K. E. Hallowell, S. Manickam, J. M. Dolan, Western Carolina University, Cullowhee, NC 28783, USA. e-mail: mnkm@wcu.edu, dolan@wcu.edu

# ON THE FRACTIONAL PART OF THE SEQUENCE $\left\{\xi \beta_{n}-a\right\}$ 


#### Abstract

Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ denote a sequence of positive real numbers and let the sequence $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be defined by $\beta_{0}=1$ and $\beta_{n+1}=\prod_{j=0}^{n} \alpha_{j}$. For $0 \leq a<1,0<t<1$, and $n$, a nonnegative integer, the inequality $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$ is studied, where $\{x\}$ denotes the fractional part of $x$.

Let $\delta(a, k)=\sup _{m \in \mathbb{Z}}\{a-(a+m) k\}$ for each real number $k$, where $\mathbb{Z}$ is the set of all integers. If $\alpha_{n} \geq 1+\delta\left(a, \alpha_{n}\right) / t$, for each nonnegative integer $n$, where $0 \leq a<1,0<t<1$, and $b=a+t$, then it is proved that there exists a $\xi \in[a+m, b+m]$, for each $m \in \mathbb{Z}$, such that $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$ holds for all nonnegative integers $n$. Further, if $t \alpha_{n} \alpha_{n+1}-\left(1+\delta\left(a, \alpha_{n}\right)\right) \alpha_{n+1}-t-\delta\left(a, \alpha_{n+1}\right) \geq 0$ for infinitely many nonnegative integers $n$, then for each $m \in \mathbb{Z}$, there exists a set of $\xi \in$ $[a+m, b+m]$ that has the cardinality of the continuum so that $0 \leq$ $\left\{\xi \beta_{n}-a\right\} \leq t$ is true for all nonnegative integers $n$.


## 1 Introduction

In his paper "An unsolved problem on the powers of $3 / 2$ ", Mahler [12] defines a real number $\alpha, \alpha>0$, to be a Z-number if $0 \leq\left\{\alpha\left(\frac{3}{2}\right)^{n}\right\}<1 / 2$, for all $n \in W$, where $\{x\}$ denotes the fractional part of $x$, and $W$ is the set of nonnegative integers. Although Mahler proves that the set of all Z-numbers is at most countable, it is still unknown whether such Z-numbers exist. This problem is now known as Mahler's problem [15]. Some results related to this problem are contained in references $[3,4,5,6,9]$.

A related problem is the existence of $\xi>0$ so that $0 \leq\left\{\xi \beta^{n}\right\} \leq t$, for all $n \in W$, given $0<t<1$ and $\beta>1$. Tijdeman [15] has shown that such a $\xi$ exists, for $\beta>2$ and $t \geq 1 /(\beta-1)$. Further, Flatto [11] shows if $\beta>0$ is

[^0]rational (that is, $\beta=p / q,(p, q)=1$, and $p, q \in N)$, then $\xi>0$ exists if $\beta>2$ and $t>(q-1) /(q(\beta-1))=(q-1) /(p-q)$.

In answer to a question of Erdős [10], Pollington [14] proved that if any positive real sequence $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ satisfies $\beta_{n+1} / \beta_{n} \geq \alpha>1$, for all $n \in W$, then there is a set of real $\xi$ of Hausdorff dimension 1 so that the sequence $\left\{\xi \beta_{n}\right\}$ is not dense on $[0,1)$. Boshernitzan [2] and Ajtai, Havas, and Komlós [1] have shown that the fixed lower bound on the ratio of consecutive $\beta_{n}$ is necessary. In lemma 1 of the latter, the authors show that for any sequence of real $\alpha_{n}>1, \alpha_{n} \rightarrow 1$, there exists a sequence of positive integers $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ such that $\beta_{n+1} / \beta_{n} \geq \alpha_{n}$, for all $n$, and for any irrational $\xi$, the sequence $\xi \beta_{n}$ is uniformly distributed $(\bmod 1)$. For rational $\xi=p / q,(p, q)=1$, then the sequence $\xi \beta_{n}$ is uniformly distributed $(\bmod 1)$ over the set $\{0,1 / q, 2 / q, \ldots,(q-1) / q\}$.

