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THE EQUIVALENCE OF UNIVERSAL AND
ORDINARY FIRST-RETURN
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Abstract

If a function F (x) is first-return differentiable to f(x) then it is also
universally first-return differentiable to f(x).

We show that if a function F : R → R has a first-return derivative f(x)
then in fact it is universally first return differentiable to the same function
f(x). This answers the second of two questions raised by M.J. Evans at the
1994  Lódź conference workshop. We note in Evans’ original question, F :
[0, 1] → R. (One might also consider F : (0, 1) → R.) For convenience, we
assume F : R→ R, but all three versions of the theorem are easily seen to be
equivalent (see [4]). In contrast, Darji, Evans, and O’Malley have characterized
the first-return continuous functions as those which are Darboux and Baire 1
(see [2]) while their characterization of the universally first-return continuous
functions turns out to be a proper subclass of this (see [1], [3]).

We first recall some terminology and introduce some notation. Let S be a
countable dense set of reals, which we call the “support set”. Let σ : S → Z+

be an injection, or an ordering on S, which is referred to as a “trajectory”.
For each s ∈ S, we call σ(s) the rank of s (or rank(s)). The “path system” P
denotes the relation on S × R defined by (s, x) ∈ P iff s 6= x and no element
r ∈ S between s and x has rank(r) < rank(s). For each real number x, let
path(x) denote the set {s ∈ S | (s, x) ∈ P} and conversely, for each s ∈ S let
range(s) denote the set {x | (s, x) ∈ P}. Note that range(s) is always a closed
neighborhood of s with one point, s, removed. Most of the time we will want
to talk about this range with the point s included. In that case we will call it
Range(s) = range(s) ∪ {s}.
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The limiting process as y → x, y ∈ path(x) is called the “σ-first-return
limit”. Fix a real function F and denote (F (y) − F (x))/(y − x) by D(y, x).
Then the “σ-first-return derivative” of F at x simply means the σ-first-return
limit of D(y, x). Note that the existence and the value of this derivative
depends on the trajectory σ. We say F is “first-return differentiable” to a
finite function f(x) if there exists some support set S and some trajectory
σ : S → Z+ such that for each x, the σ-first-return derivative of F at x is
f(x). We say that F is “universally first-return differentiable” to f(x) if given
any countable dense set T (called the “target set”) there exists some trajectory
τ : T → Z+ such that at each x, the τ -first-return derivative of F is f(x).

We will prove the following theorem

Theorem 1. If F (x) : R→ R is first-return differentiable to a finite function
f(x), then F (x) is also universally first-return differentiable to f(x).

We will prove this theorem in a sequence of definitions and lemmas. Let
F be first-return differentiable to f . Let S, σ, T be as above. Our goal is to
find an appropriate trajectory τ.

To avoid confusion, we will say “path” and “range” when we are referring
to the trajectory σ. Later, when we need to refer to the trajectory τ we will
use the terms “newpath” and “newrange”. For A ⊆ R we let cl(A) denote the
closure of A, int(A) denote the interior of A, and cA denote the complement
of A.

Definition 2. For each pair of positive integers m, n we let

Xm,n = {x | (rank(s) ≥ m, s ∈ path(x))→ |D(s, x)− f(x)| < 1/n}.

The following proposition follows immediately.

Proposition 3. If m′ ≥ m and n′ ≤ n, then Xm,n ⊂ Xm′,n′ . Also, F
is first-return differentiable to f(x) means precisely that for each n ∈ Z+,
∪mXm,n = R.

The following simple fact is used often enough that we list it as a lemma.
When we need this fact, we will simply refer to it as “Convexity”.

Lemma 4. (Convexity) Suppose that u < v < w. Then D(u,w) is between
D(u, v) and D(v, w) (inclusive).

Proof.

D(u,w) = (D(u, v)(v − u) +D(v, w)(w − v))/(w − u)
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is a convex combination of D(u, v) and D(v, w). �

Then next lemma is very similar and serves as a partial converse to the
previous lemma.

Lemma 5. Let v be any number between u and w, which is closer to u than
it is to w. Suppose that both D(u,w) and D(u, v) are both within ε of some
number y. Then D(v, w) is within 3ε of y.

