem 1. If C is a nonconvex compactum in Rn such that all its shadows
are convex, then

(1) C contains an (n− 1)-cell or

(2) there exist n+ 1 distinct hyperplanes H0, . . . ,Hn such that every C ∩Hi

contains an (n− 2)-sphere.
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Since every (n − 1)-cell contains a continuum of disjoint (n − 2)-spheres,
a natural question is whether option (1) is necessary. We prove that (1) is
essential by showing that without it the existence of three and no more than
three hyperplanes that intersect C in an (n− 2)-sphere can be guaranteed.

Definitions. Consider a Cartesian coordinate system in the vector space Rn

with origin 0. Also, we have the usual norm in Rn: if x = (x1, x2, . . . , xn) ∈
Rn, then ‖x‖ =

√
x2

1 + · · ·+ x2
n. Sn stands for the standard sphere {x ∈

Rn+1 : ‖x‖ = 1} and an n-sphere is any space that is homeomorphic to Sn.
An n-cell is a space that is homeomorphic to {x ∈ Rn : ‖x‖ ≤ 1}. A k-plane
in Rn is a k-dimensional affine subspace and a hyperplane is an (n− 1)-plane.

The boundary and interior of a subset A of a topological space X are
denoted by ∂XA respectively intX A. If the ambient space is Rn, then we use
∂A and intA. We denote the convex hull of a set C ⊂ Rn by 〈C〉. A subset B
of Rn is called a convex body if B is an n-dimensional convex compactum. So
a convex body B is an n-cell, it has non-empty interior in Rn and its boundary
∂B is an (n− 1)-sphere.

If B is a convex body in Rn, then a subset F of ∂B is called a facet of B
(or of ∂B) if there is a hyperplane H such that F = H ∩ ∂B = H ∩B and F
is an (n− 1)-cell. Note that the facets of ∂B can meet only in their boundary
points. We define the following compact subset of ∂B.

E(B) = ∂B \
⋃
{int∂B F : F is a facet of B}.

The points of E(B) are extremal points with respect to projections onto
hyperplanes.

Lemma 2. If B is a convex body in Rn and C is a compact subset of Rn that
has the same shadows as B in all directions, then E(B) ⊂ C ⊂ B.

This lemma is a special case of Theorem 4.7 in [3]. We include a direct
proof to display the geometry of the situation which is important in the sequel.

Proof. Let B and C be compacta in Rn such that B is a convex body and B
and C have identical projections. Note that according to Hahn-Banach (see
e.g. [5, Theorem 3.4]) the convex hull of C is the intersection of all half spaces
that contain C. Consequently, we have 〈C〉 = B.

Assume that x is some element of E(B) \ C. Since x is a point on the
boundary of the convex compactum B, according to Hahn-Banach we can
find a hyperplane H through x such that B is contained in one of its closed
half spaces, say P . Let ` be a line in H through x such that x /∈ int`(`∩ ∂B).
Such a line can be found because if there are n− 1 independent lines without
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this property, then x must lie in the interior of the (n− 1)-cell H ∩ ∂B, which
contradicts x ∈ E(B). Select a point in the interior of B and let M be the 2-
dimensional plane that contains the point and the line `. Select a coordinate
system for M such that the half plane M ∩ P corresponds with directions
[0, π] and x is the pole. Noting that x /∈ C we let θ : M ∩ C → [0, π] be the
continuous map that assigns to each point of the compactum its polar angle.
If the range of θ contains both 0 and π, then x ∈ int`(` ∩ S), a contradiction.
So we may conclude that θ is not surjective. Then by compactness of the
range of θ we have that there is some α ∈ (0, π) \ θ(M ∩C). Let `′ be the line
in M through x with direction α. Then `′ misses C. Let p be the projection
of Rn onto a hyperplane that is perpendicular to `′. Note that p(x) /∈ p(C)
but that p(x) ∈ p(B) = p(〈C〉) = 〈p(C)〉. Consequently, p(C) = p(B) is not
convex and we have arrived at a contradiction. Hence E(B) ⊂ C.

We now prove Theorem 1.

