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Abstract

In 1987 Jarńık and Kurzweil [11] proved the following result: A
function F : [a, b] → R is AC∗G on [a, b] if and only if µ∗F (Thomson’s
variational measure) is absolutely continuous on [a, b] and F is derivable
a.e. on [a, b]. But condition “F is derivable a.e. on [a, b]” is superfluous,
as it was shown in [3]. In this paper we shall improve this result (from
where we obtain an answer to a question of Faure [9]). Then using
Faure’s definition for a Kurzweil-Henstock-Stieltjes integral with respect
to a function ω, we give corresponding definitions for: a Denjoy∗-Stieltjes
integral with respect to ω, a Ward-Perron-Stieltjes integral with respect
to ω, a Henstock-Stieltjes variational integral with respect to ω, and we
show that the four integrals are equivalent.

1 Introduction

Throughout the paper we shall use Thomson’s variational measure µ∗F for a
function F (see Definition 2.4).

In 1987, Jarńık and Kurzweil proved the following result [11] (see 3.19, p.
656):

Theorem A. A function F : [a, b] → R is AC∗G on [a, b] if and only if µ∗F
is absolutely continuous and F is derivable a.e. on [a, b].
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Almost three years later, P. Y. Lee proved the same theorem [13] (see
Theorem 4, p. 757), without any reference to the paper of Jarńık and Kurzweil.
A variant of Theorem A is presented by W. F. Pfeffer in [15] (see Theorem
6.4.4, p. 115), and he mentioned neither Jarńık and Kurzweil’s theorem, nor
P. Y. Lee’s result. Not knowing the paper of Jarńık and Kurzweil, in 1994
[3], we improved Theorem A (giving credit to P. Y. Lee), showing that the
condition “F is derivable a.e. on [a, b]” is superfluous:

Theorem B. ([3], Corollary 1, (i), (vii) or [4], Corollary 2.27.1, (i), (vii)).
A function F : [a, b] → R is AC∗G on [a, b] if and only if µ∗F is absolutely
continuous.

In proving Theorem B, otherwise than Jarńık and Kurzweil, P. Y. Lee
and W. F. Pfeffer, we haven’t used the Kurzweil-Henstock theory. In 1996,
using the Kurzweil-Henstock theory, Bongiorno, Di Piazza and Skvortsov also
proved Theorem B without mentioning [3] (see Theorems 3 and 4 of [1]).

Using Theorem B and a result of Thomson (see Theorem 3.1), we can easily
deduce the following theorem:

Theorem C. Let F : [a, b] → R be a function such that µ∗F is absolutely
continuous. Then µ∗F is σ-finite on [a, b].

In this paper we shall improve Theorem B and Theorem C (see Theorem
5.1 and Theorem 3.2), and then use these results to answer to a question of
Faure [9]. In performing this task we shall use many definitions and results of
Faure’s paper [9].

Using Faure’s definition for a Kurzweil-Henstock-Stieltjes integral with re-
spect to a function ω, we give corresponding definitions for: a Denjoy∗-Stieltjes
integral with respect to ω, a Ward-Perron-Stieltjes integral with respect to ω,
a Henstock-Stieltjes variational integral with respect to ω, and we show that
the four integrals are equivalent.

2 Notations, Definitions and Preliminary Results

We denote bym∗(X) the outer measure of the setX and bym(A) the Lebesgue
measure of A, whenever A ⊆ R is Lebesgue measurable. For the definitions
of V B, V B∗ and AC∗, see [16]. Let 〈x, y〉 denote the closed interval with
the endpoints x and y. We denote by P(E) = {X : X ⊆ E} whenever
E ⊆ R. Let C[a, b] = {F : [a, b] → R : F is continuous on [a, b]} and
Bor(X) = {A ⊂ X : A is a Borel set}. We denote by O(F ;X) the oscillation
of the function F on the set X. Let Cf denote the set of continuity points of
the function f .
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Definition 2.1. Let F : [a, b] → R, and let P be a closed subset of [a,b],
c = inf(P ), d = sup(P ). Let FP : [c, d] → R be defined as follows: FP (x) =
F (x), x ∈ P and FP is linear on each [ck, dk], where {(ck, dk)}k≥1 are the
intervals contiguous to P .

Definition 2.2. ([17]). A sequence {En} of sets whose union is E is called
an E-form with parts En. If, in addition, each part En is closed in E (i.e.
En = En ∩ E) then the E-form is said to be closed. An expanding E-form is
called an E-chain.

