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THE HENSTOCK INTEGRAL AND THE
BLACK-SCHOLES THEORY OF
DERIVATIVE ASSET PRICING

Abstract

The classical Black-Scholes-Merton method for pricing European call
options uses the Itô calculus to model the processes involved. We show
how to model stochastic process using Henstock integrands instead of
Itô differentials (or stochastic integrals), and we show how to derive the
Black-Scholes partial differential equation and pricing formulae using
elementary methods.

1 Introduction

The Black-Scholes model [1] assumes that the price of an economic asset, as a
random function of time, is a geometric Brownian motion. This implies that
if the value xj−1 occurs at time tj−1, the probability of the outcome that, at
time tj the process takes a value xj between uj and vj , is related to∫ vj

uj

1
A

1
xj

exp
[
− (lnxj − lnxj−1)2

2σ2(tj − tj−1)

]
dxj

where A is a normalizing factor
(
2πσ2(tj − tj−1)

) 1
2 .

When pricing a derivative asset, such as a European call option (see [2],
and (4) below), whose value depends on the movements in the value of an
underlying asset, the probabilities involved turn out to have the form∫ vj

uj

1
A

1
xj

exp

[
−

({
lnxj − lnxj−1 − (r − 1

2σ
2)(tj − tj−1)

}2

2σ2(tj − tj−1)

)
(tj − tj−1)

]
dxj ,
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where r is the (always positive) risk-free interest rate.

From this, the probability of the outcome that, at times tj , the underlying
asset price process x takes values xj in the range [uj , vj [ for 1 ≤ j ≤ n will be
given by integrating this from uj to vj , j = 1, 2, . . . , n, giving an integral of
the form ∫ v1

u1

· · ·
∫ vn

un

{· · · exp[· · · ]} dx1 · · · dxn.

The pricing theory that has developed over the past twenty five years or so
([4], [5]) requires that the simple sets of outcomes described above be ex-
tended, using the Kolmogorov Theorem, to a sigma-algebra of measurable
sets in an infinite-dimensional sample space whose representative elements are
continuous paths, that the processes involved be represented by appropriate
stochastic differential equations, that a suitable measure for the sample space
be found by means of the Girsanov and Radon-Nikodym Theorems, and that
the derivative asset valuation be then determined by means of an expectation
using Lebesgue integration.

However, it is well known (see, for instance, [2]) that the so-called discrete
time model of derivative valuation, in which only a finite number of times tj
are considered, is much simpler than the continuous time model in which every
possible time t is allowed.

If we take, for instance, a European call option, whose dependence on the
underlying asset value has a very simple form, and if we obtain a statistical
expectation by integrating this, in n dimensions only, with respect to the
probabilities defined by the n-dimensional integrals above, we get a result
similar to that which is obtained by the Lebesgue integral-based continuous-
time model. See, for example, [2], page 91, and (4) below.

Furthermore, if take the integrand involved in this expectation and perform
various partial differentiations on it, we obtain an equation similar to the
classical Black-Scholes partial differential equation (see equation (5) below,
also [2], page 95).

These simplistic observations suggest there may be easier ways to formulate
a continuous time model than those currently in use, and this is what motivates
the following analysis which is guided by the methods and concepts of Henstock
integration. The naive arguments described above are developed in this paper
and the results are a generalization of the Lebesgue integral-based continuous-
time Black-Scholes model.
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2 Preliminaries

Let R+ denote the positive real numbers, and let R+ denote the positive real
numbers with 0 and +∞ adjoined. Let x(t) be zero, or a positive real number,
or +∞ for each t ∈]t0, T ], and let x denote an element of R]t0,T ]

+ . Let tj ∈]t0, T ]
for j = 1, . . . , n. Let N denote a finite set of dimensions {t1, . . . , tn}. It is
generally convenient to include T in N , so tn = T . Let Ij = I(tj) denote an
interval, in the tj dimension of R]t0,T ]

+ , of the form ]0, vj [ or [uj , vj [ or [uj ,∞[,
where uj and vj are finite real numbers. Let |Ij | denote 0, or vj − uj , or 0,
respectively. Given x(t) and I(t), respectively a point of R+ and an interval
of R+, we say that x(t) and I(t) are attached (or associated) if, respectively,

x(t) = 0 and I(t) =]0, v[, or
x(t) = u or v and I(t) = [u, v[, or
x(t) = +∞ and I(t) = [u,∞[.

