R. Delaware, Department of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, MO 64110. e-mail: 71237.110@compuserve.com

L. Eifler, Department of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, MO 64110. e-mail: eiflerl@umkc.edu

# GRAPHS OF FUNCTIONS, REGULAR SETS AND S-STRAIGHT SETS

#### Abstract

A subset E of  $\mathbb{R}^p$  is s-straight if E has finite Hausdorff s-dimensional outer measure which equals its Method I s-outer measure. The graph of a continuously differentiable function is shown to be the countable union of closed 1-straight sets together with a set of Hausdorff 1-measure zero. This result is extended to the graphs of absolutely continuous functions and to regular sets.

### 1 Introduction

In [6], For an introduced the notion of s-straight and proposed a subset E of the unit circle such that E is 1-straight and has positive measure. A detailed analysis of this proposed set is given in [2] together with other examples and results for 1-straight sets.

Given a nonempty bounded subset B of  $\mathbb{R}^p$ , define  $\operatorname{diam}(B) = \sup\{d(x,y) : x,y \in B\}$  where d(x,y) denotes the usual distance function in  $\mathbb{R}^p$ . Define  $\operatorname{diam}(\emptyset) = 0$ . We write  $\operatorname{diam}^s(E)$  in place of  $[\operatorname{diam}(E)]^s$ .

**Definition 1.1.** Let E be a subset of  $\mathbb{R}^p$  and s > 0. Given  $\infty \geq \delta > 0$ , define

$$\overline{m}_{\delta}^{s}(E) = \inf \left\{ \sum_{i=1}^{\infty} \operatorname{diam}^{s}(E_{i}) : E = \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) < \delta \text{ for } i = 1, 2, \dots \right\}.$$

Set  $\overline{m}^s(E) = \sup_{\delta > 0} \overline{m}^s_{\delta}(E)$  and set  $\overline{m}^s_I(E) = \overline{m}^s_{\infty}(E)$ .

Key Words: Hausdorff measure, s-straight sets, regular sets Mathematical Reviews subject classification: 28A78, 28A05 Received by the editors August 10, 2000

The outer measure  $\overline{m}_I^s$  is known as a Method I outer measure. The outer measure  $\overline{m}^s$  is a metric outer measure on  $\mathbb{R}^p$ . Hence, every closed subset of  $\mathbb{R}^p$  is  $\overline{m}^s$ -measurable. See [3, pp. 132–144] for details. If E is an  $\overline{m}^s$ -measurable subset of  $\mathbb{R}^p$ , then we write  $\mathcal{H}^s(E)$  in place of  $\overline{m}^s(E)$ . If  $(A_n)_{n=1}^{\infty}$  is a decreasing sequence of compact subsets of  $\mathbb{R}^p$  and if  $\delta > 0$ , then  $\overline{m}_{\delta}^{s}(\bigcap_{n=1}^{\infty}A_{n})=\lim_{n\to\infty}\overline{m}_{\delta}^{s}(A_{n}).$  In [6], Foran defines s-straight and proves Theorem 1.3, providing a useful equivalent formulation of s-straight.

**Definition 1.2.** Given a subset E of  $\mathbb{R}^p$  and s > 0, we say E is s-straight if  $\overline{m}^s(E) < \infty \text{ and } \overline{m}^s(E) = \overline{m}_I^s(E).$ 

**Theorem 1.3.** Let E be a subset of  $\mathbb{R}^p$  with  $\overline{m}^s(E) < \infty$ . Then E is s-straight if and only if  $\overline{m}^s(E \cap K) \leq \operatorname{diam}^s(E \cap K)$  for each compact subset K of  $\mathbb{R}^p$ .

## Graphs of Functions and S-Straight Sets

**Definition 2.1.** Let  $A_1, \ldots, A_n$  be subsets of  $\mathbb{R}^p$ . We say that  $A_1, \ldots, A_n$  are s-aligned if diam<sup>s</sup>(B)  $\geq \sum_{i=1}^{n} \operatorname{diam}^{s}(B \cap A_{i})$  for each bounded subset B of  $A_1 \cup \cdots \cup A_n$ .

