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Abstract

In 1987 Jarnik and Kurzweil [11] proved the following result: A
function F : [a,b] — R is AC*G on [a,b] if and only if ui (Thomson’s
variational measure) is absolutely continuous on [a,b] and F is derivable
a.e. on [a,b]. But condition “F is derivable a.e. on [a, b]” is superfluous,
as it was shown in [3]. In this paper we shall improve this result (from
where we obtain an answer to a question of Faure [9]). Then using
Faure’s definition for a Kurzweil-Henstock-Stieltjes integral with respect
to a function w, we give corresponding definitions for: a Denjoy™-Stieltjes
integral with respect to w, a Ward-Perron-Stieltjes integral with respect
to w, a Henstock-Stieltjes variational integral with respect to w, and we
show that the four integrals are equivalent.

1 Introduction

Throughout the paper we shall use Thomson’s variational measure py for a
function F' (see Definition 2.4).

In 1987, Jarnik and Kurzweil proved the following result [11] (see 3.19, p.
656):

Theorem A. A function F : [a,b] — R is AC*G on [a,b] if and only if 1}
is absolutely continuous and F' is derivable a.e. on [a,b).
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Almost three years later, P. Y. Lee proved the same theorem [13] (see
Theorem 4, p. 757), without any reference to the paper of Jarnik and Kurzweil.
A variant of Theorem A is presented by W. F. Pfeffer in [15] (see Theorem
6.4.4, p. 115), and he mentioned neither Jarnik and Kurzweil’s theorem, nor
P. Y. Lee’s result. Not knowing the paper of Jarnik and Kurzweil, in 1994
[3], we improved Theorem A (giving credit to P. Y. Lee), showing that the
condition “F is derivable a.e. on [a,b]” is superfluous:

Theorem B. ([3], Corollary 1, (i), (vii) or [4], Corollary 2.27.1, (i), (vii)).
A function F : [a,b] — R is AC*G on [a,b] if and only if u} is absolutely
continuous.

In proving Theorem B, otherwise than Jarnik and Kurzweil, P. Y. Lee
and W. F. Pfeffer, we haven’t used the Kurzweil-Henstock theory. In 1996,
using the Kurzweil-Henstock theory, Bongiorno, Di Piazza and Skvortsov also
proved Theorem B without mentioning [3] (see Theorems 3 and 4 of [1]).

Using Theorem B and a result of Thomson (see Theorem 3.1), we can easily
deduce the following theorem:

Theorem C. Let F : [a,b] — R be a function such that u} is absolutely
continuous. Then uk is o-finite on [a,b].

In this paper we shall improve Theorem B and Theorem C (see Theorem
5.1 and Theorem 3.2), and then use these results to answer to a question of
Faure [9]. In performing this task we shall use many definitions and results of
Faure’s paper [9].

Using Faure’s definition for a Kurzweil-Henstock-Stieltjes integral with re-
spect to a function w, we give corresponding definitions for: a Denjoy*-Stieltjes
integral with respect to w, a Ward-Perron-Stieltjes integral with respect to w,
a Henstock-Stieltjes variational integral with respect to w, and we show that
the four integrals are equivalent.

2 Notations, Definitions and Preliminary Results

We denote by m*(X) the outer measure of the set X and by m(A) the Lebesgue
measure of A, whenever A C R is Lebesgue measurable. For the definitions
of VB, VB* and AC*, see [16]. Let (z,y) denote the closed interval with
the endpoints « and y. We denote by P(E) = {X : X C E} whenever
E C R. Let Cla,b] = {F : [a,b)] — R : F is continuous on [a,b]} and
Bor(X)={AC X : Ais aBorel set}. We denote by O(F; X) the oscillation
of the function F' on the set X. Let C; denote the set of continuity points of
the function f.
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Definition 2.1. Let F : [a,b] — R, and let P be a closed subset of [a,b],
¢ = inf(P), d = sup(P). Let Fp : [¢,d] — R be defined as follows: Fp(z) =
F(z), x € P and Fp is linear on each [cg,d], where {(ck,di)}r>1 are the
intervals contiguous to P.

Definition 2.2. ([17]). A sequence {E,} of sets whose union is E is called
an E-form with parts E,. If, in addition, each part F,, is closed in E (i.e.
E, = E, N E) then the E-form is said to be closed. An expanding E-form is
called an FE-chain.