Let I(N) denote I1× · · · × In, and let |I(N)| denote
∏n
j=1 |Ij |. Given x(N) ∈

RN+ and I(N) an interval of RN
+ , we say that x(N) and I(N) are attached (or

associated) if xj and Ij are attached for each tj ∈ N . Let I = I[N ] denote

{x ∈ R]t0,T ]
+ : xj ∈ Ij , tj ∈ N};

so I or I[N ] is the product of the finite-dimensional I(N) times uncountably
many copies of R+, one copy for each t ∈]t0, T ] \ N . Let |I[N ]| := |I(N)|.
Given x ∈ R]t0,T ]

+ and I[N ] an interval of R]t0,T ]
+ we say that x, N and I[N ]

are attached (or associated) if x(N) and I(N) are attached in RN+ .
This completes the basic definitions needed for a sample space with ge-

ometric Brownian motion. And the Henstock integral needed to compute
statistical expectation of random variables in the space can now be defined
by the method described in [8]. Some problems of alternative definitions of
such integrals are discussed in a forthcoming article to be entitled, “Equiva-
lent forms of the Black-Scholes integrand”. This deals especially with correct
ways of formulating Henstock gauges for Riemann sums in infinite dimensional
domains.

3 Geometric Brownian Motion

Let w denote an observable (or random variable) which is normally distributed
with mean µ and standard deviation σ. Then z = expw is said to be lognor-
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mally distributed, with probability density function

f(z) =
1√
2π

1
σz

exp
(
− (ln z − µ)2

2σ2

)
,

variance e2µ+σ2
(
eσ

2 − 1
)
, and mean value (or expectation)

E(z) :=
∫ ∞

0

zf(z)dz = exp
(
µ+

1
2
σ2

)
.

For details of the evaluation of these integrals, see, for example, [6], pages 23
to 24.

Let the process x(t), t0 < t ≤ T , be a geometric Brownian motion (or, in
other words, an exponential Wiener process). This means that y(t) = lnx(t)
is a Brownian motion (or Wiener process), [8].

So if yj−1 is determined, then yj − yj−1 is normally distributed with mean
value µ(tj)(tj − tj−1) and variance σ2(tj − tj−1). The Brownian motion y(t)
is said to have drift rate µ(t) and variance rate σ2. In the usual notation for
conditional expectation, yj is normally distributed with mean yj−1+µ(tj)(tj−
tj−1);

E(yj − yj−1|yj−1) = µ(tj)(tj − tj−1), E(yj |yj−1) = yj−1 + µ(tj)(tj − tj−1).

By these properties of Brownian motion, and by the remarks concerning the
lognormal distribution above,

E

(
xj
xj−1

∣∣∣∣xj−1

)
= exp

[
µ(tj)(tj − tj−1) +

1
2
σ2(tj − tj−1)

]
.

Therefore if y has a drift rate of µ(t)− 1
2σ

2, then

E

(
xj
xj−1

∣∣∣∣xj−1

)
= exp (µ(tj)(tj − tj−1)) , or E(xj |xj−1) = xj−1e

µ(tj)(tj−tj−1),

and we say that x has a growth rate of µ(t).
If σ2 is the variance rate of the Brownian motion y = lnx, then σ is the

volatility of the geometric Brownian motion x. So if the Brownian motion
y = lnx has drift rate µ, then the geometric Brownian motion x = ey has
growth rate µ+ 1

2σ
2.

As we can see, all of these features of geometric Brownian motion are
derived from elementary properties of the normal and lognormal probabil-
ity density functions. Throughout the remainder of this paper, whenever we
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invoke the properties of Brownian motion or of geometric Brownian motion
(including those cases where the probability is taken to be concentrated on
the subset of x ∈ R]τ,T ] which are continuous) we assume σ(t) to be constant
for all t. In a future publication it will be shown how this condition may be
relaxed.

With σ(t) ∈ R+ defined for t ∈]t0, T ], let σj denote σ(tj). Consider the
following expression.

n∏
j=1

[
exp

{
− 1

2σ2
j

(lnxj − lnxj−1)2

tj − tj−1

}] [
2πσ2

j (tj − tj−1)
]− 1

2 . (1)

Denote this expression by g(x(N)). For a given N , this notation implies
g(x(N)) is a function defined in a finite-dimensional space RN+ . Let

g(x(N), I(N)) := g(x(N))
n∏
j=1

|Ij |
xj

, G(I(N)) :=
∫
I(N)

g(x(N), J(N)).