This motivates the question: "For what sequences $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ will $\xi>0$ exist such that $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$, where $0 \leq a<1$ and $0<t<1$ ?" This paper identifies a class of sequences $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ for which this is true.

## 2 Existence of a Set of $\xi$

Let $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be a positive, strictly increasing sequence of real numbers, and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a positive sequence of real numbers such that $\alpha_{n}=\beta_{n+1} / \beta_{n}$, for all $n \in W$.

Let $A_{n}=\bigcup_{m=-\infty}^{\infty} Q(m, n)$, with $Q(m, n)=\left[(a+m) \beta_{n}^{-1},(b+m) \beta_{n}^{-1}\right]$, for all $n \in W$ and $m \in \mathbb{Z}$, where $\mathbb{Z}$ is the set of all integers, and $a, b$ are real numbers such that $a<b$.

For $a, k \in \mathbb{R}$, where $\mathbb{R}$ is the set of real numbers, define

$$
\delta(a, k)=\left\{\begin{array}{l}
1, \text { if } k \text { is irrational, } \\
(q-1) / q+\{a(q-p)\} / q, \text { if } k=p / q, \text { where } p, q \text { are relatively } \\
\text { prime integers, and } q>0
\end{array}\right.
$$

It can be shown that $\delta(a, k)=\sup _{m \in \mathbb{Z}}\{a-(a+m) k\}$. This fact is used extensively in this paper. For example, $\delta(0, p / q)=(q-1) / q$, where $p$ and $q$ are relatively prime positive integers.

Theorem 1. Let $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be a positive increasing sequence of real numbers such that $\beta_{n+1} / \beta_{n}=\alpha_{n}$, for all $n \in W$. If $0 \leq a<1,0<t<1, b=a+t$, and $\alpha_{n} \geq 1+\delta\left(a, \alpha_{n}\right) / t$, for all $n \in W$, then for every $m \in \mathbb{Z}$, there exists a $\xi \in[a+m, b+m]$, such that $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$.

The following lemmas are needed to prove this theorem.
In what follows, $a, b$, and $t$ are real numbers such that $0 \leq a<1$, $0<t<1$, and $b=a+t$.

Lemma 1. If $\alpha_{n}>0$, for all $n \in W, \xi \in \mathbb{R}$, then $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$, if and only if $\xi \in \bigcap_{n=0}^{\infty} A_{n}$.
Proof. Given $\alpha_{n}>0$, for all $n \in W, \xi \in \mathbb{R}, 0 \leq a<1$, and $b=a+t$, if $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$, and $\mathrm{j}=\left\lfloor\xi \beta_{n}-a\right\rfloor$, then $a+j \leq \xi \beta_{n}<b+j$, that is, $\xi \in Q(j, n)$, for all $n \in W$. Hence, $\xi \in \bigcap_{n=0}^{\infty} A_{n}$. On the other hand, if $\xi \in \bigcap_{n=0}^{\infty} A_{n}$, then for all $n \in W$, there exists $m \in \mathbb{Z}$ so that $\xi \in Q(m, n)$, that is, $a \leq\left\{\xi \beta_{n}-m\right\} \leq b$. Thus, $0 \leq\left\{\xi \beta_{n}-a-m\right\} \leq t$, implying $m=\left\lfloor\xi \beta_{n}-a\right\rfloor$. Hence, $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$. Notice that this lemma proves that the set of all $\xi$ that satisfy $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$ is a closed set, since it is equal to the intersection of the closed sets $A_{n}$.

