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WEAK CONVERGENCE OF BOUNDED,
MONOTONE SET FUNCTIONS IN AN

ABSTRACT SETTING

Abstract

We introduce an abstract treatment of the weak convergence for
bounded monotone set functions which allows us to obtain some basic
results generalizing well known theorems regarding classical weak and
vague convergence and weak convergence of masses on normal topo-
logical spaces (e.g. Portmanteau type theorems, Direct and Converse
Prokhorov type theorems). Moreover, we introduce a suitable topology
(called the Lévy-topology) in order to study the properties of this ab-
stract convergence from a topological point of view.

Dedication This article is dedicated, with a deep sense of loss and wonder,
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1 Introduction

It is well known that the notion of weak convergence of measures plays a key
role in the classical σ-additive treatment of probability and stochastic pro-
cesses; see, for instance, Billingsley [3]. In this framework, Varadarajan [10]
supplied the basic properties of the weak convergence, especially from a topo-
logical point of view. In a finitely additive setting, after the pioneering work
of Alexandroff [1], Masani [9] first extended the direct Prokhorov theorem to
the space of outer regular masses on normal Hausdorff topological spaces and
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Girotto and Holzer [6, 7, 8] extended the Portmanteau theorem and Masani
results to the space of masses (outer regular or not) on normal topological
spaces.

On the other hand, over the last four decades, there has been a sustained
growth of interest in monotone set functions (non necessarily additive) for the
treatment of uncertainty. The mathematical theory of monotone set functions
got its first important contribution with Gustave Choquet (1953), who was
concerned in statistical mechanics and potential theory. Monotone set func-
tions were also considered in the seminal contribution of Lloyd Shapley (1953)
in the study of cooperative games. Some years later, the statistician Arthur
Dempster (1966) first presented an application of monotone set functions in
the field of Bayesian inference. Decision theorists rediscovered non-additivity
when David Schmeidler (1989) first introduced an axiomatic model of choice
with non-additive beliefs. Recently, other fields of applications of non-additive
set functions are, for instance, artificial intelligence, finance and asset pricing
theory.

Motivated by these reasons and by its interest from a mathematical point
of view, in this paper we introduce the notion of weak convergence of bounded
monotone set functions (additive or not) and extend the Portmanteau theorem
and Prokhorov theorem in this general framework.

Now, we briefly describe the contents of the following sections. In Section
two, we introduce the notion of regular and strongly regular sets, which are
the main tool for studying the weak convergence of bounded monotone set
functions. In Section three, we introduce this convergence and prove a Port-
manteau type theorem, which characterizes it. In Section four we introduce
the Lévy-topology and supply a Prokhorov type theorem, both in direct form
and converse one. An appendix concludes the paper by recalling some prop-
erties of the Choquet integral which are instrumental in getting some of our
results.

2 The Regularity Systems

Throughout this paper we adopt usual set theoretic and topological notation.
Given a non-empty set Ω, the letter F always denotes a family of subsets of
Ω including ∅ and closed under complementation; sets from F are denoted by
F , with or without indices.

The letters C, U always denote two subsets of F such that ∅ ∈ C and Ω ∈ U
(i.e. C, U are a (∅)-paving and a (Ω)-paving, respectively); moreover, C and
U , with or without indices, are elements of C and U , respectively.

We denote by µ, with or without indices, any bounded (i.e. finite) mono-
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tone set function on F with zero value at the empty set; moreover, ‖µ‖ is the
norm of µ, i.e. ‖µ‖ = µ(Ω). As usual, for any µ, the set function µ on F is
the conjugate set function of µ, i.e. µ(F ) = ‖µ‖ − µ(F c) for all F .

Now, we introduce two basic notions of regularity for a bounded monotone
set function on F .

Definition 2.1. We say that F is a:

• µ-regular set (w.r.t.(C,U)) iff it satisfies the ”approximation property”:

sup{µ(C) : C ⊂ F} = µ(F ) = inf{µ(U) : U ⊃ F},

i.e. for all ε > 0 there are C ⊂ F and U ⊃ F such that µ(U)−µ(C) < ε.
We denote by Rµ the set of µ-regular sets and we call it the µ-regularity
system;

• µ-strongly regular set (w.r.t.(C,U)) iff for all ε > 0 there are C,U ∈ Rµ
such that U ⊂ F ⊂ C and µ(C) − µ(U) < ε. We denote by R0

µ the set
of µ-strongly regular sets and we call it the µ-strong regularity system.

Remark 2.2. (i) Let C = Uc = {U c : U ∈ U}. Then, one can easily prove
that F ∈ Rµ ⇐⇒ F c ∈ Rµ and F ∈ R0

µ ⇐⇒ F c ∈ R0
µ. Consequently, if µ

is additive, Rµ and R0
µ are closed under complements, on noting that µ = µ.

(ii) Let Ω be a topological space, F a field, C the family of closed sets,
U the family of open sets and µ be additive. Then the µ-strong regularity
system is the family of sets with µ-null and µ-regular boundary. Indeed, given
F ∈ R0

µ, let ε > 0. Then, there are C,U ∈ Rµ such that U ⊂ F ⊂ C
and µ(C) − µ(U) < ε. Moreover, there are C ′ ⊂ U and U ′ ⊃ C such that
µ(U) − µ(C ′) < ε and µ(U ′) − µ(C) < ε. By the additivity of µ, we have
µ(U ′ − C ′) = µ(U ′) − µ(C ′) and hence µ(U ′ − C ′) < 3ε. On noting that the
boundary ∂F of F is a subset of the closed set C−U ⊂ U ′−C ′ ∈ U , it follows
that µ(∂F ) ≤ µ(U ′−C ′) < 3ε. Consequently, since ε is arbitrarily chosen, ∂F
is µ-null and µ-regular. Conversely, by Theorem 2.5(ii) in Girotto and Holzer
[7], one can easily prove that any set with µ-null and µ-regular boundary is an
element of R0

µ. Therefore, the notion of µ-strong regularity here considered
can be seen as a generalization of the one given in Girotto and Holzer [7].