Definition 2.3. Let f : [a,b] — R and E C [a,b]. f is said to be VB*G
(respectively AC*G) on FE if there is an E-form {E,} such that f is V. B* (re-
spectively AC*) on each E,,. Note that AC*G here differs from the definitions
given in [16], because f is not supposed to be continuous.

Definition 2.4. Let E C R, §: E — (0,400),
B*(E;0) = {((m,y>,x) cx€eE, ye (x —o(x),x + 5(1‘))}

The finite set = { ((z;,y:), z;) }?:1 C B*(E;6) is said to be a partition if the
{(xs,y:)}7_ is a set of nonoverlapping closed intervals. Let f: R — R,

Vi'(f; E) = Sup{ Z |f(y) — f(x)‘ cm CB*(E;0)is a partition},

(zy),z)em

and
wi(E) =t V; (f; B).

Note that this yi} is the same as that of Thomson [19, p. 186], and it is also
identical with Thomson’s S,-pp of [18] and Faure’s mp [9].

Definition 2.5. Let X be a nonempty set and P(X) ={E : E C X}. Let
a:P(X) — [0,+00] be a set function with () = 0. « is said to be o-finite on
E if there exists a sequence {E; }; of sets such that F C U; E; and a(E;) # +00
for each .

Definition 2.6. A function o : P(E) — R is said to be absolutely continuous
on E CRif a(Z) =0 whenever Z C E and m*(Z) = 0.

Definition 2.7. [9] Let Flw : [a,b] = R, w € VB*G and w € CJa, b].

e F is called w-Lipschitzian on a set E C [a,b] or LZ, on E, if there
exists C' > 0 such that pu5(A) < C'- p*(A) for every subset A C E. The
function F' is called generalized w-Lipschitzian or LZ,G, if there exists
an [a, b]-form {E, } such that F' is w-Lipschitzian on each E,,.
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e Similarly, F' is called w-absolutely continuous on a set F, or AC,, on F,
if for any € > 0 there exists § > 0 such that A C E and pf(A) < 4
imply p5(A) < e. And it is called generalized w-absolutely continuous,
or AC, G, if there exists an [a, b]-form {E, } such that F' is w-absolutely
continuous on each E,. If in addition each set E,, is closed then we say
that F € [AC,,G].

e One says that F' is w-variational normal or shortly w-normal, if u* (A) =
0 implies p}.(A4) = 0.

Definition 2.8. Let u be a positive measure defined on a o-algebra A of
X. A real measure v defined on A is absolutely continuous with respect to u
(shortly v <« p) if v(A) = 0 whenever u(A) =0 and A € A.

Remark 2.1. If F' is w-normal then the restrictions of the outer measures uj
and pf, on a o-algebra A satisfy pj < u.

Proposition 2.1. [16, p. 31] If u is a positive measure on a o-algebra A of
X and v is a finite positive measure on A then v < pu if and only if for e > 0
there is a 6 > 0 such that v(A) < € whenever u(A) < 4.

3 An Extension of Theorem C

Lemma 3.1. Let F : [a,b] — R, Q C [a,b] a compact set and p* : P(Q) —
[0,400] an outer measure such that for every compact subset S of Q, there
exists a Gg-set Z C S with Z = S and p*(Z) = 0. Then the following
assertions are equivalent:

(i) F € VB*G on Q;
(ii) each closed subset S of Q contains a portion on which F € V B*;
(i) F € VB*G on Z whenever Z is a Gs-subset of Q and p*(Z) = 0.

PROOF. (i) < (ii) See Theorem 9.1 of [16, p. 233] (F needs not to be con-
tinuous on @, because F € VB* on A C @ implies that F' € VB* on A, see
Theorem 7.1 of [16, p. 229)).

(i) = (iii) This is obvious.

(iii) = (ii) Let S be a closed subset of @ (so S is compact). Then there
is a Gs-set Z C S, with Z = S and pu*(Z) = 0 (see the condition on u*). By
(iii) F € VB*G on Z, so there exists a Z-form {Z;} such that F € VB* on
each Z;. Then F € VB* on each Z; (see Theorem 7.1 of [16, p. 229]). By
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Baire’s Category Theorem [16, p. 54|, there is an open interval I such that
0#£INZcC Z,, for some i,. But

D£AINS=INZCINZCZ,.