Proof. Let C be a nonconvex compactum in Rn such that the projection
of C in any direction is convex. Then B = 〈C〉 is a convex body because
if dim(B) < n, then by convexity B is contained in a hyperplane and hence
C projects onto itself. We have p(B) = p(〈C〉) = 〈p(C)〉 = p(C) for every
projection p. Note that the boundary in ∂B of each facet of B is an (n− 2)-
sphere that is contained in E(B) and hence in C, by Lemma 2. So if there
are more than n facets we are finished. Assume that there are no more than
n facets. Then the union of all the facets K is a compact set that does not
cover the entire ∂B because an n-cell in Rn cannot be bounded by only n
hyperplanes. So ∂B \K is a nonempty open subset of the (n− 1)-sphere ∂B
that is contained in E(B) and hence in C. So C contains an (n− 1)-cell.

Example 1. We shall use [3, Theorem 5.3] which shows that for every convex
body B there is a zero-dimensional set Z in the interior of B such that C =
Z ∪ E(B) is compact and has the same shadows as B. Consider an n-simplex
∆n in Rn. Its n+1 facets are the (n−1)-faces and E(∆n) is the (n−2)-skeleton
∆n

n−2. Select a 0-dimensional set Z such that C = ∆n
n−2 ∪ Z is a compactum

with the same projections as ∆n. Note that C is a ‘minimal’ example of a
nonconvex compactum with convex shadows and that there are precisely n+1
hyperplanes H such that H ∩ C contains an (n− 2)-sphere.

Theorem 3. If C is a nonconvex compactum in Rn with only convex shadows,
then there exist at least three distinct hyperplanes whose intersection with C
contains an (n− 2)-sphere.
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Proof. Put B = 〈C〉 and note that as in the proof of Theorem 1 B is a
convex body and that E(B) ⊂ C. Let

H = {H : H is a hyperplane that intersects B in a facet}

If |H| ≥ 3, then we are done.
We show that if |H| < 3, then there are infinitely many hyperplanes whose

intersection with C contains an (n− 2)-sphere. Let x be an arbitrary point in
the interior of B and note that for any hyperplane P that passes through x
the intersection P ∩ ∂B is an (n− 2)-sphere. We consider three cases:

(1) H = ∅. Then ∂B = E(B) ⊂ C so C contains the (n− 2)-sphere P ∩ ∂B
for every hyperplane P through x.

(2) H = {H1, H2} with H1 and H2 parallel or identical. Recall that ∂B ⊂
H1 ∪H2 ∪ E(B). If P is the hyperplane through x that is parallel to H1

and H2, then P ∩ ∂B = P ∩ E(B) ⊂ P ∩ C.

(3) H = {H1, H2} with H1 and H2 distinct and not parallel. Consider the
(n − 2)-plane L = H1 ∩ H2. Let P be the hyperplane that contains
both L and x. Note that L cannot intersect the interiors of the facets so
P ∩ ∂B = P ∩ E(B) ⊂ P ∩ C.

The proof is complete.

Theorem 4. For every n ≥ 3 there exists a nonconvex compactum C in
Rn such that every shadow of C is convex and with the property that there
are precisely three distinct hyperplanes whose intersection with C contains an
(n− 2)-sphere.

Proof. We define the hyperplanes

H0 = {x ∈ Rn : xn = 0}
H1 = {x ∈ Rn : x1 = 0}
H2 = {x ∈ Rn : x2 = 0}

and the (n− 2)-planes Z0 = H1 ∩H2, Z1 = H2 ∩H0, and Z2 = H0 ∩H1. Let
F0 be one quadrant of the unit ball in H0.

F0 = {x ∈ H0 : x1, x2 ≥ 0 and ‖x‖ ≤ 1},

and consider the point p = (0, . . . , 0, 1) ∈ Rn. If A is a subset of H0, then the
cone over A with respect to p is defined by

C(A) = {ta+ (1− t)p : t ∈ [0, 1] and a ∈ A}
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Observe that if A ⊂ H0 is compact, then ∂C(A) = A ∪ C(∂H0A).
The convex body B is C(F0). Note that F0 is a facet of B. The boundary

of F0 in H0 consists of three (n− 2)-cells,

K1 = {x ∈ Z1 : x1 ≥ 0 and ‖x‖ ≤ 1} = Z1 ∩B,
K2 = {x ∈ Z2 : x2 ≥ 0 and ‖x‖ ≤ 1} = Z2 ∩B,
P ∗ = {x ∈ H0 : x1, x2 ≥ 0 and ‖x‖ = 1}.