Proof.

D(v, w) =(D(u,w) · (w − u)−D(u, v) · (v − u))/(w − v)
D(v, w)− =((D(u,w)− y) · (w − u)− (D(u, v)− y) · (v − u))/(w − v)

|D(u,w)− y| <(ε · (w − u) + ε · (v − u))/(w − v)
=ε · ((w − u) + (v − u))/((w − u)− (v − u)) .

Then, since |v − u| < (1/2)|w − u|, we have that |D(u,w)− y| < 3ε. �

The next lemma is the main principle which will lay the foundation of our
construction of τ .

Lemma 6. Given any m ∈ Z+ and r ∈ R there is a neighborhood I of r such
that for each n ≤ m and each x in Xm,n ∩ I,

(i) f(x) and f(r) differ by less than 4/n;

(ii) if x 6= r, then D(x, r), f(x) differ by less than 5/n;

(iii) if x, y are both in Xm,n ∩ I, then f(x), f(y) differ by less than 8/n; and
if, in addition, x 6= y, then D(x, y), f(x) differ by less than 13/n.

Proof. Let m′ be large enough that m′ > m and r ∈ Xm′,m. Let u < r
be such that u ∈ path(r) with rank(u) > m′. Let n ≤ m and suppose
x ∈ Xm,n∩((u+r)/2, r). Let p be the element of S with smallest rank between
x and r. Then u < x < p < r, and since u ∈ path(r), rank(p) > rank(u) >
m′ > m. Also, since u ∈ path(r) we have u ∈ path(x). It follows from the
definition of Xm,n that D(u, x), f(x) differ by less than 1/n. Furthermore,
p ∈ path(x) ∩ path(r). Since x ∈ Xm,n, it follows that D(x, p), f(x) differ
by less than 1/n, as do D(p, r), f(r). By convexity, D(u, p) also differs from
f(x) by less than 1/n. Since r ∈ Xm′,m ⊆ Xm′,n and rank(p)≥ m′, we also
have that D(p, r), f(r) differ by less than 1/n. Similarly, D(u, r), f(r) differ
by less than 1/n. Then since (r − p) < (1/2)(r − u) we have from Lemma 5,
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that |D(u, p) − f(r)| < 3/n. Since D(u, p), f(x) differ by less than 1/n, we
also get that f(r), f(x) differ by less than 4/n.

Next, since D(p, r) differs from f(r) by less than 1/n, it differs from f(x)
by less than 5/n. Since we have already established that D(x, p) differs from
f(x) by less than 1/n, it follows by convexity that D(x, r), f(x) differ by
less than 5/n. By a similar argument, there is a v > r such that if x ∈
Xm,n ∩ (r, (v+ r)/2), then f(r), f(x) differ by less than 4/n and D(x, r), f(x)
differ by less than 5/n. Therefore, letting I = ((u+r)/2, (v+r)/2), properties
(i) and (ii) are established.

The first part of (iii) follows directly from (i). To see the second part,
choose p ∈ S of smallest rank between x and y so that p ∈ path(x) ∩ path(y).
Now I was chosen small enough that, except for possibly r, all elements in
S ∩ I have rank greater than m. Therefore, if p 6= r, then rank(p) > m so
D(x, p), f(x) differ by less than 1/n as do D(p, y), f(y). Since f(x), f(y)
differ by less than 8/n, we get D(p, y), f(x) differ by less than 9/n. Hence, by
convexity, D(x, y), f(x) differ by less than 9/n. On the other hand, if p = r,
then if r is between x and y. By (ii), D(x, r), f(x) differ by less than 5/n, as
do D(r, y), f(y). Then D(r, y), f(x) differ (using the first part of (iii)) by less
than 13/n. Then, by convexity, D(x, y), f(x) differ by less than 13/n. �

Corollary 7. F is continuous on the closure of each Xm,n.