The following theorem assures that the latter notion of regularity in Defi-
nition 2.1 is a strengthening of the former.

Theorem 2.3. We have: R0
µ ⊂ Rµ.

Proof. Given a µ-strongly regular set F , let ε > 0. Then there are C,U ∈ Rµ
such that U ⊂ F ⊂ C and µ(C)− µ(U) < ε. Moreover, there are C ′ ⊂ U and



160 Bruno Girotto and Silvano Holzer

U ′ ⊃ C such that µ(U)−µ(C ′) < ε and µ(U ′)−µ(C) < ε. Therefore, we have
C ′ ⊂ F ⊂ U ′ and µ(U ′)− µ(C ′) < 3ε.

The following definition introduces the notion of measurable function w.r.t.
the pair (C,U) and allows us to specify some interesting µ-strongly regular sets.
To this end, given a real map f on Ω, we put:

{f > t} = {ω ∈ Ω : f(ω) > t}, {f ≥ t} = {ω ∈ Ω : f(ω) ≥ t},

for any real number t.

Definition 2.4. We say that a real map f on Ω is (C,U)-measurable iff:

• for any t > 0 we have {f ≥ t} ∈ C and {f > t} ∈ U , if f ≥ 0;

• f+ and f− are (C,U)-measurable, if f is arbitrary.

We denote by M(C,U) the set of (C,U)-measurable maps.

Remark 2.5. Since we want to consider (C,U)-measurable functions also
when Ω /∈ C (see, for instance, Remark 3.2(ii)), we do not allow t = 0 in
the previous definition. In the contrary case, indeed, we should have Ω ∈ C
whenever M(C,U) 6= ∅.

Theorem 2.6. Given f ∈ M(C,U), let Gµ(t) = µ({f > t}) and Hµ(t) =
µ({f ≥ t}) for any t > 0. If t is a continuity point of Gµ, then {f ≥ t}
and {f > t} are µ-strongly regular sets; moreover Gµ(t) = Hµ(t) and t is a
continuity point of Hµ, as well.

Proof. Let t > 0 be a continuity point of Gµ. First, we prove that {f ≥ t}
and {f > t} are µ-regular sets. Let (xn) and (yn) be real strictly monotone
sequences such that xn ↑ t and yn ↓ t. Then, for any n, we have:

{f > yn} ⊂ {f ≥ yn} ⊂ {f > t} ⊂ {f ≥ t} ⊂ {f ≥ xn+1} ⊂ {f > xn}.

On noting that the sets considered in the previous relation are elements of F
and recalling that t is a continuity point of Gµ, we get µ({f > xn})− µ({f >
yn}) = Gµ(xn) − Gµ(yn) → 0 and hence {f > t}, {f ≥ t} ∈ Rµ (note that
{f ≥ yn} ∈ C and {f > xn} ∈ U for all n). Moreover, Gµ(t) = Hµ(t). Looking
again at the above inclusions, it is easily seen that t is a continuity point of
Hµ, as well.

Finally, to verify that {f > t} and {f ≥ t} are µ-strongly regular sets it
is enough to observe that {f > t} ⊂ {f ≥ t}, {f ≥ t} ∈ C, {f > t} ∈ U and
µ({f > t}) = µ({f ≥ t}).
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Corollary 2.7. Let f ∈M(C,U). Then there are at most a countable set of
positive real numbers t > 0 such that {f ≥ t} and {f > t} are not µ-strongly
regular sets.

3 Weak Convergence

Given the set

M0,b(C,U) = {f ∈M(C,U) : ∃k(sup |f | ≤ k) ∧ ∃C∀ω(ω /∈ C ⇒ f(ω) = 0)},

collecting bounded (C,U)-measurable maps which vanish outside elements of
C (i.e. with support in C), in what follows we assume that the pair (C,U)
satisfies the following:

Separation Property: for any C and U such that C ⊂ U there is f ∈
M0,b(C,U) taking on values in [0,1] such that f(ω) = 1, if ω ∈ C, and f(ω) = 0,
if ω /∈ U .

Since the separation property assures the set M0,b(C,U) is never empty
(take C = ∅ and U = Ω), we have ∅ ∈ U and hence the empty set is µ-strongly
regular. Moreover, if C = Uc, we have Ω ∈ C so that the set Ω is µ-strongly
regular, as well.

By the following definition we introduce the notion of weak convergence
w.r.t. the pair (C,U) for bounded monotone set functions. In the sequel, for
any µ and f , the symbol

∫
fdµ always denotes the Choquet integral (note that

any f ∈M0,b(C,U) is µ-integrable for all µ). Moreover, the convergence of a
real net {rd ; d ∈ D} to the real number r is denoted, henceforth, by rd → r.

Definition 3.1. We say that the net {µd ; d ∈ D} is weakly convergent to µ
(w.r.t. (C,U)), and write µd

w→ µ, iff
∫
fdµd →

∫
fdµ for any f ∈M0,b(C,U).

Remark 3.2. (i) Let Ω be a normal space and C, U the families of closed and
open sets, respectively. Then, M0,b(C,U) is the set of bounded continuous real
functions so that, by Urysohn Lemma, the pair (C,U) satisfies the separation
property. Therefore, in the setting of bounded additive set functions µ on a
field, the weak convergence w.r.t. (C,U) is the usual one, since the Choquet
integral and the S-integral of a bounded continuous real function coincide (see
Theorem A.11 in Appendix).