The integral is a finite-dimensional Henstock integral found by taking Riemann
sums (E)

∑
g(x(N), J(N)) in which I(N) is partitioned by sub-intervals J(N).

So if I(N) =
∏n
j=1[uj , vj [, then G(I(N)) is

∫ v1

u1

· · ·
∫ vn

un

n∏
j=1

[
exp

{
− (lnxj − lnxj−1)2

2σ2
j (tj − tj−1)

}][
2πσ2

j (tj − tj−1)
]− 1

2 dx1

x1
· · · dxn

xn
.

In the infinite-dimensional space R]t0,T ]
+ , if x, N , I[N ] are associated, let

g(x,N, I) := g(x(N), I(N)), G(I[N ]) := G(I(N)).

Sometimes we wish to integrate G(I[N ]) in R]t0,T ]
+ . Then we require the inte-

grand to be defined for each associated x, N , I. In this case we may take

G(x,N, I) := G(I[N ]).

4 Properties of Geometric Brownian Motion

Much of the following flows from the theory of Brownian motion, expressed in
terms of Henstock integration instead of Lebesgue integration, as it has been
presented in [7] and [8], but with lnx(t) in place of x(t), and with R]t0,T ]

+ in
place of R]t0,T ].
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Proposition 1. g(x,N, I) is variationally equivalent to G(x,N, I).

Proof. This follows from [7], page 54, Proposition 37, if we replace x(t) by
ex(t) in (1) above.

As in the construction of Brownian motion (see [8] and [9]), we can define
a so-called “continuous modification” of G so that, in effect, R]t0,T ]

+ can be
replaced as the sample space by the subset C of continuous x in R]t0,T ]

+ . (If

x ∈ R]t0,T ]

+ \R]t0,T ]
+ , then x 6∈ C.) To do this, use the arguments of [7], Theorem

5, and [9], Section 6, but replacing x(t) by lnx(t) in those arguments. If we
denote the continuous modification of G by Q, then

Q(x,N, I) =

{
G(I[N ]) if x ∈ C,
0 if x ∈ R]t0,T ]

+ \ C.

In this case we make use of the fact that∫
R]t0,T ]

+

1CN∩I[N ](x)G(J [M ]) = G(I[N ]),

which follows from [7] page 52, Proposition 36, and page 61, Proposition 46,
making the appropriate change of variable. CN is the set of x which are
continuous at each t ∈ N . (In the integral, in effect the infinite-dimensional
cylindrical interval I[N ] is partitioned by infinite-dimensional cylindrical in-
tervals J [M ] with M ⊇ N .)

Q(x,N, I) is the probability that the sample path x of a geometric Brow-
nian motion satisfies x(t) ∈ I(t) for t ∈ N .

Let M = {τ1, . . . , τm} ⊂]t0, T ] be fixed and suppose a functional h satisfies
h(x) = h(x(M)) for all x. Then h is called a cylinder functional. h depends
only on the values taken by x at τ1, . . . , τm, and we can treat it as a function
of x(M) ∈ RM or as a function of x ∈ R]t0,T ]

+ .

Proposition 2. If h, considered as a function of x(M) ∈ RM , is almost
everywhere continuous, and if h(x(M))G(I(M)) is Henstock integrable in RM ,
then h(x)G(I[N ]) is Henstock integrable in R]t0,T ]

+ , and∫
R]t0,T ]

+

h(x)G(I[N ]) =
∫

RM

h(x(M))G(I(M)).

Proof. Follows from [7], page 56, Proposition 38, replacing x(t) by lnx(t).
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Let µ(t) be real-valued for t ∈]t0, T ], and write µj for µ(tj). Consider the
expressions

n∏
j=1

[
exp

{
− 1

2σ2
j

(
ln xj−{ln xj−1+(µj− 1

2σ
2
j )(tj−tj−1)}

tj−tj−1

)2

(tj − tj−1)

}]
[
2πσ2

j (tj − tj−1)
] 1

2
, (2)

n∏
j=1

exp

{
1
σ2
j

(
µj −

1
2
σ2
j

)
(lnxj − lnxj−1)− 1

2σ2
j

(
µj −

1
2
σ2
j

)2

(tj − tj−1)

}
.