Observe that for i = 1, 2, Ki is a facet of F0 in H0 and hence

Fi = C(K3−i) = Hi ∩B

is a facet of B. Let P be the (n− 1)-cell C(P ∗) and note that since ∂H0F0 =
K1 ∪ K2 ∪ P ∗, we have that ∂B = F0 ∪ F1 ∪ F2 ∪ P. Let K0 stand for the
(n− 2)-cell,

K0 = C(K1 ∩K2) = Z0 ∩B.

Observe that for i = 1, 2, ∂Zi
Ki = (K1 ∩K2) ∪ (Ki ∩ P ∗) and hence that

∂Hi
Fi = K3−i ∪K0 ∪ C(K3−i ∩ P ∗) ⊂ K3−i ∪K0 ∪ P.

So we may conclude that C∗ = K0 ∪K1 ∪K2 ∪ P equals the boundary of B
with the interiors of the three facets F0, F1, and F2 removed and hence that
E(B) ⊂ C∗.

We may now apply [3, Theorem 5.3] to obtain a zero-dimensional space
Z in the interior of B such that C = Z ∪ C∗ is compact and has the same
projections onto hyperplanes as B. This completes the construction of the
counterexample C.

Let H be a hyperplane such that

H ∩ C contains an (n− 2)-sphere S.

We need to show that H is one of the hyperplanes H0, H1, or H2.

Remark. We shall use the Brouwer Invariance of Domain Theorem (see e.g.
[4, Theorem 4.6.7]) and corollaries: every continuous injection of Rn into itself
is an open mapping, no n-sphere can be embedded into Rn, and no proper
subspace of an n-sphere is an n-sphere.

Claim 1. M = H ∩ P does not contain S.

Proof. We consider two cases:
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(1) Let p /∈ H. Then we can project M onto the base P ∗ of the cone P
via a continuous map f : M → P ∗ defined as follows: if x ∈ M , then
f(x) is the intersection point of H0 and the line passing through p and
x. It is easy to see that f is one-to-one (because p /∈ H) and that f
is an embedding by the compactness of M . Since P ∗ is an (n − 2)-cell,
according to Brouwer we have that M cannot contain an (n− 2)-sphere.

(2) Let p ∈ H. Then M = {p} and we are finished or M = C(M ∩ P ∗) and
L = H ∩ H0 is a hyperplane in H0. Note that P ∗ is subspace of the
standard unit sphere Sn−2 in H0. The intersection A of Sn−2 with the
hyperplane L is either a point or an (n− 3)-sphere. If A is a singleton,
then M is contained in the line segment C(A) and if A is an (n − 3)-
sphere, then M is contained in the (n− 2)-cell C(A). Either way, by the
Remark M cannot contain an (n− 2)-sphere (n ≥ 3).

Claim 2. H ∩ C∗ = S and C∗ = E(B).

Proof. Note that S \ C∗ is an open subset of the sphere S and hence either
empty or (n − 2)-dimensional. Since S \ C∗ ⊂ Z and Z is zero-dimensional,
we know that S is contained in H ∩ C∗. We consider two cases:

(1) H∩intB 6= ∅. Then H∩∂B is an (n−2)-sphere. Since C∗ ⊂ ∂B, we have
S ⊂ H∩C∗ ⊂ H∩∂B. According to the Remark S = H∩∂B = H∩C∗.