Proof. We may assume without loss of generality that n = 1, since Xm,n ⊆
Xm,1, and so n ≤ m. Let r ∈ cl(Xm,n), and I be as in Lemma 6. If x ∈ Xm,n∩I
and x 6= r, then by Lemma 6, (i) and (ii), D(x, r) and f(r) differ by less than
9/n; so |D(x, r)| < |f(r)| + 9/n. Then |F (x) − F (r)| < |x − r|(|f(r)| + 9/n)
and hence

lim
x→r,x∈Xm,n

F (x) = F (r) . (1)

Now let ε > 0, let x ∈ cl(Xm,n), x 6= r, and x close enough to r so that any
x′ ∈ Xm,n within 2|x− r| of r has |F (x′)− F (r)| < ε/2. Using (1) again, we
can choose an x′ ∈ Xm,n arbitrarily close to x, with |F (x′)− F (x)| < ε/2. It
follows that |F (x)− F (r)| < ε. �

Corollary 8. If I is compact, then F is bounded on cl(Xm,n) ∩ I.

The next corollary follows immediately from the fact, proved in [2], that
a first-return differentiable function is universally first-return continuous. For
convenience, we provide an alternate proof.
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Corollary 9. Let I be any open neighborhood of x and J be any open neigh-
borhood of F (x). Then for some t ∈ T ∩ I we have F (t) ∈ J .

Proof. Let A = {x ∈ I|F (x) ∈ J}. We must show that A ∩ T 6= φ. Since T
is dense, it is enough to show that A contains a nonempty open interval. By
Proposition 3 cl(A) ⊆ ∪m∈Z+Xm,1; so by the Baire Category Theorem there
is an open subinterval K ⊂ I and a positive integer m such that K ∩ A 6= φ
and Xm,1 is dense in cl(A) ∩ K. Then, by Corollary 7, F is continuous on
cl(A) ∩ K. Let r ∈ A ∩ K. Then F (r) ∈ J . Then there must be some
neighborhood L ⊂ K of r where each p ∈ cl(A) ∩ L also has F (p) ∈ J . But
then cl(A) ∩ L ⊂ A ∩ L so that A is closed in L.

Since F is first-return differentiable, given any x we can find points s ∈ S
which are arbitrarily close to x on either side, such that F (s) is arbitrarily
close to F (x). It follows that A has no points isolated on either side. There-
fore, L ⊆ A. �

Definition 10. Let s ∈ S with bounded range, with rank ≥ m. Let r ∈
Range(s). We say that r is an (m,n)-good replacement for s if and only if for
some η < 16/n if x ∈ Xm,n ∩Range(s) with x 6= r, then |D(r, x)− f(x)| < η.

Intuitively, r performs almost as well as s as an element of the support
set. Note that if Range(s) is bounded and rank(s) ≥ m, then by definition of
Xm,n, s is (m,n)-good for itself.

Definition 11. We say that r is an m-good replacement for s iff r is an
(m,n)-good replacement for s for each n ≤ m.

Corollary 12. For each r /∈ S, m ∈ Z+, there are elements s ∈ S arbitrarily
close to r such that r is an m-good replacement for s.

Proof. Let I be as in Lemma 6. Then by Lemma 6 (ii), any s ∈ path(r) ∩ I
with bounded range, Range(s) ⊆ I, and rank(s) ≥ m will suffice. �

Lemma 13. The Theorem holds when S ⊂ T.

Proof. Let {t1, t2, . . .} be the elements of T\S. Using Corollary 12, let π(ti)
denote the s ∈ S of least rank such that ti is an i-good replacement for s and
s 6= π(tj) for j < i. If t ∈ S let π(t) = t. Let τ : T → Z+ by τ(t) = 2σ(π(t))+1
if t /∈ S and 2σ(π(t)) if t ∈ S. Note that τ is one-to-one, preserves the order
on S induced by the trajectory σ, and that τ(π(t)) ≤ τ(t). The trajectory τ
defines a new path system.

Claim: If t ∈ newpath(x) and π(t) 6= x, then π(t) ∈ path(x).
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Proof of Claim. Let s ∈ S be between π(t) and x. We must show σ(s) >
σ(π(t)). If s = t, then t ∈ S; so π(t) = t; so s = π(t) which contradicts
that s is between π(t) and x. Therefore, s 6= t and so either s is between
π(t), t or between t, x. If s is between π(t), t, then by definition of π, t is
an i-good replacement for π(t). In particular, t ∈ Range(π(t)) and therefore,
σ(s) > σ(π(t)). If s is between t, x, then since t ∈ newpath(x) we have
τ(s) > τ(t) ≥ τ(π(t)). But then σ(s) > σ(π(t)) which finishes the proof of the
claim.