(3)
Denote (3) by V (x,N ;µ, σ), which we will write as V , V (x,N) or V (µ, σ), as
and when it suits us; and observe that (2) is the same as (1) multiplied by
V (x,N ;µ, σ). Denote (2) by gµσ(x(N)). Thus

gµσ(x(N)) = g(x(N))V (x,N ;µ, σ).

Let

gµσ(x(N), I(N)) := gµσ(x(N))
n∏
j=1

|Ij |
xj

,

gµσ(x,N, I) := gµσ(x(N), I(N)),

Gµσ(I(N)) :=
∫
I(N)

gµσ(x(N), J(N)),

Gµσ(I[N ]) := Gµσ(I(N)),
Gµσ(x,N, I) := Gµσ(I[N ]).

As was the case for G above, a continuous modification Qµσ of Gµσ can be
obtained by defining

Qµσ(I[N ]) :=
∫
I[N ]

1CN
(x)Gµσ(x,M, J).

Details of this argument are in [8], and in [9], section 6.
Changes of variable give an integrand like that of [7], page 52, Proposition

36, so both Gµσ and Qµσ are probabilities. In the Henstock integral approach
to the analysis of Brownian motion and geometric Brownian motion, we use
probability functions but not probability spaces. In other words, while we
require appropriate probability functions for cylindrical intervals of the form
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I[N ] (which are, of course, measurable subsets of the sample space), the con-
struction of the model does not need any consideration of the probabilities of
subsets which are measurable in the classical Lebesgue, Borel or Baire senses.

This is a key point of the analysis, and, because of the focus on finite-
dimensional objects, it produces a considerable simplification in the represen-
tation and analysis of stochastic processes, and this follows through into the
theory of derivative asset pricing.

The probabilities of outcomes which are arbitrary measurable subsets of
the sample space are obtained as follows. If A is a subset of the sample space
and if

∫
A
Q(I) exists, we take this to be Q(A), the probability that x ∈ A. If A

is a measurable set in the sense of Kolmogorov-type probability measures P ,
then Theorem 4 of [8] implies that the probability

∫
A
P (I) of A (in the sense of

Henstock) exists and the two are equal. This in turn implies that the pricing
model we are developing is a generalization of the Lebesgue integral-based
model.

Qµσ describes a geometric Brownian motion with growth rate µ and volatil-
ity σ, and Qµσ(I[N ]) gives the probability that a sample path x of such a
process satisfies x(t) ∈ I[N ] for t ∈ N .

Thus, where the classical Black-Scholes theory uses stochastic differential
equations or Itô differentials [4] to specify and analyze stochastic processes,
to achieve the same purpose we use the probability functions Qµσ defined on
cylindrical intervals, or Henstock differentials, as we may call them.

5 Risk-Neutral Valuation

Suppose r(t) is real for t ∈]t0, T ]. In financial theory, r usually denotes the
risk-free interest rate, and is non-negative. If a geometric Brownian motion
is given by (2) above, with volatility σ and growth rate µ, we can construct
probabilities on the sample space C so that the resulting process has the same
volatility σ but a different growth rate r, so x grows at the risk-free rate. The
appropriate probabilities are Qrσ(x,N, I), so that expression (2) above has µj
replaced by rj . This is the change of measure that is required for risk-neutral
valuation [2], and in this theory it is accomplished by using the elementary
description of probability distributions.

Quite simply, using the Henstock integral model of stochastic processes,
with cylindrical intervals replacing the measurable sets of the classical Itô
model, we make the transition to the so-called risk-neutral world using an
elementary argument involving the probability density function of a normal
distribution, and we do not require the machinery of Itô calculus, Girsanov
Theorem or Radon-Nikodym Theorem.
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All of the key points are covered at this stage, and the remainder of the dis-
cussion is given over to demonstrating the details of the Black-Scholes partial
differential equation and pricing formula for a European call option.

Proposition 3. gµσ(x,N, I) is variationally equivalent to Gµσ(x,N, I).

Proof. Follows from [7], page 54, Proposition 37, with the appropriate change
of variable.