If  $\operatorname{diam}(A \cup B) \geq \operatorname{diam}(A) + \operatorname{diam}(B)$ , then A and B may not be 1-aligned. Let  $A = \{(x, \sin x) : 0 \le x \le \pi\}$  and  $B = \{(x, \sin x) : -\pi \le x \le 0\}$ . Then diam $(A \cup B) = \operatorname{diam}(A) + \operatorname{diam}(B)$ . If  $A_1 = \{(x, \sin x) : 0 \le x \le \pi/2\}$ , then  $\operatorname{diam}(A_1 \cup B) < \operatorname{diam}(A_1) + \operatorname{diam}(B)$ . Hence, A and B are not 1-aligned.

The motivation for the definition of s-aligned arises from the following result.

**Proposition 2.2.** Let  $A_1, \ldots, A_n$  be s-aligned subsets of  $\mathbb{R}^p$ . If  $A_1, \ldots, A_n$ are s-straight, then  $A_1 \cup \cdots \cup A_n$  is s-straight.

**Proof.** Let K be a compact set in  $\mathbb{R}^p$ . Then  $\overline{m}^s[K \cap (A_1 \cup \cdots \cup A_n)] \le \sum_{i=1}^n \overline{m}^s(K \cap A_i) \le \sum_{i=1}^n \operatorname{diam}^s(K \cap A_i) \le \operatorname{diam}^s[K \cap (A_1 \cup \cdots \cup A_n)]$ .

Suppose A and B are s-aligned subsets of  $\mathbb{R}^p$ . Let  $\overline{A}$  and  $\overline{B}$  denote the closure of A and B, respectively. Then  $\overline{A} \cap \overline{B}$  contains at most one point. Hence,  $\overline{m}^s(A_1 \cup B_1) = \overline{m}^s(A_1) + \overline{m}^s(B_1)$  for each  $A_1 \subseteq \overline{A}$  and  $B_1 \subseteq \overline{B}$ .

**Theorem 2.3.** Let  $(q_n)_{n=1}^{\infty}$  be a sequence of positive integers. Set  $Q^n =$  $\{(i_1,\ldots,i_n): 1 \le i_1 \le q_1,\ldots,1 \le i_n \le q_n\} \text{ for } n=1,2,\ldots \text{ Let } \{A_\beta: \beta \in \{1,2,\ldots,n\}\} \}$  $Q^n$  for some  $n \geq 1$  be a family of compact subsets of  $\mathbb{R}^p$  such that  $A_1, \ldots, A_{q_1}$ are s-aligned and such that

- (a)  $A_{(\beta,1)}, \ldots, A_{(\beta,q_n)}$  are s-aligned if  $\beta \in Q^{n-1}$ , (b)  $A_{\beta} \supseteq A_{(\beta,1)} \cup \cdots \cup A_{(\beta,q_n)}$  if  $\beta \in Q^{n-1}$  and

(c)  $\lim_{n\to\infty} \max\{\operatorname{diam}^s(A_\beta) : \beta \in Q^n\} = 0.$ Let  $P_n = \bigcup \{A_\beta : \beta \in Q^n\}$ . Then  $\bigcap_{n=1}^\infty P_n$  is s-straight.

**Proof.** If  $E \subseteq P_n$ , then  $\operatorname{diam}^s(E) \ge \sum_{\beta \in Q^n} \operatorname{diam}^s(E \cap A_\beta)$ . Let  $P = \bigcap_{n=1}^{\infty} P_n$ . The set P is closed and  $P_n \supseteq P_{n+1}$  for  $n \ge 1$ . Let K be a compact subset of  $\mathbb{R}^p$ . It suffices to show that  $\operatorname{diam}^s(P \cap K) \ge \overline{m}_{\delta}^s(P \cap K)$  for each  $\delta > 0$ . Let  $\delta > 0$ . Choose  $\ell$  such that  $\operatorname{diam}^s(A_\beta) < \delta$  for each  $\beta \in Q^{\ell}$ . Then for each  $n \ge \ell$ 

$$\operatorname{diam}^{s}(P_{n} \cap K) \geq \sum_{\beta \in Q^{n}} \operatorname{diam}^{s}(A_{\beta} \cap K) \geq \overline{m}_{\delta}^{s}(P_{n} \cap K).$$