Fix n, x. We must show that if t ∈ newpath(x) with τ(t) large enough, then
D(t, x), f(x) differ by less than 1/n. Choosem > 16n so large that x ∈ Xm,16n.
First, consider ti ∈ T\S with ti ∈ newpath(x). Since π is one-to-one on T\S,
π(ti) = x for at most one value of i. Therefore, choose ti ∈ newpath(x) with
τ(ti) large enough to force π(ti) 6= x, and also large enough that i > m, and
τ(ti) > 2m+ 1. Then π(ti) ∈ path(x) with σ(π(ti)) > m. Since ti is an i-good
replacement for π(ti) and x ∈ Xm,16n ⊆ Xi,16n, we have that D(ti, x), f(x)
differ by less than 16/16n = 1/n. Next, consider t ∈ S with t ∈ newpath(x)
and with τ(t) > 2m. Then π(t) = t ∈ path(x) and σ(t) > m. Since x ∈ Xm,16n

it follows that D(t, x), f(x) differ by less than 1/16n < 1/n. �

Definition 14. We say that r is (m,n)-very good replacement for s iff when-
ever t is sufficiently close to r and F (t) is sufficiently close to F (r), we have
that t is an (m,n)-good replacement for s.

Lemma 15. If r ∈ int(Range(s)) \ cl(Xm,n) and r is an (m,n)-good replace-
ment for s, then r is an (m,n)-very good replacement for s.

Proof. We must show that for any t close enough to r, with F (t) close enough
to F (r), t will be an (m,n)-good replacement for s. The first requirement on
t is to choose it close enough to r so that t ∈ Range(s) \ cl(Xm,n).

Our goal is to make sure that for any x ∈ Xm,n ∩ Range(s), D(t, x) can
be made arbitrarily close to D(r, x) by simply choosing t close enough to
r and F (t) close enough to F (r), and we want these closeness criteria to be
independent of the particular choice of x. To see that this can be accomplished,
let d denote the distance from r to Xm,n and first choose t so close to r that
the distance from t to Xm,n is greater than d/2. Using Corollary 8, and the
fact that s has bounded range, let B be any fixed number larger than |F (r)|
and |F (x)| for all x ∈ Xm,n ∩ Range(s). Note that

|D(t, x)−D(r, x)| =
∣∣∣∣F (t)− F (x)

t− x
− F (r)− F (x)

r − x

∣∣∣∣
=

∣∣∣∣ F (t)
t− x

− F (r)
t− x

+
F (r)
t− x

− F (r)
r − x

+
F (x)
r − x

− F (x)
t− x

∣∣∣∣
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≤
∣∣∣∣F (t)− F (r)

t− x

∣∣∣∣ + |F (r)− F (x)|
∣∣∣∣ 1
t− x

− 1
r − x

∣∣∣∣
<
|F (t)− F (r)|

d/2
+ 2B

∣∣∣∣r − td2/2

∣∣∣∣
which can be made arbitrarily small, just by choosing |F (t)−F (r)| and |r− t|
small. �

Lemma 16. Let s be an element of S with rank(s) ≥ m and with bounded
range. Let I be a neighborhood of s found by applying Lemma 6 to s,m. Then
there is a neighborhood J ⊆ I of s, with cl(J) ⊂ int(Range(s)), such that for
any n ≤ m, if:

(i) r ∈ J ∩ cl(Xm,n), or

(ii) r ∈ J ∩ S and D(r, s), f(s) differ by at most 9, and for every x /∈
Range(r) there is an x′ ∈ Xm,n ∩ Range(r) between r and x,

then r is an (m,n)-good replacement for s.