(ii) Let Ω be a locally compact Hausdorff space and C, U the families of
compact and open sets, respectively. Then, M0,b(C,U) is the set of continuous
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real functions with compact support so that, by Theorem 3.3.2 and Theorem
3.3.3 in Engelking [5], the pair (C,U) satisfies the separation property. There-
fore, in the setting of bounded additive set functions µ on a field, the weak
convergence w.r.t. (C,U) is the vague convergence.

Now, we are proving a Portmanteau type theorem, which gives a compre-
hensive list of conditions equivalent to the weak convergence; thus, we link
weak convergence and pointwise convergence. To this end, first we supply the
following result.

Lemma 3.3. Let C ⊂ U . Then there are C ′, U ′ ∈ R0
µ ∩ R0

µ such that C ⊂
U ′ ⊂ C ′ ⊂ U .

Proof. By the separation property, there is f ∈ M0,b(C,U) such that f :
Ω 7→ [0, 1] and f(ω) = 1, if ω ∈ C, and f(ω) = 0, if ω /∈ U . Now, by Corollary
2.7, there is t ∈]0, 1[ such that C ′ = {f ≥ t} and U ′ = {f > t} are elements of
R0
µ ∩R0

µ. Since C ⊂ U ′ ⊂ C ′ ⊂ U we get the thesis.

Theorem 3.4. (Characterization Theorem) Given µ and a net {µd ; d ∈ D},
the following statements are equivalent:

(i) µd
w→ µ;

(ii) µd
w→ µ;

(iii) lim supd∈D µd(C) ≤ µ(C), lim infd∈D µd(U) ≥ µ(U) for all C,U ∈ Rµ
and
lim supd∈D µd(C) ≤ µ(C), lim infd∈D µd(U) ≥ µ(U) for all C,U ∈ Rµ;

(iv) µd(F )→ µ(F ) for all F ∈ R0
µ and µd(F )→ µ(F ) for all F ∈ R0

µ;

(v) (µd(U), µd(U))→ (µ(U), µ(U)) for all U ∈ R0
µ ∩R0

µ;

(vi) (µd(C), µd(C))→ (µ(C), µ(C)) for all C ∈ R0
µ ∩R0

µ.

Proof. (i) ⇐⇒ (ii). It is enough to observe that, for any f ∈ M0,b(C,U),
we have −f ∈M0,b(C,U) and, by Theorem A.4(iii),

∫
fdµ = −

∫
(−f)dµ.

(i) ⇒ (iii). First, assume C ∈ Rµ. Let ε > 0. Then there is U ⊃ C
such that µ(U) − µ(C) < ε. By the separation property we can consider
f ∈M0,b(C,U) such that f : Ω 7→ [0, 1] and f(ω) = 1, if ω ∈ C, and f(ω) = 0,
if ω /∈ U . Therefore, by Theorem A.4(i),(v), we have

∫
fdµ ≤

∫
1Udµ = µ(U)

and µd(C) =
∫

1Cdµd ≤
∫
fdµd, for any d ∈ D. Hence we get

lim sup
d∈D

µd(C) ≤ lim sup
d∈D

∫
f dµd =

∫
f dµ ≤ µ(U) < µ(C) + ε,
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where the equality holds by (i). Since ε is arbitrary, we get lim supd∈D µd(C) ≤
µ(C), as desired.

Now, assume U ∈ Rµ. Let ε > 0. Then there is C ⊂ U such that
µ(U)− µ(C) < ε. By the separation property we can consider f ∈M0,b(C,U)
such that f : Ω 7→ [0, 1] and f(ω) = 1, if ω ∈ C, and f(ω) = 0, if ω /∈ U .
Therefore, we have µ(C) ≤

∫
fdµ and

∫
fdµd ≤ µd(U), for any d ∈ D. Hence

we get

lim inf
d∈D

µd(U) ≥ lim inf
d∈D

∫
f dµd =

∫
f dµ ≥ µ(C) > µ(U)− ε,

where the equality holds by (i). Since ε is arbitrary, we get lim infd∈D µd(U) ≥
µ(U), as desired.

Finally, keeping in mind the above proved equivalence (i) ⇐⇒ (ii), one
easily gets the remaining part of (iii). This proves the desired implication.

(iii) ⇒ (iv). Let F ∈ R0
µ. Given ε > 0, there are C, U ∈ Rµ such

that U ⊂ F ⊂ C and µ(C) − µ(U) < ε. Since µ(U) ≤ µ(F ) ≤ µ(C) and
µd(U) ≤ µd(F ) ≤ µd(C) for any d ∈ D, we have

µ(U) ≤ lim inf
d∈D

µd(U) ≤ lim inf
d∈D

µd(F )

≤ lim sup
d∈D

µd(F ) ≤ lim sup
d∈D

µd(C) ≤ µ(C) < µ(U) + ε

and hence µ(F ), lim infd∈D µd(F ), lim supd∈D µd(F ) ∈ [µ(U), µ(U)+ ε]. Since
ε is arbitrarily chosen, we get µd(F ) → µ(F ). This proves the former part of
(iv). Similarly, one can prove the latter part of (iv).

(iv) ⇒ (v) + (vi). This is obvious.
(v)⇒ (i). Let f ∈M0,b(C,U). First, assume 0 ≤ f ≤ k and C be such that

f(ω) = 0 for any ω /∈ C. Since Ω ∈ U , by Lemma 3.3, there is U ∈ R0
µ ∩ R0

µ

such that C ⊂ U . Hence, by (v), µd(U) → µ(U) and µd(U) → µ(U). Let
ε > 0. Then, by Corollary 2.7, there are real numbers t0, t1, . . . , tm such that
t0 = 0 < t1 < · · · < tm−1 < k ≤ tm and

ti − ti−1 < ε, Ui = {f > ti} ∈ R0
µ ∩R0

µ (i = 1, . . . ,m).