Hence,  $\lim_{n\to\infty} \operatorname{diam}^s(P_n\cap K) \geq \lim_{n\to\infty} \overline{m}_{\delta}^s(P_n\cap K) \geq \overline{m}_{\delta}^s(P\cap K)$ . Since P is closed,  $\operatorname{diam}^s(P\cap K) = \lim_{n\to\infty} \operatorname{diam}^s(P_n\cap K)$ . Thus,  $\operatorname{diam}^s(P\cap K) \geq \overline{m}_{\delta}^s(P\cap K)$ . It follows that P is s-straight.

**Lemma 2.4.** Let  $f:[a,b] \to \mathbb{R}$  be continuously differentiable with  $0 \le m \le f'(t) \le M$ . If I is a subinterval of [a,b], let  $F(I) = \{(x,f(x)) : x \in I\}$ . Suppose 0 < w < 1 satisfies  $(1+w)\sqrt{1+m^2} \ge 2w\sqrt{1+M^2}$ . Then for each positive integer n, there exist disjoint subintervals  $I_1, \ldots, I_n$  of [a,b] each of length w(b-a)/n such that  $\mathcal{H}^1[\bigcup_{k=1}^n F(I_k)] \ge w^2\mathcal{H}^1[F([a,b])]$  and  $F(I_1), \ldots, F(I_n)$  are 1-aligned.

**Proof.** It suffices to consider the case where [a,b] = [0,1]. Let  $F(s,t) = \{(x,f(x)): s \leq x \leq t\}$  if  $0 \leq s \leq t \leq 1$ . Assume  $(1+w)\sqrt{1+m^2} \geq 2w\sqrt{1+M^2}$  where 0 < w < 1. Set  $\alpha = \arctan m$  and  $\beta = \arctan M$ . Then  $\tan \alpha \leq f' \leq \tan \beta$  and  $(1+w)\sec \alpha \geq 2w\sec \beta$ . If  $0 \leq s \leq t \leq 1$ , then  $(t-s)\sec \alpha \leq \mathcal{H}^1[F(s,t)] \leq (t-s)\sec \beta$ . Let n be a positive integer. Set  $\delta = (1-w)/(2n)$ . Define  $a_k = (k-1)/n + \delta$ ,  $b_k = k/n - \delta$  and  $I_k = [a_k, b_k]$  for  $k = 1, \ldots, n$ . Then  $\mathcal{H}^1[\bigcup_{k=1}^n F(I_k)] = \sum_{k=1}^n \mathcal{H}^1[F(I_k)] \geq \sum_{k=1}^n |I_k|\sec \alpha = w\sec \alpha$  where  $|I_k|$  denotes the length of  $I_k$ . Hence

$$\mathcal{H}^{1}[\bigcup_{k=1}^{n} F(I_{k})] \geq w \frac{\sec \alpha}{\sec \beta} \mathcal{H}^{1}[F(0,1)] \geq \frac{2w^{2}}{1+w} \mathcal{H}^{1}[F(0,1)] \geq w^{2} \mathcal{H}^{1}[F(0,1)].$$

Since f is increasing, to show that  $F(I_1), \ldots, F(I_n)$  are 1-aligned, it suffices to show that  $\text{diam}[F(s,t)] \geq \sum_{k=1}^n \text{diam}[F([s,t] \cap I_k)]$  if  $0 \leq s < t \leq 1$ . If s,t belong to a single  $I_k$ , this inequality is clear. Let  $a_j \leq s < b_j$  and let  $a_k < t \leq b_k$  where j < k. Set

$$\Phi(s,t) = \dim[F(s,t)] - \dim[F(s,b_j)] - \dim[F(a_k,t)] - \sum_{i=j+1}^{k-1} \dim[F(a_i,b_i)].$$