Define $m^{\prime}=\left\lceil(a+m) \alpha_{n}-a\right\rceil \in \mathbb{Z}$, where $n \in W$. Here, $\lceil x\rceil$ is the least integer greater than $x$.
Lemma 2. If $m \in \mathbb{Z}, n \in W, \alpha_{n}>1+\frac{\delta\left(a, \alpha_{n}\right)}{t}$, and $m^{\prime}=\left\lceil(a+m) \alpha_{n}-a\right\rceil \in \mathbb{Z}$, then $Q\left(m^{\prime}, n+1\right) \subseteq Q(m, n)$.
Proof. By definition of $m^{\prime},(a+m) \alpha_{n} \leq a+m^{\prime}$. Also, $a+m^{\prime}-\delta\left(a, \alpha_{n}\right) \leq(a+m) \alpha_{n}$. Hence,

$$
\left(a+m^{\prime}-\delta\left(a, \alpha_{n}\right)\right) \beta_{n+1}^{-1} \leq(a+m) \beta_{n}^{-1} \leq\left(a+m^{\prime}\right) \beta_{n+1}^{-1}
$$

Let $x \in Q\left(m^{\prime}, n+1\right)$. Then $x \geq(a+m) \beta_{n}^{-1}$, and

$$
x \leq\left(b+m^{\prime}\right) \beta_{n+1}^{-1} \leq\left(\delta\left(a, \alpha_{n}\right)+b-a\right) \beta_{n+1}^{-1}+\left(a+m^{\prime}-\delta\left(a, \alpha_{n}\right)\right) \beta_{n+1}^{-1}
$$

So

$$
x \leq\left(\delta\left(a, \alpha_{n}\right)+b-a\right) \beta_{n+1}^{-1}+(a+m) \beta_{n}^{-1} \leq(b+m) \beta_{n}^{-1}
$$

Hence, $x \in Q(m, n)$.
The theorem can now be proven.
Proof. Let $\alpha_{n} \geq 1+\delta\left(a, \alpha_{n}\right) / t$, for all $n \in W$. Define the sequence $\left\{m_{n}\right\}_{n=0}^{\infty}$ where $m_{0}$ is an arbitrary integer, and $m_{n+1}=\left\lceil\left(a-m_{n}\right) \alpha_{n}-a\right\rceil$, for all $n \in W$. Also define the sequence $\left\{I_{n}\right\}_{n=0}^{\infty}$ of closed bounded intervals $I_{n}=Q\left(m_{n}, n\right)$. From Lemma $2, I_{n+1} \subseteq I_{n}$, for all $n \in W$. Further, $I_{n} \subseteq A_{n}$, for all $n \in W$.

Suppose $I_{j} \subseteq \bigcap_{n=0}^{j} A_{n}$. Then $I_{j+1} \subseteq I_{j} \subseteq \bigcap_{n=0}^{j} A_{n}$ and also $I_{j+1} \subseteq$ $A_{j+1}$. Thus $I_{j+1} \subseteq \bigcap_{n=0}^{j+1} A_{n}$. Since $I_{0} \subseteq A_{0}=\bigcap_{n=0}^{0} A_{n}$, by the principle of induction, $I_{j} \subseteq \bigcap_{n=0}^{j} A_{n}$, for all $j \in W$.

By Cantor's nested interval theorem, there exists a $\xi \in \mathbb{R}$ such that $\xi \in I_{j}$, for all $j \in W$. Hence, $\xi \in \bigcap_{n=0}^{\infty} A_{n}$, and by Lemma $1,0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$. In addition, $\xi \in I_{0}=\left[a+m_{0}, b+m_{0}\right]$.

Theorems 1 and 2 of Tijdeman [15] are special cases of this theorem when $\alpha_{n}$ is constant for all $n \in W$.

## 3 Uncountability of the Set of $\xi$

Flatto [11] gives a condition for uncountability of the set of $\xi$ that satisfies $0 \leq\left\{\xi \beta^{n}\right\} \leq t$, for all $n \in W$. If $\beta>3$ and $2 /(\beta-1)<t<1$, then for any integer $m$, there exists such a set of $\xi$ with cardinality of the continuum and where $\xi \in[m, m+1)$.