Indeed, let z € I N Zand let V., be a neighborhood of z. Then I NV, is a
neighborhood of x € Z too, so V, NINZ # (. Hence x € I N Z and the above
relation is proved. It follows that F € VB* on I N S. O

Lemma 3.2. (Lemma 4.2 of [9]) Let w: R — R, w € Cla,b], w(z) = w(a) for
x < a, w(x) =w) forx > b, and E C [a,b]. If u’,(F) # 400 the function
V:R —[0,+00),

0 if € (—00,a]
V(r) = ,
ph(ENa,z])  if z € (a,400)

is continuous, increasing and bounded on R.
Moreover, if x,y € [a,b], <y then:

V(y)=V(x) = po(ENfz, y]) = p(EN(z,y)) = po(ENfr,y) = po(EN(2,y)) -

PRrROOF. That V is continuous follows by Lemma 4.2 of [9], and that V is
increasing and bounded is evident. O

Lemma 3.3. Letw : R — R be a continuous function, w(z) = w(a) forz < a,
w(z) = w(b) for x > b, and let S C [a,b] be a Gs-set with i, (S) # +oo. Then
there is a null Gs-set Z C S such that Z O S and p(Z) = 0.

PROOF. Let d be the usual distance on R (i.e., d(x,y) = |x — y| for z,y €
R). Since (R, d) is separable, it follows that (S, d) is also a separable metric
space (see for example [2; Theorem 12]). Thus there is a countable set Z; =
{x1,79,...} C S such that Z; NS = S. Let V be the function defined in
Lemma 3.2, with £ = S. Let j € N. For each z; let aj;, bj; be such that
x € (aji, bji),

1

V(bji) — Vaji) and (bj; —aj;) < TS

(this is possible because V' is continuous and increasing). Let

Gj =5nN (Ufil(aj,-, bﬂ)) and 7 = ﬂ;‘;lGj .
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Then Z is a Gs-subset of S that contains Z;. Hence Z O S and

1o (Z) < ps(Gy) <> it ((agibji) N S) =

i=1

— 1 1 ,
(V(bji) — V(aj)) < Z 57 = 57 for all j € N.
i=1

o

I
—

(2

Thus p*(Z) = 0. Clearly Z is a null set. O

Theorem 3.1 (Thomson). [18, p. 94]. Let F : [a,b] — R, A C [a,b]. If F
is continuous at each point of A then ' € VB*G on A if and only if p3 is
o-finite on A.

Lemma 3.4. Let F : [a,b] = R, P=P C [a,b], F € VB* on P, F € Cla,b).
Then pi(P) < 2V*(F; P).

PROOF. We shall use Thomson’s technique of [18, p. 94]. Let A = {z €
P : z is an isolated point of P at one side at least}. By [16, p. 260], A is a
countable set. Since F € Cla,b], ui(A) =0. Let § : P\ A — (0,400). Let
= {((wi,yi>,xi)}f:1 C B*(P\ A;9) be a partition. Split 7 into

m o= {(fwsvilw)}n, and m = {(lys @il @)},

In both cases we label the intervals from the left to the right. Let ¢ = inf P,
d=supP, yy, € [Ym,d) N (P\ A) and z}, 1 € (¢, Ym+1] N (P \ A). Then we
have

S IR ~ Fo| < 3 O(F i i) + O(F ey,

p—1
+O(F; [ 15 Tmy1])+ O(F; w5, 2i41]) < 2V*(F; P).
i=m-+1

Thus V5" (F'; P\ A) < 2V*(F; P). It follows that u}.(P) < pqR(P\A)+uk(4) <
o0*(F; P). O
Theorem 3.2 (An extension of Theorem C). Let F' : [a,b] — R be w-normal,
where w € Cla,b] is a VB*G function. Then F' € Cla,b] and F' is VB*G on
[a,b] (or equivalently u% is o-finite on [a,b], see Theorem 3.1).
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PROOF. Since w is continuous at € [a,b], we have that uf({z}) =0, so F'
being w-normal, p}({z}) = 0. It follows that F' is continuous at z, so on
[a,b]. Since w is VB*G on [a,b], by Theorem 7.1 of [16, p. 229], there exists
a sequence {Q@,} of compact sets such that [a,b] = U,Q,, and w is VB* on
each @,. By Lemma 3.4, u},(Q,) # +oo. Fix some n and let S be a compact
subset of @,,. Then u* (S) # +o00, so by Lemma 3.3, there is a Gs-set Z C 5,
with Z = S and p,(Z) = 0. Thus (1) |p(q,) satisfies the condition of Lemma
3.1. Let Y be a subset of @, such that p)(Y) = 0. Since F is w-normal,
i (Y) =0, and by Theorem 3.1, F is VB*G on Y. It follows that F'is VB*G
on each @, (see Lemma 3.1). Hence F' is VB*G on [a, b]. O