To show that  $F(I_1), \ldots, F(I_n)$  are 1-aligned, it suffices to show that  $\Phi(s,t) \ge 0$ . Set  $m = k + 1 - j \ge 2$ . We have

$$\Phi(s,t) \geq (t-s)\sec\alpha - \left[ (b_j - s) + (t-a_k) + \sum_{i=j+1}^{k-1} (b_i - a_i) \right] \sec\beta 
\geq (b_k - a_j) \sec\alpha - \left[ (b_j - a_j) + (b_k - a_k) + \sum_{i=j+1}^{k-1} (b_i - a_i) \right] \sec\beta 
= \frac{m - (1 - w)}{n} \sec\alpha - \frac{mw}{n} \sec\beta 
= \frac{m}{n} \left[ \frac{m - 1 + w}{m} \sec\alpha - w \sec\beta \right] 
\geq \frac{m}{n} \left[ \frac{1 + w}{2} \sec\alpha - w \sec\beta \right].$$

Hence,  $\Phi(s,t) \geq 0$  and so  $F(I_1), \ldots, F(I_n)$  are 1-aligned.

**Theorem 2.5.** Let  $f:[a,b] \to \mathbb{R}$  be continuously differentiable with  $0 \le f' \le M$ . Let  $\Gamma = \{(x, f(x)) : a \le x \le b\}$ . Then there exists closed 1-straight subset P of  $\Gamma$  such that  $\mathcal{H}^1(P) \ge \mathcal{H}^1(\Gamma)/[4(1+M^2)]$ .

**Proof.** If I is a subinterval of [a,b], set  $F(I) = \{(x,f(x)): x \in I\}$ ,  $m(f',I) = \min\{f'(x): x \in I\}$  and  $M(f',I) = \max\{f'(x): x \in I\}$ . Set  $\beta = \arctan(M)$  and let  $w_1$  be the positive number such that  $1 + w_1 = 2w_1 \sec \beta$ , that is,  $w_1 = 1/(2\sec \beta - 1)$ . Then  $w_1^2 > 1/[4(1+M^2)]$ . Choose  $w_2, w_3, \ldots$  in (0,1) such that  $\prod_{k=1}^{\infty} w_k^2 = 1/[4(1+M^2)]$ . By Lemma 2.4 and by uniform continuity of f' on [a,b], we may choose an integer  $q_1 \geq 2$  and closed subintervals  $I_1, \ldots, I_{q_1}$  of [a,b] each of length  $w_1(b-a)/q_1$  such that

$$\text{(step 1)} \begin{cases} F(I_1), \dots, F(I_{q_1}) \text{ are 1-aligned,} \\ \mathcal{H}^1[\bigcup_{j=1}^{q_1} F(I_j)] \ge w_1^2 \mathcal{H}^1(\Gamma) \text{ and} \\ \frac{1+w_2}{2w_2} \sqrt{\frac{1+m^2(f',I_j)}{1+M^2(f',I_j)}} \ge 1 \text{ for } j = 1, \dots, q_1 \end{cases}$$

Let  $P_1 = F(I_1) \cup \cdots \cup F(I_{q_1})$ . Then  $\mathcal{H}^1(P_1) \geq w_1^2 \mathcal{H}^1(\Gamma)$ . By Lemma 2.4 and by uniform continuity of f' on [a,b], we may choose an integer  $q_2 \geq 2$  and closed subintervals  $I_{i,1}, \ldots, I_{i,q_2}$  of  $I_i$  each of length  $w_1 w_2 (b-a)/(q_1 q_2)$  for  $i=1,\ldots,q_1$  such that

$$(\text{step 2}) \begin{cases} F(I_{i,1}), \dots, F(I_{i,q_2}) \text{ are 1-aligned for } i = 1, \dots, q_1 \\ \mathcal{H}^1[\bigcup_{j=1}^{q_2} F(I_{i,j})] \ge w_2^2 \mathcal{H}^1[F(I_i)] \text{ for } i = 1, \dots, q_1 \text{ and } \\ \frac{1+w_3}{2w_3} \sqrt{\frac{1+m^2(f', I_{i,j})}{1+M^2(f', I_{i,j})}} \ge 1 \text{ for } i = 1, \dots, q_1 \text{ and } j = 1, \dots, q_2 \end{cases}$$