We now define a form of the kernel which is needed in the proof of the
Black-Scholes partial differential equation (5) below. Let

g∗(x(N)) :=
n∏
j=2

[
exp

{
− 1

2σ2
j

(lnxj − lnxj−1)2

tj − tj−1

}][
2πσ2

j (tj − tj−1)
]− 1

2 ,

which is like (1) above except that the product runs from j = 2 instead of
j = 1, and let

g∗(x(N), I(N)) := g∗(x(N))
n∏
j=1

|Ij |
xj

.

Following the pattern of notation that we have established, let

G∗(I(N)) :=
∫
I(N)

g∗(x(N), J(N)), G∗(I[N ]) := G∗(I(N)),

and G∗(x,N, I) := G∗(I[N ]).

Proposition 4. If σ(t) is bounded as t→ t0, then G(x,N, I) and G∗(x,N, I)
are variationally equivalent.

Proof.

|G(x,N, I)−G∗(x,N, I)| =
∫ v1

u1

∫ v2

u2

· · ·
∫ vn

un

(a× b)dx1

x1

dx2

x2
· · · dxn

xn

where

a =
n∏
j=2

[
exp

{
− 1

2σ2
j

(lnxj − lnxj−1)2

tj − tj−1

}] [
2πσ2

j (tj − tj−1)
]− 1

2

and

b =
∣∣∣∣{exp

(
− 1

2σ2
1

(lnx1 − lnx0)2

t1 − t0

)
(2πσ2

1(t1 − t0))−
1
2 − 1

}∣∣∣∣ .
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With appropriate changes of variable, [7] Proposition 36 (page 52) and Propo-
sition 45 (page 61) imply that a gauge γ can be chosen so that, for any γ-fine
division Eγ of R]t0,T ]

+ ,

(Eγ)
∑
|G(x,N, I)−G∗(x,N, I)|

< 2
∫ η
−η

∣∣∣(exp
(
− 1

2σ2
1

(y1−y0)2
t1−t0

)) (
2πσ2

1(t1 − t0)
)− 1

2 − 1
∣∣∣ dy1,

where η = (t1 − t0)α with α < 1
2 . This in turn is less than

2× (2× (t1 − t0)α)×
[
exp

(
− 1

2σ2
1

(t1 − t0)2α−1

)(
2πσ2

1(t1 − t0)−
1
2

)
− 1
]
,

and the term in square brackets is bounded as t1 → t0. Thus γ can be chosen
so that (Eγ)

∑
|G(x,N, I) − G∗(x,N, I)| < ε for all divisions Eγ , giving the

result.

Proposition 5. If σ(t) is bounded as t → t0, then g(x,N, I) and g∗(x,N, I)
are variationally equivalent.

Proof. Follows from Propositions 1 and 4 above.

6 Black-Scholes Theory

The Black-Scholes model assumes that the underlying asset price process is
geometric Brownian with growth rate µ(t), volatility σ(t), and with sample
paths x in C. If the risk-free interest rate is given by r(t), t ∈]t0, T ], a risk-free
asset [2] such as a cash bond b, with initial value b(t0), will have a growth rate
r(t); so the value of the cash bond at time t is b(t) with b(t) = b(t0)e

R t
t0
r(s)ds

.
Generally the growth rate µ(t) of risky assets is greater than r(t), with the
difference µ(t)−r(t) being known as the risk premium. We have already noted,
in the previous section, how probability functions Qrσ can be constructed for
the sample space so that, subject to these probability distributions, the asset
process x(t) has a mean growth rate of r(t).

The discounted asset price process y(t) is defined as

y(t) = x(t)e−
R t

t0
r(s)ds

.

Given N and t ≤ T (t > t0), let N ′ denote N∩]t0, t], let I ′ = I[N ′], let x′

denote the projection of x into R]t0,T ]

+ , and let C ′ denote the set of continuous
x in R]t,T ]

+ . Let m = max{j : tj ≤ t, tj ∈ N}, and let R(N ′) denote

exp

 m∑
j=1

r(tj)(tj − tj−1)

 ;
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so R(N ′)−1 = exp
(
−
∑m
j=1 r(tj)(tj − tj−1)

)
.

If Gµσ(x,N, I) is integrable in R]t0,T ]
+ , then Fubini’s Theorem ([7], page 37,

Proposition 24) implies Gµσ(x′, N ′, I ′) is integrable in its domain.
For simplicity, omit the ′s in the following.