4 An Answer to a Question of Faure
Lemma 4.1 (Thomson). (A particular case of Theorem 43.1 of [18], p. 101).
Let F : [a,b] — R and E C [a,b]. Then m*(F(E)) < pui(E).

From this lemma we obtain immediately the following corollary.

Corollary 4.1 (Faure). (Lemma 5.1 of [9]). Let F : [a,b] — R and E C [a, ]
with wi(E) = 0. Then m(F(E)) =0.

Lemma 4.2. Let f : [a,b] > R, ECla,b] and AC {z € E : f is continuous
at z}. If f € VB*G on E then m*(f(A)) = 0 if and only if p}(A) = 0.

PROOF. Since So-py and p} are identical, the assertion follows immediately
by Theorem 8 of [5] (which is an extension of Thomson’s Corollary 43.4 of [18,
p. 103)). m

Theorem 4.1. Let F : [a,b] — R and A C [a,b]. The following assertions
are equivalent:

(1) pp(E) =0;

(i1) F is continuous at each point of E, m(F(E)) =0 and p}(E) # +oo;
(i11) F is continuous at each point of E, m(F(E)) =0 and u}. is o-finite;
(iv) F is continuous at each point of E, m(F(E)) =0 and F is VB*G on E.

PROOF. (i) = (ii) That F is continuous at each point of E and p5(E) # 400
is obvious. By Corollary 4.1 we also have that m(F(E)) = 0.

(if) = (iii) This is evident.

(iii) < (iv) See Theorem 3.1.

(iv) = (i) See Lemma 4.2. O
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Remark 4.1. Theorem 4.1, (i) < (ii) is in fact Proposition 5.3 of Faure [9,
p. 121] (our proof is different).

Example. C. A. Faure asked if in Theorem 4.1 (ii), “u5(F) # +00” can be
replaced by “F ¢ VB*G but F' is derivable a.e. on E”. The answer is no.

PROOF. Let C be the Cantor ternary set. We say that (aq1,b11) = (l 2) is

33
an open interval from the first step, (az1,b21) = (3, 2) and (a22,b22) = (£, )

are the two intervals from the second step. In general the 27! open intervals
of length =k contiguous to C' are said to be the intervals from the step n. We
Ani + bp;

37L
denote them from the left to the right as {(an;, bni)}?sl. Let ¢ =

and let [a);,b),] be an interval contained in (an;,bn;) centered in c,;. Let

F:(0,1] - [0.1],
0 ifeeC
F(z) = 2%1 ifxe U?;l [al;, 0]
linear on [an;,al;] and [b],;, byi] .

Then we have:
(i) F e Clo,1];

(ii) F is derivable a.e. on [0, 1];

(iii) F'(z) =0a.e.on E = CU(nlufnll( b ))

’I’LZ »Ymg

(iv) m(F(E)) = 0;

(v) F¢ VB*G on C (so on E), or equivalently (see Theorem 3.1), u} is not
o-finite on C' (so on E).

i)
) F
)
)

O

5 An Extension of Theorem B

Lemma 5.1. Let F : [a,b] — R, F € Cla,b], E C [a,b]. If i}(E) < 400 then
there is a Fy5-set H such that E C H and py(H) = p5(E).

PROOF. For € > 0 thereis a d. : £ — (0, +oc) such that Vy' (F; E) < pi(E)+
€/2. Let ES = {z € E : 6.(x) > 1/n}. Then E = U2 ES and {ES}, is an
expanding sequence of sets. Let

T = {(<$zayz>vxl)}p 1 ﬂ(EZ, 2171)

1=
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Since F € Cla, b], for each i one can choose zf € Ef, such that
: L nd |F@p) - F ‘
|xi—xi\<% and |F(x}) — (mz){<ﬁ
1) If y; < z; = x; < yj;, then one chooses z] = z7 € (y;,y;) N Ej,.
2) If z; # x; for all i # j, then one chooses z} such that |2} —z;| < 36(z;, C;)
where Cl = Uj;ﬁi<1’jyyj>~

1
2n?