Proof. Assume without loss of generality that r 6= s. Decrease I, if necessary,
so that cl(I) ⊂ int(Range(s)) and also so that every such r ∈ S ∩ I has
rank(r) ≥ m. The condition that D(r, s), f(s) differ by at most 9, implies
that F (r) is close to F (s), how close depends on the size of J . Choose J so
small that whenever r ∈ J , it is so close to s with F (r) so close to F (s) that
whenever x ∈ cl(Xm,1) ∩Range(s)\I, then D(r, x), D(s, x) differ by less than
1/m. This is made possible by Corollary 8. This completes the choice of the
interval J .

Let n ≤ m and let r satisfy either (i) or (ii). Let x ∈ Xm,n∩Range(s) with
x 6= r. We will complete the proof by showing D(x, r), f(x) differ by < 13/n.

If (i) holds and r ∈ Xm,n, then with s replacing r in Lemma 6 and r
replacing x, we get that from Lemma 6 (ii) that D(r, s), f(r) differ by less
than 5/n ≤ 5. Combining this with Lemma 6 (i), D(r, s), f(s) differ by at
most 9. Using Corollary 7 we conclude that D(r, s), f(s) differ by less than
9 for all r satisfying (i). Since this property is also part of condition (ii), we
have in all cases that D(r, s), f(s) differ by at most 9.

If x /∈ I, then from the first paragraph it follows that D(r, x), D(s, x) differ
by less than 1/m ≤ 1/n. Also, since x ∈ Xm,n, we get that D(s, x), f(x) differ
by less than 1/n. Therefore, D(r, x), f(x) differ by less than 2/n and we are
done.

Assume then that x ∈ I. If r ∈ cl(Xm,n), then by Lemma 6(iii) and
Corollary 7, D(x, r), f(x) differ by < 13/n and we are done. This finishes
Case (i). We shall assume, therefore, that r satisfies (ii).
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By the shrinking of the interval I, we have rank(r) ≥ m. If x is in Range(r),
then by definition of Xm,n, D(r, x), f(x) differ by less than 1/n, and we are
done. If x /∈ Range(r), then as part of condition (ii), there is some x′ in
Xm,n ∩ Range(r) between r, x. By Lemma 6(iii), D(x, x′), f(x) differ by less
than 13/n, and f(x′), f(x) differ by less than 8/n. By the definition of Xm,n,
D(x′, r), f(x′) differ by less than 1/n, and so D(x′, r), f(x) differ by less than
9/n. Then, by convexity, we also get that D(x, r), f(x) differ by less than
13/n. �

Corollary 17. Let s, m, J be as in Lemma 16 and let n ≤ m. Suppose K
is a contiguous interval of cl(Xm,n) with cl(K) ⊂ J . Let r be the element of
S ∩ cl(K) with smallest rank. Then r is an (m, i) -good replacement for s for
each i ≤ n.

Proof. Since cl(J) ⊂ int(Range(s)), it follows that r ∈ int(Range(s)) and
hence rank(r) ≥ rank(s). Therefore, if cl(K) contains s, then r must be equal
to s and we are done. So assume that s /∈ cl(K). If r is an endpoint of K, then
r ∈ J ∩cl(Xm,n) ⊂ J ∩cl(Xm,i) for each i ≤ n, and by Lemma 16 we are done.
Otherwise, let y be the endpoint of K closest to s. Then y ∈ cl(Xm,n) and is
between r and s. Also, by choice of r, y ∈ int(Range(r)). Choose y′ ∈ Xm,n

so close to y that y′ is also between r and s and in Range(r) ∩ Range(s).
Then f(y′), f(s) differ by less than 4/n by Lemma 6(i). Also, by definition of
Xm,n D(r, y′), f(y′) differ by less than 1/n as do D(y′, s), f(y′). Hence, by
convexity, D(r, s), f(y′) differ by less than 1/n. Consequently, D(r, s), f(s)
differ by less than 5/n ≤ 5. Also, arbitrarily close to each endpoint of K there
exist elements x′ in Xm,n ∩ Range(r) ⊆ Xm,i ∩ Range(r). Therefore, for each
x /∈ Range(r) there is an x′ ∈ Xm,i ∩ Range(r) between r, x. Now apply
Lemma 16. �

Lemma 18. Let s, m, J be as in Lemma 16. Let p ∈ J be an m-good
replacement for s. Then there are points q arbitrarily close to p on either side
which are also m-good replacements for s. Furthermore, q can be chosen so
that |D(q, p)− f(p)| is as small as we wish.