In what follows, an improvement of this theorem is given for certain sequences of positive real numbers $\left\{\beta_{n}\right\}_{n=0}^{\infty}$, where $\beta_{n+1} / \beta_{n} \geq \alpha>1$, for all $n \in W$.

Theorem 2. Let $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be a positive increasing sequence of real numbers such that $\alpha_{n}=\beta_{n+1} / \beta_{n}$, for all $n \in W$. Given $0 \leq a<1,0<t<1$, $b=a+t$, and $\alpha_{n} \geq 1+\delta\left(a, \alpha_{n}\right) / t$, for all $n \in W$, if there is a strictly increasing sequence of whole numbers $\left\{k_{i}\right\}_{i=0}^{\infty}$ such that

$$
t \alpha_{k_{i}} \alpha_{k_{i}+1}-\left(1+\delta\left(a, \alpha_{k_{i}}\right)\right) \alpha_{k_{i}+1}-t-\delta\left(a, \alpha_{k_{i}+1}\right) \geq 0
$$

then for any $m \in \mathbb{Z}$, there exists a set of $\xi$ with the cardinality of the continuum so that $\xi \in[a+m, b+m]$ and $\xi$ satisfies $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$.

To prove this theorem we need Lemma 3.
Lemma 3. Suppose $m \in \mathbb{Z}, n \in W$,

$$
\begin{align*}
& t \alpha_{n} \alpha_{n+1}-\left(1+\delta\left(a, \alpha_{n}\right) \alpha_{n+1}-t-\delta\left(a, \alpha_{n+1}\right) \geq 0,\right.  \tag{1}\\
& \alpha_{n} \geq 1+\delta\left(a, \alpha_{n}\right) / t, \text { and } \alpha_{n+1} \geq 1+\delta\left(a, \alpha_{n+1}\right) / t . \text { If } \\
& m_{1}=\left\lceil(a+m) \alpha_{n}-a\right\rceil, \\
& m_{2}=\left\lceil\left(a+m_{1}\right) \alpha_{n+1}-a\right\rceil, \\
& \text { and } m_{2}^{\prime}=\left\lceil\left(a+m_{1}+1\right) \alpha_{n+1}-a\right\rceil,
\end{align*}
$$

then

$$
\begin{aligned}
Q\left(m_{2}, n+2\right) & \subseteq Q\left(m_{1}, n+1\right), \\
Q\left(m_{2}^{\prime}, n+2\right) & \subseteq Q\left(m_{1}+1, n+1\right), \\
Q\left(m_{2}, n+2\right) & \subseteq Q(m, n), \\
\text { and } Q\left(m_{2}^{\prime}, n+2\right) & \subseteq Q(m, n) .
\end{aligned}
$$

Proof. By Lemma 2, $Q\left(m_{1}, n+1\right) \subseteq Q(m, n), Q\left(m_{2}, n+2\right) \subseteq Q\left(m_{1}, n+1\right)$, and $Q\left(m_{2}^{\prime}, n+2\right) \subseteq Q\left(m_{1}, n+1\right)$. Thus, $Q\left(m_{2}, n+2\right) \subseteq Q(m, n)$.

If $x \in Q\left(m_{2}^{\prime}, n+2\right)$, then $x \geq\left(a+m_{2}^{\prime}\right) \beta_{n+2}^{-1}$. This implies that $x>\left(a+m_{2}\right) \beta_{n+2}^{-1} \geq(a+m) \beta_{n}^{-1}$.

On the other hand, $x \leq\left(b+m_{2}^{\prime}\right) \beta_{n+2}^{-1}$. If $\alpha_{n}$ and $\alpha_{n+1}$ satisfy inequality (1), then

$$
\left(\delta\left(a, \alpha_{n}\right)+1\right) \alpha_{n+1}+t+\delta\left(a, \alpha_{n+1}\right) \leq(b+m) \alpha_{n} \alpha_{n+1}-(a+m) \alpha_{n} \alpha_{n+1} .
$$