Definition 2.3. Let f : [a, b] → R and E ⊆ [a, b]. f is said to be V B∗G
(respectively AC∗G) on E if there is an E-form {En} such that f is V B∗ (re-
spectively AC∗) on each En. Note that AC∗G here differs from the definitions
given in [16], because f is not supposed to be continuous.

Definition 2.4. Let E ⊂ R, δ : E → (0,+∞),

β∗(E; δ) =
{(
〈x, y〉, x

)
: x ∈ E, y ∈

(
x− δ(x), x+ δ(x)

)}
.

The finite set π =
{(
〈xi, yi〉, xi

)}n
i=1
⊂ β∗(E; δ) is said to be a partition if the

{〈xi, yi〉}ni=1 is a set of nonoverlapping closed intervals. Let f : R→ R,

V ∗δ (f ;E) = sup
{ ∑

(〈x,y〉,x)∈π

∣∣f(y)− f(x)
∣∣ : π ⊂ β∗(E; δ) is a partition

}
,

and
µ∗f (E) = inf

δ
V ∗δ (f ;E) .

Note that this µ∗f is the same as that of Thomson [19, p. 186], and it is also
identical with Thomson’s So-µF of [18] and Faure’s mF [9].

Definition 2.5. Let X be a nonempty set and P(X) = {E : E ⊆ X}. Let
α : P(X)→ [0,+∞] be a set function with α(∅) = 0. α is said to be σ-finite on
E if there exists a sequence {Ei}i of sets such that E ⊂ ∪iEi and α(Ei) 6= +∞
for each i.

Definition 2.6. A function α : P(E)→ R is said to be absolutely continuous
on E ⊆ R if α(Z) = 0 whenever Z ⊆ E and m∗(Z) = 0.

Definition 2.7. [9] Let F, ω : [a, b]→ R, ω ∈ V B∗G and ω ∈ C[a, b].

• F is called ω-Lipschitzian on a set E ⊂ [a, b] or LZω on E, if there
exists C > 0 such that µ∗F (A) ≤ C · µ∗ω(A) for every subset A ⊆ E. The
function F is called generalized ω-Lipschitzian or LZωG, if there exists
an [a, b]-form {En} such that F is ω-Lipschitzian on each En.
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• Similarly, F is called ω-absolutely continuous on a set E, or ACω on E,
if for any ε > 0 there exists δ > 0 such that A ⊆ E and µ∗ω(A) < δ
imply µ∗F (A) < ε. And it is called generalized ω-absolutely continuous,
or ACωG, if there exists an [a, b]-form {En} such that F is ω-absolutely
continuous on each En. If in addition each set En is closed then we say
that F ∈ [ACωG].

• One says that F is ω-variational normal or shortly ω-normal, if µ∗ω(A) =
0 implies µ∗F (A) = 0.

Definition 2.8. Let µ be a positive measure defined on a σ-algebra A of
X. A real measure ν defined on A is absolutely continuous with respect to µ
(shortly ν � µ) if ν(A) = 0 whenever µ(A) = 0 and A ∈ A.

Remark 2.1. If F is ω-normal then the restrictions of the outer measures µ∗F
and µ∗ω on a σ-algebra A satisfy µ∗F � µ∗ω.

Proposition 2.1. [16, p. 31] If µ is a positive measure on a σ-algebra A of
X and ν is a finite positive measure on A then ν � µ if and only if for ε > 0
there is a δ > 0 such that ν(A) < ε whenever µ(A) < δ.

3 An Extension of Theorem C

Lemma 3.1. Let F : [a, b] → R, Q ⊂ [a, b] a compact set and µ∗ : P(Q) →
[0,+∞] an outer measure such that for every compact subset S of Q, there
exists a Gδ-set Z ⊂ S with Z = S and µ∗(Z) = 0. Then the following
assertions are equivalent:

(i) F ∈ V B∗G on Q;

(ii) each closed subset S of Q contains a portion on which F ∈ V B∗;

(iii) F ∈ V B∗G on Z whenever Z is a Gδ-subset of Q and µ∗(Z) = 0.

Proof. (i) ⇔ (ii) See Theorem 9.1 of [16, p. 233] (F needs not to be con-
tinuous on Q, because F ∈ V B∗ on A ⊂ Q implies that F ∈ V B∗ on A, see
Theorem 7.1 of [16, p. 229]).