Then, by (v), µd(Ui)→ µ(Ui) and µd(Ui)→ µ(Ui) for any i = 1, . . . ,m.
Letting gε =

∑m
i=1(ti − ti−1)1Ui and noting that f(ω) = 0 for any ω /∈ U ,

we have gε ≤ f ≤ gε + ε1U . Moreover, by Remark A.2(i), the maps gε and
gε + ε1U are simple functions (note U ⊃ U1 ⊃ · · · ⊃ Um). Then, by Theorem
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A.4(v) and Remark A.9, we have∫
gε dµd ≤

∫
f dµd ≤

∫
(gε + ε1U ) dµd =

m∑
i=1

(ti − ti−1)µd(Ui) + εµd(U)

=
∫
gε dµd + εµd(U),

for any d ∈ D, and ∫
gε dµ ≤

∫
f dµ ≤

∫
gε dµ+ εµ(U); (1)

moreover, keeping in mind that µd(Ui)→ µ(Ui) for any i = 1, . . . ,m, we have∫
gε dµd =

m∑
i=1

(ti − ti−1)µd(Ui)→
m∑
i=1

(ti − ti−1)µ(Ui) =
∫
gε dµ.

Consequently, recalling that µd(U) → µ(U), by carrying out the passage to
the limit, we get∫

gε dµ ≤ lim inf
d∈D

∫
f dµd ≤ lim sup

d∈D

∫
f dµd ≤

∫
gε dµ+ εµ(U)

and hence, from (1), we have∣∣∣∣lim inf
d∈D

∫
f dµd −

∫
f dµ

∣∣∣∣ ≤ εµ(U),
∣∣∣∣lim sup
d∈D

∫
f dµd −

∫
f dµ

∣∣∣∣ ≤ εµ(U).

In the same way, one can prove∣∣∣∣lim inf
d∈D

∫
f dµd −

∫
f dµ

∣∣∣∣ ≤ εµ(U),
∣∣∣∣lim sup
d∈D

∫
f dµd −

∫
f dµ

∣∣∣∣ ≤ εµ(U).

Therefore, since ε is arbitrarily chosen, we get
∫
f dµd →

∫
f dµ and

∫
f dµd →∫

f dµ.
Finally, let f be not necessarily positive. Since f+, f− ∈ M0,b(C,U), by

what we have just established, we get∫
f dµd =

∫
f+ dµd −

∫
f− dµd →

∫
f+ dµ−

∫
f− dµ =

∫
f dµ.

(vi) ⇒ (i). It is enough to follow the same reasoning as in the previous
step by letting C ′ ∈ R0

µ ∩ R0
µ instead of U ∈ R0

µ ∩ R0
µ and Ci = {f ≥ ti}

instead of Ui = {f > ti} (i = 1, . . . ,m).
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Remark 3.5. In the characterization theorem, without any other hypothesis,
the conjugate set functions can not be dropped from statements (iii), (iv), (v)
and (vi). Indeed, let Ω be the set of natural numbers, C the family of finite
subsets and U the power set 2Ω. Then, M0,b(C,U) is the set of real maps with
finite support and hence the separation property holds (given C ⊂ U , consider
the indicator function 1C). Now, for any natural n, consider the monotone
set function µn such that µn(Ω) = n and µn(F ) = 0 when F 6= Ω. Therefore,
µn(F ) = ‖µn‖ − µn(F c) = n for any F 6= ∅. Moreover, R0

µn = 2Ω − {Ω} and
R0
µn

= 2Ω − {∅}. For any proper subset F , we have µn(F ) → µ1(F ). On
the other hand, given F 6= ∅, we have µn(F ) → ∞ 6= 1 = µ1(F ). To better
understand why that happens (in the light of the characterization theorem),
consider the function f = −1{1} and observe that, by Theorem A.4(i),(iii), we
have

∫
f dµn = −

∫
1{1} dµn = −µn({1}) = −n → −∞ 6= −1 =

∫
f dµ1 (i.e.

the sequence (µn) is not weakly convergent to µ1).

Going through the proof of the characterization theorem, one easily gets
the following result which characterizes the convergence of integrals w.r.t. the
positive cone of M0,b(C,U).

Theorem 3.6. Given µ and a net {µd ; d ∈ D}, the following statements are
equivalent:

(i)
∫
f dµd →

∫
f dµ for any f ∈M0,b(C,U) such that f ≥ 0;

(ii)
∫
f dµd →

∫
f dµ for any f ∈M0,b(C,U) such that f ≤ 0;

(iii) lim supd∈D µd(C) ≤ µ(C), lim infd∈D µd(U) ≥ µ(U) for all C,U ∈ Rµ;

(iv) µd(F )→ µ(F ) for all F ∈ R0
µ;

(v) µd(U)→ µ(U) for all U ∈ R0
µ ∩R0

µ;

(vi) µd(C)→ µ(C) for all C ∈ R0
µ ∩R0

µ.

In the light of Remark 3.5, it is interesting to study when it is possible
to drop the conjugate set functions in the characterization of the weak con-
vergence. The following theorem points out a simple and natural condition
assuring that.

Theorem 3.7. Let C = Uc. Then, given µ and a net {µd ; d ∈ D}, the
following statements are equivalent:

(i) µd
w→ µ;
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(ii) µd
w→ µ;

(iii) lim supd∈D µd(C) ≤ µ(C), lim infd∈D µd(U) ≥ µ(U) for all C,U ∈ Rµ;

(iv) µd(F )→ µ(F ) for all F ∈ R0
µ;

(v) µd(U)→ µ(U) for all U ∈ R0
µ ∩R0

µ;

(vi) µd(C)→ µ(C) for all C ∈ R0
µ ∩R0

µ.