This inequality yields

$$
\begin{aligned}
(b+m) \alpha_{n} \alpha_{n+1} & \geq\left[(a+m) \alpha_{n}+\delta\left(a, \alpha_{n}\right)+1\right] \alpha_{n+1}+t+\delta\left(a, \alpha_{n+1}\right) \\
& =\left[a+\left\lceil(a+m) \alpha_{n}-a\right\rceil+1\right] \alpha_{n+1}+t+\delta\left(a, \alpha_{n+1}\right) \\
& =\left(a+m_{1}+1\right) \alpha_{n+1}+t+\delta\left(a, \alpha_{n+1}\right) \\
& \geq\left(a+m_{1}+1\right) \alpha_{n+1}+(b-a)+\delta\left(a, \alpha_{n+1}\right) \\
& \geq a+\left\lceil\left(a+m_{1}+1\right) \alpha_{n+1}-a\right\rceil+(b-a)=b+m_{2}^{\prime} .
\end{aligned}
$$

Thus, $b+m_{2}^{\prime} \leq(b+m) \alpha_{n} \alpha_{n+1}$, which implies that $x \leq(b+m) \beta_{n}^{-1}$. Hence, $x \in Q(m, n)$ and thus $Q\left(m_{2}^{\prime}, n+2\right) \subseteq Q(m, n)$, which completes the proof of this lemma.

To prove Theorem 2, a $\xi$ will be constructed satisfying $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$, and that is related to some binary sequence. It will then be shown that there is a one-to-one correspondence between these $\xi$ and the set of all binary sequences which have the cardinality of the continuum.
Proof. Let $a, b, t$, and the sequence $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ have the properties described in the statement of the theorem. Let the sequence $\left\{k_{i}\right\}_{n=0}^{\infty}$ be further restricted by the condition $k_{i+1}-k_{i} \geq 2$. Note that this restriction is justifiable since any increasing sequence of integers has a subsequence where consecutive terms differ by at least two. Finally, the inequality (1) holds for all $k_{i}$, upon substituting $k_{i}$ for $n$.

Let $R=\left\{r_{i}\right\}_{i=0}^{\infty}$ be a binary sequence; that is, $r_{i} \in\{0,1\}$, for all $i \in W$.
Let $\left\{m_{n}\right\}_{n=0}^{\infty}$ be a sequence of integers, with $m_{0}$ an arbitrary integer, and

$$
m_{n+1}= \begin{cases}\left\lceil\left(a+m_{n}+r_{j}\right) \alpha_{n}-a\right\rceil, & \text { where } j \in W, n=k_{j}+1, \\ \left\lceil\left(a+m_{n}\right) \alpha_{n}-a\right\rceil, & \text { otherwise }\end{cases}
$$

A sequence of intervals of $I_{n}$ can now be defined by $I_{n}=Q\left(m_{n}, n\right)$. Note that given $m_{0}, a$, and $\left\{\alpha_{n}\right\}_{n=0}^{\infty}, I_{n}$ is dependent only on the binary sequence $R$. So $I_{n}$ will be a function from the binary sequences to a set of compact intervals in $\mathbb{R}$. This is denoted by $I_{n}(R)=Q\left(m_{n}, n\right)$.

If $n \neq k_{j}+1$, for all $j \in W$, then $m_{n+1}=\left\lceil\left(a+m_{n}\right) \alpha_{n}-a\right\rceil$. Hence, $\alpha_{n} \geq 1+\delta\left(a, \alpha_{n}\right) / t$ implies that $Q\left(m_{n+1}, n+1\right) \subseteq Q(m, n)$, by Lemma 2 , and $I_{n+1}(R) \subseteq I_{n}(R)$.