(i) ⇒ (iii) This is obvious.
(iii) ⇒ (ii) Let S be a closed subset of Q (so S is compact). Then there

is a Gδ-set Z ⊂ S, with Z = S and µ∗(Z) = 0 (see the condition on µ∗). By
(iii) F ∈ V B∗G on Z, so there exists a Z-form {Zi} such that F ∈ V B∗ on
each Zi. Then F ∈ V B∗ on each Zi (see Theorem 7.1 of [16, p. 229]). By
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Baire’s Category Theorem [16, p. 54], there is an open interval I such that
∅ 6= I ∩ Z ⊂ Zio for some io. But

∅ 6= I ∩ S = I ∩ Z ⊂ I ∩ Z ⊂ Zio .

Indeed, let x ∈ I ∩ Z and let Vx be a neighborhood of x. Then I ∩ Vx is a
neighborhood of x ∈ Z too, so Vx ∩ I ∩Z 6= ∅. Hence x ∈ I ∩ Z and the above
relation is proved. It follows that F ∈ V B∗ on I ∩ S.

Lemma 3.2. (Lemma 4.2 of [9]) Let ω : R→ R, ω ∈ C[a, b], ω(x) = ω(a) for
x < a, ω(x) = ω(b) for x > b, and E ⊂ [a, b]. If µ∗ω(E) 6= +∞ the function
V : R→ [0,+∞),

V (x) =

0 if x ∈ (−∞, a]

µ∗ω
(
E ∩ [a, x]

)
if x ∈ (a,+∞)

is continuous, increasing and bounded on R.
Moreover, if x, y ∈ [a, b], x < y then:

V (y)−V (x) = µ∗ω(E∩[x, y]) = µ∗ω(E∩(x, y)) = µ∗ω(E∩[x, y)) = µ∗ω(E∩(x, y]) .

Proof. That V is continuous follows by Lemma 4.2 of [9], and that V is
increasing and bounded is evident.

Lemma 3.3. Let ω : R→ R be a continuous function, ω(x) = ω(a) for x < a,
ω(x) = ω(b) for x > b, and let S ⊂ [a, b] be a Gδ-set with µ∗ω(S) 6= +∞. Then
there is a null Gδ-set Z ⊂ S such that Z ⊃ S and µ∗ω(Z) = 0.

Proof. Let d be the usual distance on R (i.e., d(x, y) = |x − y| for x, y ∈
R). Since (R, d) is separable, it follows that (S, d) is also a separable metric
space (see for example [2, Theorem 12]). Thus there is a countable set Z1 =
{x1, x2, . . .} ⊂ S such that Z1 ∩ S = S. Let V be the function defined in
Lemma 3.2, with E = S. Let j ∈ N. For each xi let aji, bji be such that
x ∈ (aji, bji),

V (bji)− V (aji) <
1

2j+i
and (bji − aji) <

1
2j+i

(this is possible because V is continuous and increasing). Let

Gj = S ∩
(
∪∞i=1(aji, bji)

)
and Z = ∩∞j=1Gj .
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Then Z is a Gδ-subset of S that contains Z1. Hence Z ⊃ S and

µ∗ω(Z) ≤ µ∗ω(Gj) ≤
∞∑
i=1

µ∗ω
(
(aji, bji) ∩ S

)
=

=
∞∑
i=1

(
V (bji)− V (aji)

)
<

∞∑
i=1

1
2j+i

=
1
2j

for all j ∈ N .

Thus µ∗ω(Z) = 0. Clearly Z is a null set.

Theorem 3.1 (Thomson). [18, p. 94]. Let F : [a, b] → R, A ⊂ [a, b]. If F
is continuous at each point of A then F ∈ V B∗G on A if and only if µ∗F is
σ-finite on A.

Lemma 3.4. Let F : [a, b]→ R, P = P ⊂ [a, b], F ∈ V B∗ on P , F ∈ C[a, b].
Then µ∗F (P ) ≤ 2V ∗(F ;P ).

Proof. We shall use Thomson’s technique of [18, p. 94]. Let A = {x ∈
P : x is an isolated point of P at one side at least}. By [16, p. 260], A is a
countable set. Since F ∈ C[a, b], µ∗F (A) = 0. Let δ : P \ A → (0,+∞). Let
π =

{
(〈xi, yi〉, xi)

}p
i=1
⊂ β∗(P \A; δ) be a partition. Split π into

π1 =
{

([xi, yi], xi)
}m
i=1

and π2 =
{

([yi, xi], xi)
}p
i=m+1

.