Proposition 6. If r(t) is continuous, if σ is constant and if Gµσ is inte-

grable in R]t0,t]
+ , then e

−
R t

t0
r(s) ds

Gµσ(x,N, I) is variationally equivalent to
R(N)−1Gµσ(x,N, I).

Proof. For each continuous x choose L(x) so that N ⊇ L(x) implies

|R(N)−1 − e−
R t

t0
r(s)ds| < ε×

(∫
R]t0,t]

+

Gµσ

)−1

.

Thus γ can be chosen so that, for all Eγ ,

|(Eγ)
∑

e
−

R t
t0
r(s)ds

Gµσ −R(N)−1Gµσ| < ε,

giving the result.

Let t0 ≤ τ1 < τ2 ≤ T . A process z(t) is a martingale relative to the
probabilities P (in other words z(t) is a P -martingale) if z(τ1) =

∫
C′
z(τ2)P (I ′)

for every choice of τ1 and τ2, where the ′ now denotes projection into the
dimensions ]τ1, τ2].

Proposition 7. If σ(t) is continuous, then y(t) is a Qrσ-martingale.

Proof. It is sufficient to show that
∫
C′
y(t)Qrσ(I ′) = y(t0) = x(t0). Use the

argument of [7], page 52, Proposition 36, along with the fact that
∫∞
−∞ ue−u

2
du

equals zero.

The following expressions are needed in the proof of the Black-Scholes
partial differential equation below (5). Define g∗µσ(x(N)) to be

n∏
j=2

[
exp

{
− 1

2σ2
j

(
ln xj−ln xj−1
tj−tj−1

− (µj − 1
2σ

2
j )
)2
}

(tj − tj−1)
]

[
2πσ2

j (tj − tj−1)
] 1

2
;

that is, expression (2) above with the product running from j = 2 instead of
j = 1. Similarly, let V ∗(x,N ;µ, σ) be expression (3) with the product running
from j = 2 instead of j = 1.
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Let

g∗µσ(x(N), I(N)) := g∗µσ(x(N))
n∏
j=1

|Ij |
xj

.

So g∗µσ(x(N), I(N)) = g∗(x(N), I(N))V ∗. Continuing with the same nota-
tional system we have used throughout, let

g∗µσ(x,N, I[N ]) := g∗µσ(x(N), I(N)).

Proposition 8. If r(t) and σ(t) are continuous, then R∗(N)−1g∗rσ(x,N, I[N ])
and R(N)−1grσ(x,N, I[N ]) are variationally equivalent.

Proof. Follows from Propositions 5 and 6 above, and [7], page 54, Proposition
37.

As in Proposition 2 above, let M = {τ1, . . . , τm} ⊂]t0, T ] be fixed and let
h be a cylindrical functional satisfying h(x) = h(x(M)) for all x. Suppose r is
piecewise constant, with r(t) = r(τj) for t ∈]τl−1, τj ], 1 ≤ j ≤ m. Let R(M)

denote exp
(∑m

j=1 r(τj)(τj − τj−1)
)

.

Proposition 9. Under the conditions of Proposition 2 above,∫
C

R(N)−1h(x)Gµσ(x,N, I) =
∫

RM

R(M)−1h(x(M)Gµσ(I(M)).

Proof. Use the same argument as that used in Proposition 2.

This result implies that, in cases where the hypotheses of Proposition 9
hold, expectations relative to Q can be obtained by finite-dimensional inte-
grals.

The next result shows that, provided the functions involved are almost
everywhere continuous, expectations relative to Q can be obtained as limits
of sequences of finite-dimensional integrals.

Let

τ
(k)
j := t0 +

j(T − t0)
k

, for 0 ≤ j ≤ k,

so τ (k)
0 = t0 and τ (k)

k = T . Let M (k) denote τ (k)
1 , . . . , τ

(k)
k . Let ρk(x(M (k))) :=

R(M (k))−1, and let

ρ(x) =

{
exp

(
−
∫ T
t0
µ(s)ds

)
if x ∈ C,

0 if x 6∈ C.