Proof. Since Ω ∈ C (recall ∅ ∈ U), the set Ω is strongly regular w.r.t. any
bounded monotone set function.

First, we prove that (iii) implies statement (iii) of the characterization
theorem. On noting that Ω ∈ C ∩ U , we have ‖µ‖ ≤ lim infd∈D ‖µd‖ ≤
lim supd∈D ‖µd‖ ≤ ‖µ‖ and hence ‖µd‖ → ‖µ‖. Given C ∈ Rµ, by Remark
2.2(i), we have Cc ∈ Rµ ∩ U and hence

lim sup
d∈D

µd(C) = lim sup
d∈D

(‖µd‖ − µd(Cc))

≤ lim sup
d∈D

‖µd‖ − lim inf
d∈D

µd(Cc) ≤ ‖µ‖ − µ(Cc) = µ(C).

In a similar way, one can prove that lim infd∈D µd(U) ≥ µ(U) for any U ∈ Rµ.
Now, we prove that (iv) implies statement (iv) of the characterization

theorem. Since Ω ∈ R0
µ, we have ‖µd‖ → ‖µ‖. Given F ∈ R0

µ, by Remark
2.2(i), we have F c ∈ R0

µ and hence µd(F ) = ‖µd‖ − µd(F c)→ ‖µ‖ − µ(F c) =
µ(F ).

Finally, we prove that (v) implies statement (v) of the characterization
theorem. Since Ω ∈ U ∩R0

µ∩R0
µ, we have ‖µd‖ → ‖µ‖. Given C ∈ R0

µ∩R0
µ

=
R0
µ ∩ R0

µ (recall µ = µ), by Remark 2.2(i), we have Cc ∈ U ∩ R0
µ ∩ R0

µ and
hence µd(C) = ‖µd‖ − µd(Cc) → ‖µ‖ − µ(Cc) = µ(C). Consequently, by the
equivalence (v) ⇐⇒ (vi) in Theorem 3.6 (take µd, µ as µd, µ respectively),
we have µd(U)→ µ(U) for any U ∈ R0

µ ∩R0
µ.

In a similar way, one can prove that (vi) implies statement (vi) of the
characterization theorem.

To conclude the section we supply a result which generalizes Theorem 3.3
in Girotto and Holzer [7] (recall Remark 2.2(ii), Remark 3.2(i) and Theorem
A.11).

Theorem 3.8. Let C = Uc. Moreover, given µ and a net {µd ; d ∈ D}, let
µ, µd be additive set functions for any d ∈ D. Then, the following statements
are equivalent:
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(i) µd
w→ µ;

(ii) ‖µd‖ → ‖µ‖ and lim supd∈D µd(C) ≤ µ(C) for all C ∈ Rµ;

(iii) ‖µd‖ → ‖µ‖ and lim infd∈D µd(U) ≥ µ(U) for all U ∈ Rµ;

(iv) µd(F )→ µ(F ) for all F ∈ R0
µ;

(v) µd(U)→ µ(U) for all U ∈ R0
µ;

(vi) µd(C)→ µ(C) for all C ∈ R0
µ.

Proof. We start proving that (ii) implies statement (iii) of the previous
theorem. Let U ∈ Rµ. Then, by the additivity assumption and Remark
2.2(i), we have U c ∈ Rµ ∩ C (µ = µ !) and hence

lim inf
d∈D

µd(U) = lim inf
d∈D

(‖µd‖ − µd(U c))

≥ lim inf
d∈D

‖µd‖ − lim sup
d∈D

µd(U c) = ‖µ‖ − lim sup
d∈D

µd(U c)

≥‖µ‖ − µ(U c) = µ(U),

where the second equality follows from ‖µd‖ → ‖µ‖.
In a similar way, one can verify that (iii) implies statement (iii) of the

previous theorem.

4 The Lévy-Topology and a Prokhorov Type Theorem

In order to use the machinery of general topology to investigate the properties
of weak convergence, in the following definition, suggested by the characteri-
zation theorem, we introduce the Lévy-topology.

Definition 4.1. The Lévy-topology on the set bm(Ω,F) of bounded monotone
set functions on F is the topology such that, for any µ, the basic neighborhoods
of µ are the sets of the form:

Nε,F1,...,Fk(µ) = {µ′ : |µ′(Fi)−µ(Fi)| < ε, |µ′(Fi)−µ(Fi)| < ε (i = 1, . . . , k)},

where ε > 0 and F1, . . . , Fk are elements of R0
µ ∩R0

µ.

The next result easily follows from the characterization theorem and links
weak convergence of bounded monotone set functions and convergence under
the Lévy-topology.
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Theorem 4.2. Given µ and a net {µd ; d ∈ D}, the following statements are
equivalent:

(i) µd
w→ µ;

(ii) µd converges to µ under the Lévy-topology.

In the sequel, we call bounded any set or any net which is in the ball
bm(≤r)(Ω,F) = {µ : ‖µ‖ ≤ r} for some real number r. Moreover, we call
surface of bm(≤r)(Ω,F) the set bm(r)(Ω,F) = {µ : ‖µ‖ = r}. The following
theorem assures that any bounded set of monotone set functions is relatively
compact.

Theorem 4.3. Any bounded net in bm(Ω,F) has a subnet pointwise conver-
gent (and hence weakly convergent) to a bounded monotone set function.

Proof. Let {µd ; d ∈ D} be a net in bm(≤r)(Ω,F) ⊂ [0, r]F = X. Since, by
Tychonoff Theorem, the set X is a compact space w.r.t. the product topology,
there are a subnet {µd′ ; d′ ∈ D′ ⊂ D} and a set function ν ∈ X such that
ν(F ) = limd′∈D′ µd′(F ) for any F . Consequently, ν ∈ bm(Ω,F) and

ν(F ) = ν(Ω)− ν(F c) = lim
d′∈D′

µd′(Ω)− lim
d′∈D′

µd′(F c)

= lim
d′∈D′

[µd′(Ω)− µd′(F c)] = lim
d′∈D′

µd′(F )

for any F . Therefore, by the characterization theorem 3.4, we get µd′
w→ ν.