In both cases we label the intervals from the left to the right. Let c = inf P ,
d = supP , y∗m ∈ [ym, d) ∩ (P \ A) and x∗m+1 ∈ (c, ym+1] ∩ (P \ A). Then we
have

∑
π

∣∣F (yi)− F (xi)
∣∣ ≤m−1∑

i=1

O
(
F ; [xi, xi+1]

)
+O

(
F ; [xm, y∗m]

)
+O

(
F ; [x∗m+1, xm+1]

)
+

p−1∑
i=m+1

O
(
F ; [xi, xi+1]

)
< 2V ∗(F ;P ) .

Thus V ∗δ (F ;P \A) ≤ 2V ∗(F ;P ). It follows that µ∗F (P ) ≤ µ∗F (P \A)+µ∗F (A) ≤
2V ∗(F ;P ).

Theorem 3.2 (An extension of Theorem C). Let F : [a, b]→ R be ω-normal,
where ω ∈ C[a, b] is a V B∗G function. Then F ∈ C[a, b] and F is V B∗G on
[a, b] (or equivalently µ∗F is σ-finite on [a, b], see Theorem 3.1).
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Proof. Since ω is continuous at x ∈ [a, b], we have that µ∗ω({x}) = 0, so F
being ω-normal, µ∗F ({x}) = 0. It follows that F is continuous at x, so on
[a, b]. Since ω is V B∗G on [a, b], by Theorem 7.1 of [16, p. 229], there exists
a sequence {Qn} of compact sets such that [a, b] = ∪nQn and ω is V B∗ on
each Qn. By Lemma 3.4, µ∗ω(Qn) 6= +∞. Fix some n and let S be a compact
subset of Qn. Then µ∗ω(S) 6= +∞, so by Lemma 3.3, there is a Gδ-set Z ⊂ S,
with Z = S and µ∗ω(Z) = 0. Thus (µ∗ω)|P(Qn) satisfies the condition of Lemma
3.1. Let Y be a subset of Qn such that µ∗ω(Y ) = 0. Since F is ω-normal,
µ∗F (Y ) = 0, and by Theorem 3.1, F is V B∗G on Y . It follows that F is V B∗G
on each Qn (see Lemma 3.1). Hence F is V B∗G on [a, b].

4 An Answer to a Question of Faure

Lemma 4.1 (Thomson). (A particular case of Theorem 43.1 of [18], p. 101).
Let F : [a, b]→ R and E ⊆ [a, b]. Then m∗(F (E)) ≤ µ∗F (E).

From this lemma we obtain immediately the following corollary.

Corollary 4.1 (Faure). (Lemma 5.1 of [9]). Let F : [a, b]→ R and E ⊆ [a, b]
with µ∗F (E) = 0. Then m(F (E)) = 0.

Lemma 4.2. Let f : [a, b]→ R, E ⊆ [a, b] and A ⊆ {x ∈ E : f is continuous
at x}. If f ∈ V B∗G on E then m∗(f(A)) = 0 if and only if µ∗f (A) = 0.

Proof. Since So-µf and µ∗f are identical, the assertion follows immediately
by Theorem 8 of [5] (which is an extension of Thomson’s Corollary 43.4 of [18,
p. 103]).

Theorem 4.1. Let F : [a, b] → R and A ⊆ [a, b]. The following assertions
are equivalent:

(i) µ∗F (E) = 0;

(ii) F is continuous at each point of E, m(F (E)) = 0 and µ∗F (E) 6= +∞;

(iii) F is continuous at each point of E, m(F (E)) = 0 and µ∗F is σ-finite;

(iv) F is continuous at each point of E, m(F (E)) = 0 and F is V B∗G on E.

Proof. (i) ⇒ (ii) That F is continuous at each point of E and µ∗F (E) 6= +∞
is obvious. By Corollary 4.1 we also have that m(F (E)) = 0.

(ii) ⇒ (iii) This is evident.
(iii) ⇔ (iv) See Theorem 3.1.
(iv) ⇒ (i) See Lemma 4.2.
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Remark 4.1. Theorem 4.1, (i) ⇔ (ii) is in fact Proposition 5.3 of Faure [9,
p. 121] (our proof is different).

Example. C. A. Faure asked if in Theorem 4.1 (ii), “µ∗F (E) 6= +∞” can be
replaced by “F /∈ V B∗G but F is derivable a.e. on E”. The answer is no.