Let  $P_2 = \bigcup \{F(I_{i,j}) : 1 \leq i \leq q_1 \text{ and } 1 \leq j \leq q_2\}$ . Then  $\mathcal{H}^1(P_2) \geq w_1^2 w_2^2 \mathcal{H}^1(\Gamma)$ . Continuing this process, we obtain, in accordance with Theorem 2.3, a decreasing sequence  $(P_n)_{n=1}^{\infty}$  of compact subsets of  $\Gamma$  such that  $\mathcal{H}^1(P_n) \geq (\prod_{k=1}^n w_k^2) \mathcal{H}^1(\Gamma)$  for each  $n \geq 1$  and  $\bigcap_{n=1}^{\infty} P_n$  is 1-straight. Let  $P = \bigcap_{n=1}^{\infty} P_n$ . Then P is a closed 1-straight subset of  $\Gamma$  with  $\mathcal{H}^1(P) \geq \mathcal{H}^1(\Gamma)/[4(1+M^2)]$ .

Let  $f:[a,b] \to \mathbb{R}$  be continuous and let  $\Gamma$  be the graph of f. Assume that  $\mathcal{H}^1(\Gamma)$  is finite. If each closed subset of  $\Gamma$  with positive  $\mathcal{H}^1$  measure contains a closed 1-straight subset of positive  $\mathcal{H}^1$  measure, then  $\Gamma$  is the countable union of closed 1-straight subsets together with a set of  $\mathcal{H}^1$  measure zero since the measure  $\mathcal{H}^1$  is regular. See [2] for a similar result.

**Corollary 2.6.** Let  $f:[a,b] \to \mathbb{R}$  be continuously differentiable. Then the graph of f is the countable union of closed 1-straight sets together with a set of  $\mathcal{H}^1$  measure zero.

**Proof.** If I is a subinterval of [a,b], let  $F(I) = \{(x,f(x)) : x \in I\}$ . Choose closed subintervals  $I_1, \ldots, I_n$  of [a,b] that cover [a,b] such that  $f' \geq 0$ ,  $f' \leq 0$  or  $|f'| \leq \sqrt{3}/3$  on  $I_k$  for each  $k = 1, \ldots, n$ . If  $|f'| \leq \sqrt{3}/3$  on  $I_j$ , then  $F(I_j)$  rotated by 30° coincides with the graph of a continuously differentiable function g with  $g' \geq 0$ . It follows from Theorem 2.5 that each  $F(I_k)$  is the countable union of closed 1-straight subsets together with a subset of  $\mathcal{H}^1$  measure zero and so likewise for the graph of f.

**Theorem 2.7.** Let  $f:[a,b] \to \mathbb{R}$  be absolutely continuous. Then the graph of f is the countable union of closed 1-straight sets together with a set of  $\mathcal{H}^1$  measure zero.

**Proof.** Let  $\Gamma_f = \{(x, f(x)) : a \leq x \leq b\}$ . Let  $\mu$  denote Lebesgue measure on [a,b]. Let E be a closed subset of  $\Gamma_f$  with positive  $\mathcal{H}^1$  measure. Set  $B = \{x \in [a,b] : (x,f(x)) \in E\}$ . Since f is absolutely continuous, B is a compact subset of [a,b] with  $\mu(B) > 0$ . But f is differentiable almost everywhere and f' is  $\mu$ -measurable. By a theorem due to Federer, see [5, Theorem 3.1.15] and [1, p. 1160], there exists a compact subset K of B and a continuously differentiable function g on [a,b] such that g = f on K and  $\mu(K) > 0$ . Let  $\Gamma_g(K) = \{(x,g(x)) : x \in K\}$ . Then  $\Gamma_g(K)$  is a compact subset of the graph of g with positive  $\mathcal{H}^1$  measure. By Corollary 2.6, there exists a closed 1-straight subset P of the graph of g with  $\mathcal{H}^1(P \cap \Gamma_g(K)) > 0$ . Since P is 1-straight,  $P \cap \Gamma_g(K)$  is a closed 1-straight subset of E. Hence, the graph of f is the countable union of closed 1-straight subsets together with a set of  $\mathcal{H}^1$  measure zero.