Since |y; — x| < it follows that |z} — y;| < %7 SO

* * e,l €. .
(<xzayz>7$z) € ﬂ(Ena n) C ﬂ(Env(ss) - B(Ev 56) .

We obtain that
SOIF ) - Flao)| < Y|P ~ Flad)| + 32 |Flw) ~ Fla?)|

< 5+ Vi (F5B) < e+ pi(E).

Hence o
(FiE5) < e+ pp(E).

2n

wp(B5) < Vi
Let H® = U, E. Since any Borelian subset of [a,b] is u} measurable and
{E¢}22  is an E-chain (so {ES}52 4 is an expanding sequence of sets), we have

() = tim i (B5) < e+ pip(B).
Let H = ﬂz‘;lH%. Clearly E C H and H is of F,s-type. We have

* * * 1 1 *
pp(E) < pp(H) < pp(HF) < 7 +up(E),
for all k =1,2,.... Thus pi(F) = pi(H). O

Remark 5.1. That p} in Lemma 5.1 is Borel regular was pointed out (with-
out proof) by Thomson in [18, p. 43]. In fact we can prove even more, see
Lemma 5.4.

Lemma 5.2. [7, Corollary 5] Let f,g : [a,b] — R, E C [a,b]. If f,g € VB*
on E and f =g on E, then

M}Z(EﬁCf ﬁCg) = uZ(EﬂC'f ﬂCg).

Particularly, p3(ENCy) = ,u}-(E N Cy), where f = fBotany (see Definition
2.1 for the function fp).
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Lemma 5.3. [7, Lemma 5] Let f : [a,b] = R and E C [a,b]. If f € VB on
[a,b] then pi(E N Cy) =m*(Vy(ENCy)), where Vi(x) = V(f;[a,z])).

Lemma 5.4. Let F : [a,b] = R, F € Cla,b]. If F is VB* on P =P C [a,}],
then for every E C P there is a Gs-set H C P such that u5.(E) = p5(H).

PrROOF. Note that S,-pp = pj and let F = Fpugapy- By Lemma 5.2,
1i(X) = pp(X) for all X C P, and by Lemma 5.3, p(X) = m*(Vz(X)) for
all X C [a,b]. Thus

pip(X) =m*(Va(X)) foral X C P. (1)

Let G be a Gs-set such that Vi(E) C G and m*(Vi(E)) = m(G), and let
H=Pn Vﬁ_l(G). Then H is a Gs-set (because Vj is a continuous function,
SO Vl::l(G) is a G-set). Clearly F C H and by (1) we have

Wi (B) < pip(H) = m* (Vi (H)) < m*(G) = m(G) = m* (Vy(E)) = i (E)
Thus 25 (E) = i (H). 0

Theorem 5.1. Let Fw : [a,b] — R, w € VB*G and w € Cl[a,b]. The
following assertions are equivalent:

(i) F e LZ,G;
(ii) F is AC,G;
(iii) F is w-normal.

(iv) There is a closed [a,b]-form {E,} such that w, F € VB* on each E,, and
F is AC,, on each E,,.

(v) There is an [a,b]-form {E,} with each E, a Borel set, such that F is
LZ, on each E,,.

(vi) F € Cla,b], F is N, and F is VB*G on [a,b].

PROOF. (i) = (ii) = (iii) See Lemma 4.3 of [9].

(iii) = (iv) By Theorem 3.2, F' is VB*G on [a,b], and by Theorem 7.1
of [16, p. 229], there is a sequence of closed sets {E,} with U,E, = [a,}]
such that w, F' € VB* on each E,. Then p5(E,) < +oo and p}(E,) < +o0
for each n (see Lemma 3.4). Since uj s, (g, 15 @ positive finite measure, by
Proposition 2.1, it follows that for € > 0 there is a § = d(¢, E,,) > 0 such that
pi(A) < e whenever A is a Borel subset of £, and ,(A) < 6. But (1) p(k,)
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and (u})|p(k,) are both Borel regular (see Lemma 5.1), so for A C E,, with
i (A) <6, we have uq(A) < € (because there exists A* C Bor(E,,) such that
A C A* and pf(A) = pl(AY), pi(A) = pi(A*)). Thus F is AC,, on each E,,,
so Fis [AC,G] on [a, b)].