Proof. Let C be the Cantor ternary set. We say that (a11, b11) =
(

1
3 ,

2
3

)
is

an open interval from the first step, (a21, b21) =
(

1
9 ,

2
9

)
and (a22, b22) =

(
7
9 ,

8
9

)
are the two intervals from the second step. In general the 2n−1 open intervals
of length 1

3n contiguous to C are said to be the intervals from the step n. We

denote them from the left to the right as {(ani, bni)}2
n−1

i=1 . Let cni =
ani + bni

2
and let [a′ni, b

′
ni] be an interval contained in (ani, bni) centered in cni. Let

F : [0, 1]→ [0, 1],

F (x) =


0 if x ∈ C

1
2n−1 if x ∈ ∪2n−1

i=1 [a′ni, b
′
ni]

linear on [ani, a′ni] and [b′ni, bni] .

Then we have:

(i) F ∈ C[0, 1];

(ii) F is derivable a.e. on [0, 1];

(iii) F ′(x) = 0 a.e. on E = C ∪
(
∪∞n=1 ∪2n−1

i=1 (a′ni, b
′
ni)
)

;

(iv) m(F (E)) = 0;

(v) F /∈ V B∗G on C (so on E), or equivalently (see Theorem 3.1), µ∗F is not
σ-finite on C (so on E).

5 An Extension of Theorem B

Lemma 5.1. Let F : [a, b]→ R, F ∈ C[a, b], E ⊂ [a, b]. If µ∗F (E) < +∞ then
there is a Fσδ-set H such that E ⊂ H and µ∗F (H) = µ∗F (E).

Proof. For ε > 0 there is a δε : E → (0,+∞) such that V ∗δε(F ;E) < µ∗F (E)+
ε/2. Let Eεn = {x ∈ E : δε(x) > 1/n}. Then E = ∪∞n=1E

ε
n and {Eεn}n is an

expanding sequence of sets. Let

π =
{(
〈xi, yi〉, xi

)}p
i=1
⊂ β

(
Eεn;

1
2n

)
.



µ∗ω and Nonabsolutely Convergent Integrals 43

Since F ∈ C[a, b], for each i one can choose x∗i ∈ Eεn such that

|x∗i − xi| <
1

2n
and

∣∣F (x∗i )− F (xi)
∣∣ < ε

2i+1
.

1) If yi < xi = xj < yj , then one chooses x∗i = x∗j ∈ (yi, yj) ∩ Eεn.

2) If xi 6= xj for all i 6= j, then one chooses x∗i such that |x∗i −xi| < 1
2δ(xi, Ci)

where Ci = ∪j 6=i〈xj , yj〉.

Since |yi − xi| < 1
2n , it follows that |x∗i − yi| < 1

n , so(
〈x∗i , yi〉, x∗i

)
∈ β
(
Eεn;

1
n

)
⊂ β(Eεn; δε) ⊂ β(E; δε) .

We obtain that
p∑
i=1

∣∣F (yi)− F (xi)
∣∣ ≤ p∑

i=1

∣∣F (xi)− F (x∗i )
∣∣+

p∑
i=1

∣∣F (yi)− F (x∗i )
∣∣

<
ε

2
+ Vδε(F ;E) < ε+ µ∗F (E) .

Hence
µ∗F (Eεn) ≤ V ∗1

2n
(F ;Eεn) < ε+ µ∗F (E) .

Let Hε = ∪∞n=1E
ε
n. Since any Borelian subset of [a, b] is µ∗F measurable and

{Eεn}∞n=1 is an E-chain (so {Eεn}∞n=1 is an expanding sequence of sets), we have

µ∗F (Hε) = lim
n→∞

µ∗F (Eεn) ≤ ε+ µ∗F (E) .

Let H = ∩∞k=1H
1
k . Clearly E ⊂ H and H is of Fσδ-type. We have

µ∗F (E) ≤ µ∗F (H) ≤ µ∗F (H
1
k ) ≤ 1

k
+ µ∗F (E) ,

for all k = 1, 2, . . .. Thus µ∗F (E) = µ∗F (H).

Remark 5.1. That µ∗F in Lemma 5.1 is Borel regular was pointed out (with-
out proof) by Thomson in [18, p. 43]. In fact we can prove even more, see
Lemma 5.4.

Lemma 5.2. [7, Corollary 5] Let f, g : [a, b] → R, E ⊆ [a, b]. If f, g ∈ V B∗
on E and f = g on E, then

µ∗f (E ∩ Cf ∩ Cg) = µ∗g(E ∩ Cf ∩ Cg) .