**Corollary 2.8.** Let  $f:[a,b] \to \mathbb{R}$  be continuous and increasing. Then the graph of f is the countable union of closed 1-straight sets together with a set of  $\mathcal{H}^1$  measure zero.

**Proof.** The graph of f rotated clockwise by 45° coincides with the graph of a continuous Lipschitz function, which is absolutely continuous.

## 3 Regular Sets and S-Straight Sets

If  $E \subset \mathbb{R}^p$ , we say E is an s-set if E is  $\overline{m}^s$ -measurable and  $0 < \mathcal{H}^s(E) < \infty$ . If  $x \in \mathbb{R}^p$ , let  $B_r(x)$  denote the closed ball of radius r > 0 centered at x. We next recall some definitions concerning density, regular sets and contingents.

**Definition 3.1.** [4, pp. 20-21]. We say x is a regular point of E if the  $\mathcal{H}^s$ -density of x with respect to E, defined as  $\lim_{r\to 0^+} [\mathcal{H}^s(E\cap B_r(x))/(2r)^s]$ , exists and equals 1. A set E is called a regular set if almost every point of E is regular. Here we consider only the case s=1 and sets  $E\subseteq \mathbb{R}^2$ .

**Definition 3.2.** [4, pp. 26-29]. A curve (or, Jordan curve)  $\Gamma$  is the image of a continuous one-to-one function  $\psi: [a,b] \to \mathbb{R}^p$ , where  $[a,b] \subseteq \mathbb{R}$  is a closed interval. In particular, a curve is not self-intersecting. If the length  $\mathcal{L}(\Gamma)$  of a curve  $\Gamma$  is defined is the usual way and if  $\mathcal{L}(\Gamma) < \infty$ , we say that  $\Gamma$  is a rectifiable curve. A 1-set contained in a countable union of rectifiable curves is called a Y-set [4, p. 33]. Let  $S(x,\theta,\varphi)$  be the closed one-way infinite cone with vertex x and axis in direction of angle  $\theta$  consisting of those points y such that the line segment between x and y makes an angle of at most  $\varphi$  with that axis.

**Definition 3.3.** [7, p. 262]. Let  $E \subseteq \mathbb{R}^2$ . For any point  $x \in E$ , the direction  $\theta$  of a half-line originating at x is the angle made by that half-line with a fixed direction, usually that of the horizontal axis. Such a half-line is denoted by  $l(x,\theta)$ . A half-line containing a point  $y \neq x$  is denoted by  $\overrightarrow{xy}$ . A sequence  $\{l_n(x,\theta_n)\}_{n=1}^{\infty}$  of half-lines is said to converge to the half-line  $l(x,\theta)$  if  $\lim_{n\to\infty}\theta_n=\theta$ . A half-line  $l(x,\theta)$  is called an intermediate half-tangent of E at x if there exists a sequence of points  $\{x_n\}_{n=1}^{\infty}\subseteq E$ , with  $x_n\neq x$  for all n such that both  $\lim_{n\to\infty}x_n=x$ , and the sequence of half-lines  $\{\overrightarrow{xx_n}\}_{n=1}^{\infty}$  converges to  $l(x,\theta)$ . Finally, the contingent of E at x, denoted by  $\operatorname{contg}_E(x)$ , is the set of all intermediate half-tangents of E at x. (If  $x_0$  is an isolated point, then  $x_0$  has no intermediate half-tangents, and  $\operatorname{contg}_E(x_0)=\emptyset$ .)

The following Lemma is part of the so-called Fundamental Theorem on Contingents of Plane Sets, found in Saks.

**Lemma 3.4.** [7, p. 264]. Let  $\theta$  be a fixed direction, and  $E \subseteq \mathbb{R}^2$  be such that for each  $x \in E$ , the set  $\operatorname{contg}_E(x)$  contains no half-line of direction  $\theta$ . If  $\theta$  is the direction of the positive vertical axis, then  $E = \bigcup_{i=1}^{\infty} E_i$  such that for each i the set  $E_i$  is the graph of a Lipschitz function  $f_i : B_i \to \mathbb{R}$  where  $B_i$  is a bounded subset of  $\mathbb{R}$  and  $\mathcal{H}^1(E_i) = \mathcal{L}(E_i) < \infty$ .