The following result assures that the Lévy-topology is locally convex and
σ-compact.

Theorem 4.4. For any r > 0, the sets bm(≤r)(Ω,F) and bm(r)(Ω,F) are
compact. Therefore, the topological space bm(Ω,F) is locally convex and σ-
compact.

Proof. Since any basic neighborhood of the Lévy-topology is a convex set,
the topological space bm(Ω,F) is locally convex.

Now, given r > 0, let {µd ; d ∈ D} be a net in bm(≤r)(Ω,F). Then, by
Theorem 4.3, there is a subnet {µd′ ; d′ ∈ D′ ⊂ D} which is pointwise conver-
gent to some µ. Therefore, ‖µd′‖ = µd′(Ω) → µ(Ω) = ‖µ‖. Since ‖µd′‖ ≤ r
for any d′ ∈ D′, we have ‖µ‖ ≤ r. Consequently, the set bm(≤r)(Ω,F) is
compact (by similar arguments, the same holds for bm(r)(Ω,F)). This assures
the σ-compactness of bm(Ω,F).

Theorem 4.5. Let Ω ∈ C. Then bm(≤r)(Ω,F) and bm(r)(Ω,F) are closed
for any real r > 0. Therefore, the topological space bm(Ω,F) is σ-compact,
locally convex and locally compact.
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Proof. Since Ω ∈ C, we have Ω ∈ R0
µ ∩ R0

µ for all µ. Given r > 0,
first we verify that bm(≤r)(Ω,F) is closed. Let {µd ; d ∈ D} be a net in
bm(≤r)(Ω,F) such that µd

w→ µ. Then, by the characterization theorem,
‖µd‖ = µd(Ω) → µ(Ω) = ‖µ‖ and hence ‖µ‖ ≤ r, so that µ ∈ bm(≤r)(Ω,F).
Therefore, bm(≤r)(Ω,F) is closed (by similar arguments, the same holds for
bm(r)(Ω,F)). In order to verify the local compactness, given µ0, choose ε > 0
and consider the basic neighborhood Nε,Ω(µ0) = {µ : |‖µ‖ − ‖µ0‖| < ε}.
Then, Nε,Ω(µ0) ⊂ bm(≤‖µ0‖+ε)(Ω,F) and hence, by the previous part of the
proof and Theorem 4.3, the closure of Nε,Ω(µ0) is compact. Keeping the
previous theorem in mind, completes the proof.

In order to get an extension of Prokhoroff Theorem in the context of
bounded monotone set functions, we introduce the notion of tightness w.r.t. a
fixed non empty subset K of C (the elements of K will be denoted by K, with
or without indices).

Definition 4.6. (i) A bounded monotone set function µ is called:

• K-tight iff for any ε > 0 there is K such that ‖µ‖ − µ(K) = µ(Kc) < ε;

• strongly K-tight iff for any ε > 0 there is K ∈ R0
µ ∩ R0

µ such that
µ(Kc) < ε.

We denote by tm(Ω,F ,K) the set of K-tight bounded monotone set functions.
(ii) A subset S of tm(Ω,F ,K) is called uniformly K-tight iff for any ε > 0

there is K such that sup{µ(Kc) : µ ∈ S} < ε.

Theorem 4.7. (Prokhoroff type theorem) The following statements hold:

(i) Let S be a subset of bm(Ω,F) closed under pointwise convergence. Then,
any bounded uniformly K-tight subset S0 of S is relatively compact in the
subspace S ∩ tm(Ω,F ,K) (the direct form);

(ii) Let Ω ∈ C. Moreover let (K,⊃) be a directed set. Then, any compact set
of strongly K-tight bounded monotone set functions is uniformly K-tight
(the converse form).

Proof. (i) Let S0 be a bounded uniformly K-tight subset of S. Given a net
{µd ; d ∈ D} in S0, by Theorem 4.3, there is a subnet {µd′ ; d′ ∈ D′ ⊂ D}
which is pointwise convergent to some µ. Since S is closed under pointwise
convergence, we have µ ∈ S. In order to verify that µ ∈ tm(Ω,F ,K), note
that ‖µd′‖ → ‖µ‖. Consequently, given ε > 0, there is d1 ∈ D′ such that
|‖µd′‖ − ‖µ‖| < ε for any d′ ≥D d1. Moreover, since S0 is uniformly K-tight,
there is K such that ‖µd′‖ − µd′(K) < ε for any d′ ∈ D′. Finally, there
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is d2 ∈ D′ such that |µd′(K) − µ(K)| < ε for any d′ ≥D d2. Then, given
d′ ≥D d1 ∨ d2, we have

‖µ‖ − µ(K) ≤ |‖µ‖ − ‖µd′‖|+ |‖µd′‖ − µd′(K)|+ |µd′(K)− µ(K)| < 3 ε.

Hence, µ ∈ tm(Ω,F ,K). This completes the proof of the direct half of the
theorem.

(ii) Since Ω ∈ C, we have Ω ∈ R0
µ ∩ R0

µ for all µ. Let S be a compact set
of strongly K-tight bounded monotone set functions. Let ε > 0. Then, for
any µ ∈ S, there is Kµ ∈ R0

µ ∩ R0
µ such that ‖µ‖ − µ(Kµ) < ε. Now, for any

µ ∈ S, consider the neighborhood:

Nε,Ω,Kµ(µ) = {µ′ : |‖µ′‖ − ‖µ‖| < ε, |µ′(Kµ)− µ(Kµ)| < ε,

|µ′(Kµ)− µ(Kµ)| < ε}.