Particularly, µ∗f (E ∩ Cf ) = µ∗
f̃
(E ∩ Cf ), where f̃ = fE∪{a,b} (see Definition

2.1 for the function fP ).
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Lemma 5.3. [7, Lemma 5] Let f : [a, b] → R and E ⊆ [a, b]. If f ∈ V B on
[a, b] then µ∗f (E ∩ Cf ) = m∗(Vf (E ∩ Cf )), where Vf (x) = V (f ; [a, x])).

Lemma 5.4. Let F : [a, b]→ R, F ∈ C[a, b]. If F is V B∗ on P = P ⊂ [a, b],
then for every E ⊂ P there is a Gδ-set H ⊂ P such that µ∗F (E) = µ∗F (H).

Proof. Note that So-µF ≡ µ∗F and let F̃ = FP∪{a,b}. By Lemma 5.2,
µ∗F (X) = µF̃ (X) for all X ⊂ P , and by Lemma 5.3, µ∗

F̃
(X) = m∗(VF̃ (X)) for

all X ⊂ [a, b]. Thus

µ∗F (X) = m∗
(
VF̃ (X)

)
for all X ⊂ P . (1)

Let G be a Gδ-set such that VF̃ (E) ⊂ G and m∗(VF̃ (E)) = m(G), and let
H = P ∩ V −1

F̃
(G). Then H is a Gδ-set (because VF̃ is a continuous function,

so V −1

F̃
(G) is a Gδ-set). Clearly E ⊂ H and by (1) we have

µ∗F (E) ≤ µ∗F (H) = m∗
(
VF̃ (H)

)
≤ m∗(G) = m(G) = m∗

(
VF̃ (E)

)
= µ∗F (E) ,

Thus µ∗F (E) = µ∗F (H).

Theorem 5.1. Let F, ω : [a, b] → R, ω ∈ V B∗G and ω ∈ C[a, b]. The
following assertions are equivalent:

(i) F ∈ LZωG;

(ii) F is ACωG;

(iii) F is ω-normal.

(iv) There is a closed [a, b]-form {En} such that ω, F ∈ V B∗ on each En and
F is ACω on each En.

(v) There is an [a, b]-form {En} with each En a Borel set, such that F is
LZω on each En.

(vi) F ∈ C[a, b], F is Nω and F is V B∗G on [a, b].

Proof. (i) ⇒ (ii) ⇒ (iii) See Lemma 4.3 of [9].
(iii) ⇒ (iv) By Theorem 3.2, F is V B∗G on [a, b], and by Theorem 7.1

of [16, p. 229], there is a sequence of closed sets {En} with ∪nEn = [a, b]
such that ω, F ∈ V B∗ on each En. Then µ∗F (En) < +∞ and µ∗ω(En) < +∞
for each n (see Lemma 3.4). Since µ∗F |Bor(En) is a positive finite measure, by
Proposition 2.1, it follows that for ε > 0 there is a δ = δ(ε, En) > 0 such that
µ∗F (A) < ε whenever A is a Borel subset of En and µ∗ω(A) < δ. But (µ∗ω)|P(En)
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and (µ∗F )|P(En) are both Borel regular (see Lemma 5.1), so for A ⊂ En with
µ∗ω(A) < δ, we have µ∗F (A) < ε (because there exists A∗ ⊂ Bor(En) such that
A ⊂ A∗ and µ∗ω(A) = µ∗ω(A∗), µ∗F (A) = µ∗F (A∗)). Thus F is ACω on each En,
so F is [ACωG] on [a, b].

(iv) ⇒ (v) By Lemma 3.4 and Proposition 2.1 we have

(µ∗F )|Bor(En) � (µ∗ω)|Bor(En) .

Hence, by the Radon-Nikodym Theorem, it follows that there is a Borel mea-
surable function fn : En → [0,+∞) such that

µ∗F (A) =
∫
A

fn dµ
∗
ω , whenever A ∈ Bor(En) .

Let Enk = {x ∈ En : fn(x) < k}. Then {Enk}k is an En-chain of Borel sets.
Let A ⊂ Enk. Since (µ∗ω)|P(Enk) and (µ∗F )|P(Enk) are both Borel regular (see
Lemma 5.1), there exists a Borel set A∗ ⊂ Enk such that

µ∗F (A) = µ∗F (A∗) =
∫
A∗
fn dµ

∗
ω ≤ k · µ∗ω(A∗) = k · µ∗ω(A) .