Let
Γk(x(M (k), I(M (k))) := ρk(x(M (k)))Gµσ(x(M (k)), I(M (k))).
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Proposition 10. If r(s) is continuous for almost all s, then Γk is integrable
in RM(k)

for each k, the sequence of integrals converges as k → ∞, and the
integral

∫
C
ρ(x)Qµσ(I) exists and equals limk→∞

∫
RM(k) Γk.

Proof. Since r(t) is non-negative, [7], page 67, Proposition 53 gives the
result, using the Dominated Convergence Theorem.

The Arbitrage Theorem or Fundamental Theorem of Asset Pricing (see
[3] Chapter 2) implies there exists a class H of functionals h of x ∈ C such
that, if P is a martingale probability for x(t) exp

(
−
∫ t
t0
r(s)ds

)
, then P is

also a martingale probability for h(x) exp
(
−
∫ t
t0
r(s)ds

)
. One such functional

is max(x(T )−K, 0), which is the value at time T of a European call option,1

on an asset with price process x, with exercise date T and exercise price K.
Since this h ∈ H is a cylinder functional, with the dependence on x deter-

mined by the values of x in the single dimension T , if r is constant, we can use
Proposition 9, and, provided σ is also assumed constant, a familiar evaluation
of the integral gives the well known result [2] (page 91)

x(t)
∫ d1

−∞

e−
1
2u

2

√
2π

du−Ke−r(T−t)
∫ d2

−∞

e−
1
2u

2

√
2π

du (4)

for the value at time t of the European call option, where

d1 =
ln x(t)

K + r + 1
2σ

2(T − t)
σ
√
T − t

and d2 =
ln x(t)

K + r − 1
2σ

2(T − t)
σ
√
T − t

.

Using a conventional notation of finance, let f denote the present value (time
t = t0) of a derivative asset whose dependence on the underlying asset price
process x is given by h(x).

The foregoing argument can be summarized as follows.

Proposition 11. If h ∈ H, then f =
∫
C
h(x)ρ(x)Qrσ(I) whenever the integral

exists.

The following result gives a direct link between the risk-neutral expectation
argument of Proposition 11 and the argument used by Black and Scholes in
[1], in which a partial differential equation is solved.

Again taking t = t0, let ξ denote x(t).

1An option, exercisable at some future time T , to buy a share for a price K, will only
be exercised if the (unpredictable) value x(T ) of the share, at time T , is greater than K.
Otherwise the option is not exercised and its value is 0.
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Proposition 12. If r(s) and σ(s) are continuous from the right at t, and
otherwise almost everywhere continuous, and if f =

∫
C
h(x)ρ(x)Qrσ(I) exists,

then f satisfies

∂f

∂t
+ r(t)ξ

∂f

∂ξ
+

1
2
σ(t)2ξ2

∂2f

∂ξ2
= r(t)f. (5)

Proof. By Proposition 3,
∫

R]t0,T ]
+

R(N)−1grσ(x,N, I) exists and equals f . Let

v(ξ, t) denote R(N)−1grσ(x,N, I). Then v(ξ, t) = w(ξ, t)R∗(N)−1g∗rσ(x,N, I)
where w(ξ, t) is

exp
[
−2σ(t1)2

{
ln x1−ln ξ
t1−t − (r(t1)− 1

2σ(t1)2)
}2

(t1 − t)− r(t1)(t1 − t)
]

2πσ(t1)2(t1 − t)
1
2

.

Note that R∗ and g∗V are independent of ξ and t. By differentiation we find
that w satisfies

∂w

∂t
+ r(t1)ξ

∂w

∂ξ
+

1
2
σ(t1)2ξ2

∂2w

∂ξ2
= r(t1),

and multiplying both sides by R∗(N)−1g∗rσ(x,N, I) we get

∂v

∂t
+ r(t1)ξ

∂v

∂ξ
+

1
2
σ(t1)2ξ2

∂2v

∂ξ2
= r(t1)R∗(N)−1g∗rσ(x,N, I).

By Proposition 8 the right hand side of this equation is integrable, with integral
rf . By the Dominated Convergence Theorem, when we integrate the left hand
side term by term, the operations of integration and differentiation can be
interchanged, giving

∂f

∂t
+ r(t)ξ

∂f

∂ξ
+

1
2
σ(t)2ξ2

∂2f

∂ξ2
= r(t)f.

(Note the remarks on an analogous theorem concerning Schrödinger’s equation
in [9].)
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