The family of these neighborhoods is an open cover of S and hence there is
a finite subcover Nε,Ω,Kµi

(µi) (i = 1, . . . , n). Since (K,⊃) is a directed set,
there is K ⊃

⋃n
i=1Kµi . Now, given µ ∈ S, there is i ∈ {1, . . . , n} such that

µ ∈ Nε,Ω,Kµi
(µi) and hence we have

‖µ‖ − µ(K) ≤ ‖µ‖ − µ(Kµi)
≤ |‖µ‖ − ‖µi‖|+ |‖µi‖ − µi(Kµi)|+ |µi(Kµi)− µ(Kµi)|
< 3 ε.

Remark 4.8. (i) With reference to the direct form of Prokhorov type theorem,
if the induced Lévy-topology on the subspace S is metrizable, then we can
assume S to be closed under pointwise convergence of sequences.

(ii) Let Ω be a separable metric space, F the Borel σ-field and C, U , K
the families of closed, open and compact sets, respectively. Moreover, let
S = ca+(Ω,F) the subset of positive measures on F . Then, by metrization
theorem 3.1 in Varadarajan [10], the induced Lévy-topology on the subspace
S is metrizable as well. Moreover, by Vitali-Hahn-Saks theorem, S is closed
under pointwise convergence of sequences. Consequently, by (i) and Theorem
4.7(i), we get the well known direct form of Prokhorov theorem.

(iii) Let F be a field on S = ba+(Ω,F) the subset of masses (i.e. posi-
tive bounded charges) on F . Since S is closed under pointwise convergence,
Theorem 4.7(i) assures that any bounded uniformly K-tight set of masses is
relatively compact in the subspace of tight masses.

(iv) Let Ω be a locally compact normal space and C, U , K the families of
closed, open and compact closed sets, respectively. Then, any compact set of
K-tight bounded monotone set functions is uniformly K-tight. To see this, by
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the converse form of Prokhorov type theorem, it is enough to prove that any
K-tight µ is strongly K-tight. Let µ be K-tight. Then, given ε > 0, there is
K ∈ C such that µ(Kc) < ε. Since Ω is locally compact, by Theorem 3.3.2 in

Engelking [5], there is K ′ ∈ C such that K ⊂
o

K ′. Then, by Lemma 3.3, there

is C ∈ R0
µ ∩ R0

µ such that K ⊂ C ⊂
o

K ′. Consequently, Cc ⊂ Kc and hence
µ(Cc) ≤ µ(Kc) < ε; moreover, since C is a closed subset of the compact K ′,
we have C ∈ K.

A The Choquet Integral

We supply here some properties of the Choquet integral which are instrumental
in proving some results of the paper. We recall that one can find an extensive
treatment of this integral in Denneberg [4] (called there asymmetric integral).
Now, we start with the following definition.

Definition A.1. A real map f on Ω is said to be Choquet-measurable (w.r.t.
F) iff {f+ > t}, {f− > t} ∈ F for any real t ≥ 0. Moreover, f is called a
simple function if it is Choquet-measurable and its image is finite.

Note that the sum of Choquet-measurable maps may fail to be Choquet-
measurable, so that the sum of simple functions is not necessarily simple. Now,
we give two elementary characterizations of simple functions.

Remark A.2. (i) A non negative real map f is a simple function iff f =∑n
i=1 ci1Fi with c1, . . . , cn ≥ 0 and F1 ⊃ · · · ⊃ Fn.
(ii) Let F be a field. Then any real map f is a simple function iff f =∑n
i=1 ci1Fi with Fi ∩ Fj = ∅, for any i, j such that i 6= j. Consequently, the

set of simple functions is a linear space.

Now, we come to the notion of Choquet integral. In the sequel the letter
f , with or without indices, always denotes a Choquet-measurable map.

Definition A.3. Given f and µ, we denote by
∫
f dµ the Choquet integral of

f w.r.t. µ, defined as:∫
f dµ =

{∫∞
0
µ({f > t}) dt, if f ≥ 0∫

f+dµ−
∫
f− dµ, otherwise,

whenever the improper Riemann integrals
∫
f+ dµ and

∫
f− dµ are not both

∞. Moreover, the map f is said to be (Choquet) µ-integrable iff
∫
f dµ is finite

(i.e.
∫
f+ dµ and

∫
f− dµ are both finite).
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Note that the Choquet integral always exists whenever f is bounded below
or bounded above; moreover, f is µ-integrable whenever f is bounded. Now,
we supply some elementary general properties of the Choquet integral (see
Proposition 5.1 in Denneberg [4]).

Theorem A.4. The following statements hold:

(i)
∫

1F dµ = µ(F );

(ii)
∫
kf dµ = k

∫
f dµ, for any real k ≥ 0 (positive homogeneity);

(iii)
∫

(−f) dµ = −
∫
f dµ (asymmetry);

(iv)
∫

(f + k) dµ =
∫
f dµ+ k‖µ‖, for any real k;

(v)
∫
f1 dµ ≤

∫
f2 dµ, whenever f1 ≤ f2 (monotonicity);

(vi)
∫
f dµ =

∫
f dν, for any monotone extension ν of µ,

whenever any one of the terms above considered makes sense.

The previous theorem points out that the Choquet integral is positively
homogeneous. Unlike S-integral and Lebesgue integral, moreover, the Choquet
integral is not additive, as the following example shows.

Example A.5. Given a proper subset A of Ω, let f1 = 1A, f2 = 1Ac and F
be the smallest field on Ω including A. Moreover, consider µ such that µ(A) =
µ(Ac) = 1/3 and ‖µ‖ = 1. Then

∫
(f1 + f2) dµ = 1 6= 2/3 =

∫
f1 dµ+

∫
f2 dµ.