(iv) = (v) By Lemma 3.4 and Proposition 2.1 we have

() Bor(E,) < (1) |Bor () -

Hence, by the Radon-Nikodym Theorem, it follows that there is a Borel mea-
surable function f, : E, — [0, +00) such that

pp(A) = / frndpl, , whenever A € Bor(E,).
A

Let E,, ={zx € E, : fno(x) < k}. Then {E,t}x is an E,-chain of Borel sets.
Let A C Eyng. Since (1)) p(E,,) and (u}3)|p(E,,) are both Borel regular (see
Lemma 5.1), there exists a Borel set A* C E,j such that

pHA) = (A = [ it < k(40 = ke (4).

(v) = (i) This is evident.

(iii) = (vi) Clearly F € Cla,b], and by Theorem 3.2, F' is VB*G on [a, b].
Let Z with m(w(Z)) = 0. By Theorem 4.1, (i), (iv), it follows that p*(Z) = 0.
Since F is w-normal, p5(Z) = 0. Again by Theorem 4.1, (i), (iv), we obtain
that m(F(Z)) = 0. Thus F € N,,.

(vi) = (iii) Let Z with p}(Z) = 0. By Theorem 4.1, (i), (iv), we have
m(w(Z)) = 0. Since F' € N, it follows that m(F'(Z)) = 0. Again by Theorem
4.1, (i), (iv), we obtain that u}.(Z) =0, so F is w-normal. O

Remark 5.2. Theorem 5.1 was proved by Faure in [9, Theorem 4.7], but in
(iii) F' is assumed to be VB*G. As we can see from Theorem 3.2, F being
V B*G is superfluous. Also, our proof is different from that of Faure.

6 The Equivalence of the Integrals KHS, D*S, V and W
with Respect to w

Definition 6.1. Let ¢ : [a,b] — (0,4+00) and E C [a,b]. Let
BSE]) = {([y,z],x) cxe€Fandxely,z2 C(v—0(z),s+ 5(:0))}

Let 7 be a finite set of pairs {[c;, d;];t;) € BZ[E], such that {[c;, d;]}; is a set of
nonoverlapping nondegenerate closed intervals, and let o(7) = U;[c;, d;]. We
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denote by P°(E; d) the collection of all 7 defined as above. Let f,w : [a,b] — R,
and let

o(fiwim) = Z Fta) (@(di) = wlen)) s S(fsm) =Y (f(di) = f(e)) s

%

for m € P°(E;0). If E =[a,b] and o(7) = [a, b] then we denote the collection
of all these 7 by Py ([a,b];0).

Remark 6.1. Recall that D°[E] = {#¢[E] : 0 : [a,b] — (0,+00)} is called
the ordinary derivation basis on the set E (see for example [4, p. 87]).

Definition 6.2. [9]. Let f,w : [a,b] — R. fis said to be Kurzweil-Henstock-
Stieltjes integrable (short K H S-integrable) on [a, b] with respect to w, if there
exists a real number I with the following property: for € > 0 there exists
0 : [a,b] — (0,400) such that |o(f;w;m) — I| < €, whenever m € Py ([a,b];0).
Then (KHS) [0 f(t) dw(t) = I.

Remark 6.2. In the above definition, the real number I is unique (the proof
is similar to that in Remark 5.4.2 of [4]).

Definition 6.3. ([8, p. 415]) Let w, F : [a,b] — R, w strictly increasing on
[a,b]. We define the lower and upper derivatives of F' with respect to w at a
point z € [a,b] as follows:

Fly) — F(z)

D F(z) = hﬂli?f o(y) = o) and D F(z) = lir;jllp IM .

F is said to be derivable with respect to w at z if D F(x) = D, F(z) € R.
The derivative with respect to w of F' at x will be their common value and
will be denoted by F! (z).

Lemma 6.1. Let f,w : [a,b] — R be (KHS)-integrable on [a,b] with respect
tow, and let F(z) = (KHS) [ f(t)dw(t). Then F is derivable with respect
tow and F), = f on [a,b], except on a set Z with u}(Z) = 0.

PRrROOF. This is Corollary 4.8 of [9]. O

Lemma 6.2. Let f,w : [a,b] — R, and let E C [a,b] with u}(E) = 0 such
that f(x) =0 for x € [a,b]\ E. Then [ is (K HS)-integrable with respect to w
on [a,b], and its integral is 0.