If $n=k_{j}+1$ for some $j \in W$, then $m_{n+1}=\left\lceil\left(a+m_{n}+r_{j}\right) \alpha_{n}-a\right\rceil$ and $t \alpha_{n-1} \alpha_{n}-\left(1+\delta\left(a, \alpha_{n-1}\right)\right) \alpha_{n}-t-\delta\left(a, \alpha_{n}\right) \geq 0$. Therefore, by Lemma 3 , $Q\left(m_{n+1}, n+1\right) \subseteq Q(m, n)$ and $Q\left(m_{n+1}, n+1\right) \subseteq Q\left(m_{n-1}, n-1\right)$, regardless of the value of $r_{j}$. Thus, $I_{n+1}(R) \subseteq I_{n}(R)$ and $I_{n+1}(R) \subseteq I_{n-1}(R)$. If $l \neq k_{j}$, for all $j \in W$, and $I_{l}(R) \subseteq \bigcap_{n=0}^{l} A_{n}$, then $I_{l+1}(R) \subseteq I_{l}(R)$ and $I_{l+1}(R) \subseteq$ $\bigcap_{n=0}^{l} A_{n}$. Also $I_{l+1}(R) \subseteq A_{l+1}$, and hence, $I_{l+1}(R) \subseteq \bigcap_{n=0}^{l} A_{n}$. If $l=k_{j}$, for some $j \in W$, and $I_{l-1}(R) \subseteq \bigcap_{n=0}^{l-1} A_{n}$, then $I_{l+1}(R) \subseteq \bigcap_{n=0}^{l-1} A_{n}$. Further, $I_{l+1}(R) \subseteq I_{l}(R)$, which implies that $I_{l+1}(R) \subseteq A_{l}$. Since $I_{l+1}(R) \subseteq A_{l+1}$, it follows that $I_{l+1}(R) \subseteq \bigcap_{n=0}^{l+1} A_{n}$. So by an argument similar to the one used in Theorem 1, $I_{l}(R) \subseteq \bigcap_{n=0}^{l} A_{n}$, for all $l \neq k_{j}, j \in W$. By Cantor's nested interval theorem, there exists a real $\xi \in\left[m_{0}+a, m_{0}+b\right]$ such that $\xi \in \bigcap_{n=0}^{\infty} A_{n}$. Thus by Lemma $1,0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$ is true, for all $n \in W$.

Let $S=\left\{s_{i}\right\}_{i=0}^{\infty}, s_{i} \in\{0,1\}$ be a second binary sequence distinct from $R$, that is, there is some whole number $n$ such that $s_{n} \neq r_{n}$. A new sequence of integers $\left\{l_{n}\right\}_{n=0}^{\infty}$ can be constructed with $l_{0}$ an arbitrary integer, and

$$
l_{n+1}= \begin{cases}\left\lceil\left(a+l_{n}+s_{j}\right) \alpha_{n}-a\right\rceil, & \text { where } j \in W \\ \left\lceil\left(a+l_{n}\right) \alpha_{n}-a\right\rceil, & \text { otherwise }\end{cases}
$$

There is a real $\xi^{\prime}$ that is contained in all the sets $I_{n}(S)$ and such that $0 \leq$ $\left\{\xi^{\prime} \beta_{n}-a\right\} \leq t$ holds, for all $n \in W$.

Since $S \neq R$, there exists a whole number $p$ such that $s_{p} \neq r_{p}$ and $s_{i}=r_{i}$, for $0 \leq i \leq p-1$. This means that $l_{k_{p}}=m_{k_{p}}$ and thus $Q\left(l_{k_{p}}, k_{p}\right)=Q\left(m_{k_{p}}, k_{p}\right)$; that is, $I_{k_{p}}(R)=I_{k_{p}}(S)$.

However, $s_{p} \neq r_{p}$ yields $l_{k_{p}+1} \neq m_{k_{p}+1}$, and hence,

$$
Q\left(l_{k_{p}+1}, k_{p}+1\right) \bigcap Q\left(m_{k_{p}+1}, k_{p}+1\right)=\emptyset
$$

This implies that $\xi \neq \xi^{\prime}$. Thus, for every binary sequence, there is a unique $\xi \in\left[a+m_{0}, b+m_{0}\right]$ so that $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$. The set of infinite binary sequences has the cardinality of the continuum and so must the set of $\xi$ that satisfies $0 \leq\left\{\xi \beta_{n}-a\right\} \leq t$, for all $n \in W$, and $\xi \in\left[a+m_{0}, b+m_{0}\right]$. This proves the theorem.