Proof. By the definition of “good replacement”, for each n ≤ m there is an
η(n) < 16/n such that for each x in Xm,n ∩ Range(s) with x 6= p we have
D(p, x) − f(x) < η(n). Let ε < min{16/n − η(n)|n = 1, 2, . . . ,m}. Let I be
from Lemma 6 applied to p, m. Using Corollaries 7, 8, let L ⊂ I ∩ J be a
neighborhood of p such that if q ∈ L with D(q, p), f(p) differing by less than
1, then D(q, x)−D(p, x) < ε, for any x ∈ cl(Xm,1) ∩ Range(s)∩cI.
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We concentrate on the left of p (the proof on the right of p is similar).
Suppose we wish that D(q, p), f(p) differ by less than 1/w, where w ∈ Z+ and
w > m. Let m′ be large enough that p ∈ Xm′,w. Let n be the smallest number
n ≤ m (if there is any) such that p is isolated on the left from Xm,n. If no
such n exists, set n = m + 1. Let q ∈ path(p) ∩ L with q < p, rank(q) > m′,
and q in the right half of the left-isolating interval (if it exists). Then D(q, p),
f(p) differ by less than 1/w < 1/m. It remains to find at least one such q
which is an (m, i)-good replacement for s, for each i ≤ m.

We first consider the case where 1 ≤ i < n. Then by choice of n, Xm,n−1

has points arbitrarily close to p on the left. If cl(Xm,n−1) contains a left-
neighborhood of p, then we may also choose q ∈ cl(Xm,n−1). But if cl(Xm,n−1)
contains no such neighborhood, choose q to be the element of smallest rank
inside some contiguous interval K of cl(Xm,n−1), with cl(K) ⊆ J . In either
case, (by Lemma 16(i) or Corollary 17 resp.) q is an (m, i)-good replacement
for s. This concludes the case 1 ≤ i < n, and hence also concludes the case
where n > m. Hence we may assume that p is isolated on the left from Xm,n.

We now consider the case n ≤ i ≤ m and let x ∈ Xm,i ∩ Range(s) with
x 6= q. We will complete the proof by showing D(q, x), f(x) differ by less than
max(η(i) + ε, 15/i) which is less than 16/i.

If x = p, then since D(q, p), f(p) differ by less than 1/w < 1/m we are
done. So assume x 6= p.

If x /∈ I, then D(q, x), D(p, x) differ by less than ε and using that p is an
(m, i)-good replacement for s, D(p, x), f(x) differ by less than η(i). Hence
D(q, x), f(x) differ by less than η(i) + ε and we are done. So assume x ∈ I.

Since D(q, p), f(p) differ by less than 1/w < 1/i and by Lemma 6(i), f(p)
and f(x) differ by less than 4/i, then D(q, p), f(x) differ by less than 5/i.
Also, D(p, x), f(x) differ by less than 5/i by Lemma 6(ii).

Case 1: x > p. Then by convexity, D(q, x), f(x) differ by less than 5/i.
Case 2: x < p. Since q is in the right half of the interval isolating p

on the left from Xm,n, and since Xm,i ⊆ Xm,n, q must be closer to p than
it is to x. It follows by Lemma 5, that D(x, q), f(x) differ by less than 15/i. �

Lemma 19. Let s, m, J be as in Lemma 16 and let n ≤ m. If s∗ ∈ J is
an m-good replacement for s and s∗ is an (m, i)-very good replacement for s
for each i such that n < i ≤ m, then there is an s∗∗ arbitrarily close to s∗,
with F (s∗∗) arbitrarily close to F (s∗) such that s∗∗ is an m-good replacement
for s and s∗∗ is an (m, i)-very good replacement for s for each i such that
n ≤ i ≤ m.
Proof. Since s∗ ∈ J , s∗ is in int(Range(s)). If s∗ /∈ cl(Xm,n), then by
Lemma 15, s∗ is an (m,n) -very good replacement for s and letting s∗∗ = s∗
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we are done. Also, if Xm,n is dense in a neighborhood of s∗, then again s∗ is
an (m,n)-very good replacement for s (by Lemma 16(i)), and we are done. If
s∗ happens to be isolated on either the left or right from cl(Xm,n), then by
Lemma 18, choose s∗∗ ∈ int(Range(s))\cl(Xm,n) so that s∗∗ is also an m -good
replacement for s, and such that the difference between s∗ and s∗∗ and also
between F (s∗) and F (s∗∗) is as small as we wish. Since cl(Xm,i) ⊂ cl(Xm,n)
for each i ≥ n, by Lemma 15 s∗∗ is an (m, i) -very good replacement for s,
and we are done.

Therefore, we may assume that there are contiguous intervals of cl(Xm,n)
arbitrarily close to s∗. Let I be from Lemma 6 applied to s∗, m. Reduce
I if necessary so that no element of S ∩ I\{s∗} has rank ≤ m. Choose an
interval K ⊂ J which is contiguous to cl(Xm,n) and which is close enough to
s∗ that cl(K) ⊂ J ∩ I. For each i such that n < i ≤ m, s is an (m, i)-good
replacement for s. Therefore, we may choose K so close to s∗ that whenever
r ∈ cl(K) with D(r, s∗), f(s∗) differing by less than 10 we have that r is an
(m, i)-good replacement for s. Let p be in S ∩ cl(K) of minimal rank. Then
by Corollary 17, p is (m, i) -good for s for all i ≤ n.

If p ∈ Xm,n, then by Lemma 6(i), f(p), f(s∗) differ by < 4/n while by
Lemma 6(ii), D(p, s∗) , f(p) differ by < 5/n, and so D(p, s∗)f(s∗) differ by
< 9/n which is less than 10.

If p /∈ Xm,n, let x be the endpoint of K closest to s∗. Then x ∈ cl(Xm,n).
If x ∈ Xm,n, leave it alone. Otherwise, move it a little closer to s∗ so that it
is in Xm,n, but still in Range(p). In either case, x ∈ Xm,n ∩ Range(p). Then
D(p, x), f(x) differ by less than 1/n. By Lemma 6(i), f(x), f(s∗) differ by
less than 4/n. By Lemma 6(ii), D(x, s∗), f(x) differ by less than 5/n. So
by convexity, D(p, s∗), f(x) differ by less than 5/n. Therefore, we have again
that D(p, s∗), f(s∗) differ by less than 9/n < 10.

So in either case, p is an (m, i)-good replacement for s for each i such that
n < i ≤ m. It follows that p is an m-good replacement for s.

By Lemma 18, there must be some s∗∗ in int(K) which is also an m-good
replacement for s. By the definition of K, s∗∗ /∈ cl(Xm,n). If n ≤ i ≤ m, then
also s∗∗ /∈ cl(Xm,i). Also, by Lemma 16, J ⊆ int(Range(s)); so s∗∗ ∈ K ⊆ J ⊆
int(Range(s)). Hence by Lemma 15, s∗∗ is an (m, i)-very good replacement
for s.

Since s∗∗ can be chosen arbitrarily close to p and p arbitrarily close to
s∗, we have s∗∗ arbitrarily close to s∗. As part of Lemma 18, F (s∗∗) can be
chosen arbitrarily close to F (p), and since D(p, s∗) differs from f(s∗) by less
than 10, F (p) can be chosen arbitrarily close to F (s∗). Therefore, F (s∗∗) can
be chosen arbitrarily close to F (s∗) and we are done. �
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Lemma 20. Let s, m, be as in Lemma 16. Then there are points t ∈ T which
are arbitrarily close to s on either side, with |D(s, t)− f(s)| arbitrarily small,
such that t is an m-good replacement for s.