ProoF. This is a particular case of Proposition 2.9 in [9]. O
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Corollary 6.1. Let f,g,w : [a,b] — R. If f is (KHS)-integrable with respect
to w on [a,b], and f = g except on a set E with p*(E) = 0, then g is also
(K HS)-integrable with respect to w on [a,b] and the two integrals are equal.

PrOOF. The proof follows from Lemma 6.2 and the linearity of the integral.
O

Definition 6.4. Let f,w : [a,b] = R, w € VB*G on [a,b], w € Cla,b]. fis
said to be Denjoy*-Stieltjes integrable (short D*S-integrable) with respect to
w on [a,b] if there is a w-normal function F : [a,b] — R such that F/ = f
on [a,b], except on a set E with ) (E) = 0. We write (D*S) fab f(t)dw(t) =
F(b) — F(a), and we say that F is an indefinite D* S-integral of f.

Lemma 6.3. The D*S integral is well-defined. Moreover, let f,w : [a,b] — R.
If f is (D*S)-integrable with respect to w on [a,b], then f is (K HS)-integrable
with respect to w on [a,b], and the two integrals are equal.

PROOF. Let F' be an indefinite D*S integral of f. Then F!, = f on [a, b] except
on a set Z with p’(Z) = 0. Since F' is w-normal, it follows that p}.(Z) = 0.
Let f,: [a,b] — R,

flx) ifx€la,b\Z
= {0 Tl
0 ifreZ.

By [9, Proposition 4.5], f, is (K HS)-integrable with respect to w on [a, b], and

Fa) = F(o) = (K175) [ 1,0 a0,

So the D*S integral of f is well defined. By Corollary 6.1 it follows that
f is (K HS)-integrable with respect to w on [a,b] and the two integrals are
equal. O

Definition 6.5. Let f,w: [a,b] — R.

e We define the following class of majorants: W(f) = {M : [a,b] — R :
M (a) = 0; there exists 0 : [a,b] — (0,00) such that M(z) — M(y) >
f(@)(w(z) — w(y)), whenever x € [y, 2] C (x — 6(z),z + 6(z))};

e We define the following class of minorants: W(f) = {m : [a,b] = R :
-m € W(-[)}.
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o If W # 0 then we denote by J(b) the lower bound of all M(b), M €

I
W(f). It W(f) # 0 then we denote by .J(b) the upper bound of all
m(b), m € W(f).

e We say that f has a (W)-integral with respect to w on [a, b], if W(f) x
W(f) #0and J(b) = J(b) = V) [} £(2) dw(®)-

Definition 6.6. Let f,w: [a,b] — R.

)

H : [a,b] — R such that for every € > 0 there exist ¢ : [a,b] — (0,400)
and G : [a,b] — R with the following properties: G(a) = 0, G(b) < ¢, G is
increasing on [a,b] and |H(2)— H(y)— f(z)(w(z) —w(y))| < G(2)—G(y),
whenever x € [y, 2] C (z — §(x),z + §(x)).

e f is said to be (V)-integrable with respect to w on [a,b], if there exists

e H is called the (V)-indefinite integral of f with respect to w on [a, b], and
b
V) [, f(t)dw(t) = H(b) — H(a).

e Clearly the (V)-integral is well defined.

Theorem 6.1. Let f,w: [a,b] > R, w € VB*G and w € Cla,b]. Then f is
(K HS)-integrable with respect to w on [a,b] if and only if f is (D*S)-integrable
with respect to w on [a,b] and the two integrals are equal.

PrOOF. “=" The proof follows by Theorem 4.7 and Corollary 4.8 of [9, p.
120].
“«<" See Lemma 6.1. O

Remark 6.3. Let f,w : [a,b] — R. The following assertions are equivalent:
e fis (K HS)-integrable with respect to w on [a, b];

e fis (D*S)-integrable with respect to w on [a, bl;
e fis (V)-integrable with respect to w on [a, b];

e fis (W)-integrable with respect to w on [a, b];

The equivalence of the KHS, W and V integrals is known. This was proved
for instance by Henstock in [10] (see Theorems 2.5.4 and 7.2.1). For the case
of KHS and W integrals this was proved as early as 1957 by Kurzweil in [12]
(see Theorem 1.2.1). The equivalence of the KHS and D*S integrals follows
from Theorem 6.1.
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