A useful corollary follows from this theorem when $\beta_{n}=k^{n}$, for all $n \in W$. This corollary improves a result of Flatto [11].

Corollary 1. Given $0 \leq a<1,0<t<1, b=a+t$, and if

$$
\begin{equation*}
k \geq \frac{1+\delta(a, k)+\sqrt{(1+\delta(a, k))^{2}+4 t(t+\delta(a, k))}}{2 t} \tag{2}
\end{equation*}
$$

then for every integer $m$ there is a set of $\xi$ with the cardinality of the continuum so that $\xi \in[a+m, b+m]$, and $\xi$ satisfies $0 \leq\left\{\xi k^{n}-a\right\} \leq t$, for all $n \in W$.

Proof. Note that $k$ satisfies $k \geq 1+\delta(a, k) / t$, and

$$
t k^{2}-(1+\delta(a, k)) k-t-\delta(a, k) \geq 0
$$

Let $\alpha_{n}=k$ and $\beta_{n}=k^{n}$, for all $n \in W$. The hypotheses of Theorem 2 are then met, and the corollary follows.

## References

[1] M. Ajtai, I. Havas, and J. Komlós, Every group admits a bad topology, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 21-34.
[2] M. Boshernitzan, Homogeneously distributed sequences and Poincaré sequences of integers of sublacunary growth, Monatsh. Math. 96 (1983), no. $3,173-181$.
[3] G. Choquet, Algorithmes adaptés aux suites $\left(k \theta^{n}\right)$ et aux chaînes associées, C. R. Acad. Sci. Paris 290 (1980), 719-724.
[4] , Construction effective de suites $\left(k(3 / 2)^{n}\right)$. Etude des mesures (3/2)-stables, C. R. Acad. Sci. Paris 291 (1980), 69-74.
[5] Le, Les fermés (3/2)-stables de П; structure des fermés dénombrables; applications arithmétiques, C. R. Acad. Sci. Paris 291 (1980), 239-244.
[6] , Répartition des nombres $k(3 / 2)^{n}$; mesures et ensembles associés, C. R. Acad. Sci. Paris 290 (1980), 575-580.
$[7] \quad, \quad \theta$-jeux récursifs et application aux suites $\left(k \theta^{n}\right)$; solénoïdes de $\prod^{Z}$, C. R. Acad. Sci. Paris 290 (1980), 863-868.
[8] , $\theta$-fermés et diminsion de Hausdorff. Conjectures de travail. Arithmétiques des $\theta$-cycles (où $\theta=3 / 2$ ), C. R. Acad. Sci. Paris 292 (1981), 339-344.
$[9] \quad, \theta$-fermés; $\theta$-chaînes et $\theta$-cycles (pour $\theta=3 / 2$ ), C. R. Acad. Sci. Paris 292 (1981), 5-10.
[10] P. Erdős, Problems and results in Diophantine approximations II, Repartition modulo 1, Lecture Notes in Mathematics Vol. 475, Springer-Verlag, New York, 1975.
[11] L. Flatto, Z-numbers and $\beta$-transformations, Contemporary Mathematics 135 (1992), 181-201.
[12] K. Mahler, An unsolved problem on powers of 3/2, J. Australian Math. Soc. 8 (1969), 313-321.
[13] A. D. Pollington, Interval constructions in the theory of numbers, Ph.d. thesis, University of London, 1976.
[14] , On the density of sequences $\left\{n_{k} \xi\right\}$, Illinois J. Math. 23 (1979), 511-515.
[15] R. Tijdeman, Note on Mahler's $3 / 2$ problem, K. Norske Vidensk. Selsk. Skr. 16 (1972), 1-4.


[^0]:    Key Words: fractional parts, sequences, Mahler's Z-numbers
    Mathematical Reviews subject classification: 11J71
    Received by the editors November 20, 1997