In order to give a sufficient condition for the additivity (see Proposition
5.1(vi) in Denneberg [4]), we recall the notion of comonotonicity which intro-
duces an equivalence relation on the set of real maps on Ω.

Definition A.6. Two real maps g1 and g2 on Ω are said to be comonotonic
iff

[g1(ω)− g1(ω′)][g2(ω)− g2(ω′)] ≥ 0

for any ω, ω′ ∈ Ω.

Remark A.7. (i) Let g1, . . . , gn be pairwise comonotonic and let c1, . . . , cn,
c′1, . . . , c

′
n ≥ 0. Then

∑n
i=1 cigi and

∑n
i=1 c

′
igi are comonotonic as well; i.e.,

any equivalence class of comonotonic maps is a cone in the space of real maps
on Ω.

(ii) Let F1 ⊂ F2. Then 1F1 and 1F2 are comonotonic.
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Theorem A.8 (Comonotonic Additivity). Let f1, . . . , fn be pairwise comonotonic.
Then ∫

(f1 + · · ·+ fn) dµ =
∫
f1 dµ+ · · ·+

∫
fn dµ,

whenever any one of the terms above considered makes sense.

Consequently, the Choquet integral is additive in each equivalence class of
integrable comonotonic maps and, in any case, positively homogeneous.

Remark A.9. Let f ≥ 0 be a simple function, i.e. f =
∑n
i=1 ci1Fi with

c1, . . . , cn ≥ 0 and F1 ⊃ · · · ⊃ Fn (see Remark A.2(i)). Then, by Remark A.7,
Theorem A.4(i),(ii) and Theorem A.8, we have

∫
f dµ =

∑n
i=1 ciµ(Fi) for any

µ.

The following result (easy consequence of the Additivity Theorem, stated
in Denneberg [4]) gives a sufficient condition assuring the additivity of the
Choquet integral when µ is additive.

Lemma A.10. Let F = 2Ω and µ additive. Then∫
(f1 + f2) dµ =

∫
f1dµ+

∫
f2 dµ,

for any f1, f2 bounded.

We conclude this appendix by showing that, in the setting of additive set
functions on a field, Choquet integral and S-integral of a bounded map f are
equal. Therefore, the Choquet integral w.r.t. a mass on a field is a real linear
functional on the set of bounded Choquet-measurable maps.

Theorem A.11. Let F be a field and µ additive. Then any bounded map f
is S-integrable and ∫

f dµ = S
∫
f dµ.

Proof. Let f be bounded. Assume first f ≥ 0. The proof is carried out in
the following two steps.
10. Let f be a simple function. Since F is a field, by Remark A.2(ii), we have
f = c11F1 + · · ·+ cn1Fn , where 0 = c0 < c1 < · · · < cn and Fi ∩Fj = ∅ for any
i, j such that i 6= j. On noting that f =

∑n
i=1(ci − ci−1)1∪nj=iFj , by Remark
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A.9, we get∫
f dµ =

n∑
i=1

(ci − ci−1)µ(
n⋃
j=i

Fj) =
n∑
i=1

ci

µ(
n⋃
j=i

Fj)− µ(
n⋃

j=i+1

Fj)


=

n∑
i=1

ciµ(Fi) = S
∫
f dµ.

20. Let f be not necessarily simple. We claim that f is the uniform limit of an
increasing sequence of simple functions. Let k = sup f . Given n ≥ 1, consider
the simple function fn defined as:

fn(ω) =

{
ki
2n if ω ∈ {f > ki

2n } ∩ {f >
k(i+1)

2n }
c (i = 1, . . . , 2n − 1)

0 if ω ∈ {f > k
2n }

c

for all ω ∈ Ω. Plainly, the increasing sequence (fn) converges to f uniformly.
This proves the claim.

Therefore, f is T1-measurable and hence, by Theorem 4.5.8 in Bhaskara
Rao and Bhaskara Rao [2], the map f is S-integrable.

Now, let ε > 0. Then, there is n′ such that 0 ≤ f(ω) − fn(ω) < ε for any
n ≥ n′ and ω ∈ Ω. Hence, we get∣∣∣∣S∫ f dµ− S

∫
fn dµ

∣∣∣∣ ≤ S
∫
|f − fn| dµ ≤ S

∫
ε dµ = ε‖µ‖,

for any n ≥ n′. Since ε is arbitrarily chosen, we have

S
∫
fn dµ→ S

∫
f dµ. (2)

In order to verify that
∫
fn dµ →

∫
f dµ, we consider a mass ν on 2Ω,

extension of µ (see Corollary 3.3.4 in Bhaskara Rao and Bhaskara Rao [2]).
Now, let ε > 0. Then, there is n′ such that 0 ≤ f(ω) − fn(ω) < ε for any
n ≥ n′ and ω ∈ Ω. Therefore, keeping in mind Theorem A.4, Lemma A.7 and
ν = ν (ν is additive!), we have∣∣∣∣∫ f dµ−

∫
fn dµ

∣∣∣∣ =
∫
f dµ−

∫
fn dµ =

∫
f dν −

∫
fn dν

=
∫
f dν +

∫
(−fn) dν =

∫
f dν +

∫
(−fn) dν

=
∫

(f − fn) dν ≤
∫
ε dν = ε‖ν‖,
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for any n ≥ n′. Since ε is arbitrarily chosen, we have
∫
fn dµ →

∫
f dµ so

that, by 10 and (2), we get
∫
f dµ = S

∫
f dµ.

Finally, let f be not necessarily positive. Then, by 20, we have∫
f dµ =

∫
f+ dµ−

∫
f− dµ =

∫
f+ dµ−

∫
f− dµ

= S
∫
f+ dµ− S

∫
f− dµ = S

∫
(f+ − f−) dµ = S

∫
f dµ.
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