**Theorem 3.5.** Let  $E \subseteq \mathbb{R}^2$  be a regular 1-set. Then E is a countable union of 1-straight sets together with a set of  $\mathcal{H}^1$  measure zero.

**Proof.** Besicovitch proved (see [4, p. 45]) that a regular 1-set  $E \subseteq \mathbb{R}^2$  consists of a Y-set together with a set of  $\mathcal{H}^1$ -measure zero. In his proof (see [4, p. 32]) that a rectifiable curve  $\Gamma$  in  $\mathbb{R}^2$  has a tangent at almost all of its points, he proved in particular that for almost all  $x \in \Gamma$  there exists a direction  $\theta$  such that for suitable  $\varphi, \rho > 0$  it follows that  $\Gamma \cap [B_{\rho}(x) \setminus (S(x, \theta, \varphi) \cup S(x, \theta + \varphi)]$  $[\pi,\varphi)$   $[\pi,\varphi)$  So at almost all points x of a rectifiable curve  $\Gamma$ , contg<sub> $\Gamma$ </sub> $(x) \neq \mathbb{R}^2$ . As in the proof of the Fundamental Theorem on Contingents of Plane Sets [7, p. 267], let  $\{\theta_n\}$  be a countable everywhere dense set of directions in  $\mathbb{R}^2$ . Let  $\Gamma_n$  be the set of points of  $\Gamma$  at which  $\operatorname{contg}_{\Gamma}(x)$  does not contain the half-line of direction  $\theta_n$ . Then since  $\{\theta_n\}$  is dense, it is clear that  $\Gamma =$  $\bigcup_{n=1}^{\infty} \Gamma_n$ , otherwise there exist points  $x \in \Gamma$  such that  $\operatorname{contg}_{\Gamma}(x) = \mathbb{R}^2$ . By Lemma 3.4, with respect to a line of direction  $\theta_n + \frac{\pi}{2}$ , each  $\Gamma_n$  is the countable union of finite length graphs of Lipschitz functions on bounded domain sets. Thus  $\Gamma$  itself equals such a union. It is well-known, as in [7, p. 264], that any such Lipschitz function can be extended to be Lipschitz on the smallest closed interval containing its bounded domain. Since a Lipschitz function is absolutely continuous, by Theorem 2.7 it follows that the graph of each such extended Lipschitz function is a countable union of 1-straight sets. Since subsets of 1-straight sets are 1-straight and since translations and rotations of 1-straight sets are 1-straight (see [2]), the subset  $\Gamma$  of the countable union of the graphs of these Lipschitz functions is also a countable union of 1-straight sets. Since this is true for each rectifiable curve  $\Gamma$  in  $\mathbb{R}^2$ , it follows that E is therefore a countable union of 1-straight sets together with a set of  $\mathcal{H}^1$ -measure zero.

**Acknowledgment**. The authors kindly thank James Foran for valuable conversations about s-straight sets.

## References

[1] J. B. Brown, Intersections of continuous, Lipschitz, Hölder class and smooth functions, Proc. Amer. Math. Soc. 123(4), pp. 1157–1165.

- [2] R. Delaware, Sets whose Hausdorff measure equals Method I outer measure, Ph.D. Dissertation, University of Missouri-Kansas City, 2000.
- [3] G. A. Edgar, Measure, topology, and fractal geometry, Springer-Verlag, 1990.
- [4] K. J. Falconer, *The geometry of fractal sets*, Cambridge University Press, 1985.
- [5] H. Federer, Geometric measure theory, Springer-Verlag, 1969.
- [6] J. Foran, Measure preserving continuous straightening of fractional dimensional sets, Real Analysis Exchange 21(2), 1995/6, pp. 732–738.
- [7] S. Saks, Theory of the integral, 2nd Revised Edition, Dover, 1964.