(2) H∩ intB = ∅. Then H∩∂B = H∩B is a convex k-cell (k ≤ n−1) which
contains the (n−2)-sphere S. So by the Remark we have that k = n−1
and H ∩ ∂B is a facet of B. If H ∩ ∂B is facet other than F0, F1, or F2,
then it must be contained in P . Since S ⊂ H ∩C∗ ⊂ H ∩ ∂B ⊂ H ∩ P ,
this violates Claim 1. So F0, F1, and F2 are the only facets of B which
means that C∗ = E(B). Let H ∩ ∂B = Fi. Then H ∩ C∗ = ∂HiFi is an
(n− 2)-sphere and hence S = H ∩ C∗, by Brouwer.

Claim 3. H ∈ {H0, H1, H2}.

Proof. Consider the set L = S\P = H ∩ C∗ \ P and note that it is a
nonempty open subset of S and therefore (n − 2)-dimensional. We have L ⊂
K0∪K1∪K2 ⊂ Z0∪Z1∪Z2 so dim(L∩Zi) = n−2 for some i. Consequently,
dim(H ∩ Zi) = n − 2 so H must contain the (n − 2)-plane Zi and hence
the origin 0. Since 0 ∈ C∗ \ P , we have 0 ∈ L where it has neighborhoods
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homeomorphic to Rn−2. We want to show that L is not a subset of the (n−2)-
plane Zi. Suppose L ⊂ Zi. On the one hand we have according to Brouwer
Invariance of Domain that 0 is an interior point of L in Zi. On the other
hand, 0 is a boundary point in Zi of Ki = Zi ∩ B and hence of its subset L,
a contradiction.

Consequently, L\Zi is a nonempty open subset of S and hence dim(L\Zi) =
n − 2. By the same argument as above we find a j 6= i such that Zj ⊂ H.
Since H contains Zi and Zj , we may conclude that H equals Hk where k is
the third index.

The proof of Theorem 4 is complete.

Example 2. For every open O ⊂ Rn we construct a closed, zero-dimensional
subset of O that has the same shadows as O. Putting O = Rn we see that
Theorems 1 and 3 are no longer valid if we replace C is compact by C is closed.

Consider an open subset O of Rn and choose a locally finite open cover
{Ui : i ∈ N} for O consisting of sets with compact closures in O. Shrink this
cover to a closed cover {Vi : i ∈ N} with Vi ⊂ Ui for every i ∈ N. According
to [1] or [3, Proposition 3.1] we can find for each i ∈ N a Cantor set Ci ⊂ Ui

such that every line in Rn that intersects Vi also meets Ci. Put C =
⋃∞

i=1 Ci.
Then, since {Ci|i ∈ N} is a locally finite collection of Cantor sets, we have
that C is closed in O and zero-dimensional. Moreover, the shadows of O and
C are identical.

Example 3. We show that the compactness of C is also essential in Lemma 2.
Consider R2 and let S = 〈K1 ∪K2〉, where

K1 = {(x, y) : (x+ 1)2 + y2 = 1}

and
K2 = {(x, y) : (x− 1)2 + y2 = 1}.

Observe that if ` is a nonhorizontal line in R2 passing through the point
a = (1, 1), then ` intersects the interior of S, see figure. If ` is the horizontal
line through a, then ` ∩ S = [−1, 1] × {1} = F . Either way, we have that for
every line ` through a and every neighborhood U of a in `, the intersection
U ∩ S \ {a} is nonempty.

Now, for n ≥ 3 let K be a convex body in Rn−2 and define the convex
body B = S × K ⊂ Rn and its subset C = B\({a} × intK). Note that the
points in B \ C are boundary points of the facet F ×K of B. Consequently,
we have B \ C ⊂ E(B).

We will show that every line that intersects B\C also intersects C, proving
that C and B have identical shadows in every direction. Let π : Rn → R2
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be the projection onto the first two coordinates. Let ` be a line in Rn that
intersects B \ C in a point x = (a, b).

If π(`) = {a}, then we may treat ` as a line in Rn−2. Since ` intersects
the interior of K (in b), we have that ` contains a boundary point of K, say
c. Then (a, c) ∈ ` ∩ C.

If π(`) is a line in the plane, then U = π(`∩(R2× intK)) is a neighborhood
of a in π(`) and hence there is a c ∈ U ∩ S \ {a}. Let d ∈ intK be such that
(c, d) ∈ `. Note that (c, d) ∈ ` ∩ C.
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