(v) ⇒ (i) This is evident.
(iii) ⇒ (vi) Clearly F ∈ C[a, b], and by Theorem 3.2, F is V B∗G on [a, b].

Let Z with m(ω(Z)) = 0. By Theorem 4.1, (i), (iv), it follows that µ∗ω(Z) = 0.
Since F is ω-normal, µ∗F (Z) = 0. Again by Theorem 4.1, (i), (iv), we obtain
that m(F (Z)) = 0. Thus F ∈ Nω.

(vi) ⇒ (iii) Let Z with µ∗ω(Z) = 0. By Theorem 4.1, (i), (iv), we have
m(ω(Z)) = 0. Since F ∈ Nω, it follows that m(F (Z)) = 0. Again by Theorem
4.1, (i), (iv), we obtain that µ∗F (Z) = 0, so F is ω-normal.

Remark 5.2. Theorem 5.1 was proved by Faure in [9, Theorem 4.7], but in
(iii) F is assumed to be V B∗G. As we can see from Theorem 3.2, F being
V B∗G is superfluous. Also, our proof is different from that of Faure.

6 The Equivalence of the Integrals KHS, D∗S, V and W
with Respect to ω

Definition 6.1. Let δ : [a, b]→ (0,+∞) and E ⊂ [a, b]. Let

βoδ [E] =
{(

[y, z];x
)

: x ∈ E and x ∈ [y, z] ⊂
(
x− δ(x), x+ δ(x)

)}
.

Let π be a finite set of pairs {[ci, di]; ti) ∈ βoδ [E], such that {[ci, di]}i is a set of
nonoverlapping nondegenerate closed intervals, and let σ(π) = ∪i[ci, di]. We
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denote by P◦(E; δ) the collection of all π defined as above. Let f, ω : [a, b]→ R,
and let

σ(f ;ω;π) =
∑
i

f(ti)
(
ω(di)− ω(ci)

)
, S(f ;π) =

∑
i

(
f(di)− f(ci)

)
,

for π ∈ P◦(E; δ) . If E = [a, b] and σ(π) = [a, b] then we denote the collection
of all these π by P◦1 ([a, b]; δ).

Remark 6.1. Recall that Do[E] = {βoδ [E] : δ : [a, b] → (0,+∞)} is called
the ordinary derivation basis on the set E (see for example [4, p. 87]).

Definition 6.2. [9]. Let f, ω : [a, b] → R. f is said to be Kurzweil-Henstock-
Stieltjes integrable (short KHS-integrable) on [a, b] with respect to ω, if there
exists a real number I with the following property: for ε > 0 there exists
δ : [a, b] → (0,+∞) such that |σ(f ;ω;π) − I| < ε, whenever π ∈ P◦1 ([a, b]; δ).
Then (KHS)

∫ b
a
f(t) dω(t) = I.

Remark 6.2. In the above definition, the real number I is unique (the proof
is similar to that in Remark 5.4.2 of [4]).

Definition 6.3. ([8, p. 415]) Let ω, F : [a, b] → R, ω strictly increasing on
[a, b]. We define the lower and upper derivatives of F with respect to ω at a
point x ∈ [a, b] as follows:

DωF (x) = lim inf
y→x

F (y)− F (x)
ω(y)− ω(x)

and DωF (x) = lim sup
y→x

F (y)− F (x)
ω(y)− ω(x)

.

F is said to be derivable with respect to ω at x if DωF (x) = DωF (x) ∈ R.
The derivative with respect to ω of F at x will be their common value and
will be denoted by F ′ω(x).

Lemma 6.1. Let f, ω : [a, b] → R be (KHS)-integrable on [a, b] with respect
to ω, and let F (x) = (KHS)

∫ x
a
f(t) dω(t). Then F is derivable with respect

to ω and F ′ω = f on [a, b], except on a set Z with µ∗ω(Z) = 0.

Proof. This is Corollary 4.8 of [9].

Lemma 6.2. Let f, ω : [a, b] → R, and let E ⊂ [a, b] with µ∗ω(E) = 0 such
that f(x) = 0 for x ∈ [a, b] \E. Then f is (KHS)-integrable with respect to ω
on [a, b], and its integral is 0.

Proof. This is a particular case of Proposition 2.9 in [9].
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Corollary 6.1. Let f, g, ω : [a, b]→ R. If f is (KHS)-integrable with respect
to ω on [a, b], and f = g except on a set E with µ∗ω(E) = 0, then g is also
(KHS)-integrable with respect to ω on [a, b] and the two integrals are equal.