Proof. Let J also be as in Lemma 16. Suppose we wish that D(s, t), f(s)
differ by less than 1/w . Trivially, s is an m-good replacement for itself.
Therefore, by Lemma 18, let s0 < s be such that s0 ∈ J and s0 is an m-good
replacement for s and such that D(s, s0), f(s) differ by less than 1/w. We
are not done, however, since s0 might not be in T . Now it is valid to apply
Lemma 19 with n = m to find a nearby s1 ∈ J with s1 < s, and choose s1 so
close to s0, with F (s1) so close to F (s0) that D(s1, s), f(s) still differ by less
than 1/w and such that s1 is an m-good replacement for s and also (m,m)-
very good for s. Apply Lemma 19 again to find a nearby s2 ∈ J with s2 < s
and D(s2, s), f(s) differing by less than 1/w and such that s2 is an m-good
replacement for s and for i = m or i = m − 1, s2 is (m, i)-very good for s.
Continue until sm < s is found which is m-good for s and for each 1 ≤ i ≤ m,
sm is an (m, i)-very good replacement for s with D(sm, s), f(s) still differing
by less than 1/w. Then using Corollary 9 and Definition 14 find t ∈ T so close
to s, with F (t) so close to F (s) that t < s and t is an m-good replacement for
s, and D(t, s), f(s) differ by less than 1/w. The argument on the right of s is
identical. �

Lemma 21. The theorem holds for some dense subset T ′ ⊂ T . That is, there
is a trajectory τ : T ′ → Z+ such that for each x, the τ -first return derivative
of F at x is f(x).

Proof. List the elements of S in order of rank, S = (s1, s2, . . .). We construct
the ordered set T ′ and its ordering τ in stages. Suppose that at stage n − 1,
each si(i < n) is associated with n − i elements of T and these are ordered
(t1, t2, . . . , tn(n−1)/2) partially creating a new path system. Suppose also that
for each x, if tj ∈ newpath(x) and si 6= x is associated with tj , then si ∈
path(x).

Stage n : With each si(i < n) choose a new t ∈ T to associate with it such
that t is between si and sn and is closer to si than any previously chosen t′ ∈ T
with t′ 6= si. Number these new elements of T , tn(n−1)/2+1, . . . , tn(n−1)/2+(n−1)

in the order of the s′is which they are associated with. Now associate with sn

a new element tn(n+1)/2 ∈ T closer to sn than any previously chosen t(t 6= sn).
Claim: If tj ∈ newpath(x) is associated with si 6= x, then si ∈ path(x).

Proof of Claim: If si /∈ path(x), then there is some k < i such that sk is
between si and x. Then at stage i there is a t′ associated with sk between sk

and si. Then t′ is between si and x. Since tj is not associated before stage i
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and therefore is associated after t′, we can’t have t′ between tj and si. Then
since t′ is between si and x, it must be that t′ is between tj and x contradicting
that tj ∈ newpath(x). This finishes the proof of the claim.

By Lemma 20, for each sm, with bounded range, each tj ∈ T associated
with it can be chosen to be an m-good replacement for sm with D(tj , sm),
f(sm) differing by less than 1/j. Fix n′ and let x ∈ R. Let n = 16n′ and
choose m so that m > n and x ∈ Xm,n. Let m′ > m be such that by stage m′

there exists u, v ∈ T with u < x < v where u is associated with some si < u
and v is associated with some sk > v and where both si and sk are in path(x)
with bounded range, and both i, k are greater than m. Let tj ∈ newpath(x)
with j > m′(m′ + 1)/2. We will complete the proof by showing that D(tj , x),
f(x) differ by less than 1/n′. Now tj is associated with some sz and is cho-
sen after both u and v. If sz = x, then D(tj , x), f(x) differ by less than
1/j < 1/n′ and we are done. So assume sz 6= x. Since tj is between u, v, it
follows that sz is between u and v (inclusive) and hence (strictly) between si

and sk. Since both si and sk are in path(x), it must be that z > m. Also
by the claim, sz ∈ path(x). Then, since tj is a z-good replacement for sz,
and x ∈ Xm,n ⊂ Xz,n, we have that D(tj , x) and f(x) differ by less than
16/n = 1/n′. �

Lemma 21 solves the problem for the case where the new support set is
allowed to be a certain subset of the target set T . By following Lemma 21
with an application of Lemma 13 the proof of the Theorem is completed.
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