Proof. The proof follows from Lemma 6.2 and the linearity of the integral.

Definition 6.4. Let f, ω : [a, b] → R, ω ∈ V B∗G on [a, b], ω ∈ C[a, b]. f is
said to be Denjoy∗-Stieltjes integrable (short D∗S-integrable) with respect to
ω on [a, b] if there is a ω-normal function F : [a, b] → R such that F ′ω = f

on [a, b], except on a set E with µ∗ω(E) = 0. We write (D∗S)
∫ b
a
f(t) dω(t) =

F (b)− F (a), and we say that F is an indefinite D∗S-integral of f .

Lemma 6.3. The D∗S integral is well-defined. Moreover, let f, ω : [a, b]→ R.
If f is (D∗S)-integrable with respect to ω on [a, b], then f is (KHS)-integrable
with respect to ω on [a, b], and the two integrals are equal.

Proof. Let F be an indefinite D∗S integral of f . Then F ′ω = f on [a, b] except
on a set Z with µ∗ω(Z) = 0. Since F is ω-normal, it follows that µ∗F (Z) = 0.
Let fo : [a, b]→ R,

fo(x) =

f(x) if x ∈ [a, b] \ Z

0 if x ∈ Z .

By [9, Proposition 4.5], fo is (KHS)-integrable with respect to ω on [a, b], and

F (x)− F (a) = (KHS)
∫ x

a

fo(t) dω(t) .

So the D∗S integral of f is well defined. By Corollary 6.1 it follows that
f is (KHS)-integrable with respect to ω on [a, b] and the two integrals are
equal.

Definition 6.5. Let f, ω : [a, b]→ R.

• We define the following class of majorants: W(f) = {M : [a, b] → R :
M(a) = 0; there exists δ : [a, b] → (0,∞) such that M(z) −M(y) >
f(x)

(
ω(z)− ω(y)

)
, whenever x ∈ [y, z] ⊂ (x− δ(x), x+ δ(x))};

• We define the following class of minorants: W(f) = {m : [a, b] → R :
−m ∈ W(−f)}.
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• If W 6= ∅ then we denote by J(b) the lower bound of all M(b), M ∈
W(f). If W(f) 6= ∅ then we denote by J(b) the upper bound of all
m(b), m ∈ W(f).

• We say that f has a (W)-integral with respect to ω on [a, b], if W(f)×
W(f) 6= ∅ and J(b) = J(b) = (W)

∫ b
a
f(t) dω(t).

Definition 6.6. Let f, ω : [a, b]→ R.

• f is said to be (V)-integrable with respect to ω on [a, b], if there exists
H : [a, b] → R such that for every ε > 0 there exist δ : [a, b] → (0,+∞)
andG : [a, b]→ R with the following properties: G(a) = 0, G(b) < ε, G is
increasing on [a, b] and |H(z)−H(y)−f(x)(ω(z)−ω(y))| < G(z)−G(y),
whenever x ∈ [y, z] ⊂ (x− δ(x), x+ δ(x)).

• H is called the (V)-indefinite integral of f with respect to ω on [a, b], and
(V)

∫ b
a
f(t) dω(t) = H(b)−H(a).

• Clearly the (V)-integral is well defined.

Theorem 6.1. Let f, ω : [a, b] → R, ω ∈ V B∗G and ω ∈ C[a, b]. Then f is
(KHS)-integrable with respect to ω on [a, b] if and only if f is (D∗S)-integrable
with respect to ω on [a, b] and the two integrals are equal.

Proof. “⇒” The proof follows by Theorem 4.7 and Corollary 4.8 of [9, p.
120].

“⇐” See Lemma 6.1.

Remark 6.3. Let f, ω : [a, b]→ R. The following assertions are equivalent:

• f is (KHS)-integrable with respect to ω on [a, b];

• f is (D∗S)-integrable with respect to ω on [a, b];

• f is (V)-integrable with respect to ω on [a, b];

• f is (W)-integrable with respect to ω on [a, b];

The equivalence of the KHS, W and V integrals is known. This was proved
for instance by Henstock in [10] (see Theorems 2.5.4 and 7.2.1). For the case
of KHS and W integrals this was proved as early as 1957 by Kurzweil in [12]
(see Theorem 1.2.1). The equivalence of the KHS and D∗S integrals follows
from Theorem 6.1.
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