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GRAPHS OF FUNCTIONS, REGULAR SETS
AND S-STRAIGHT SETS

Abstract

A subset E of R? is s-straight if F has finite Hausdorff s-dimensional
outer measure which equals its Method I s-outer measure. The graph of
a continuously differentiable function is shown to be the countable union
of closed 1-straight sets together with a set of Hausdorff 1-measure zero.
This result is extended to the graphs of absolutely continuous functions
and to regular sets.

1 Introduction

In [6], Foran introduced the notion of s-straight and proposed a subset E of
the unit circle such that E is 1-straight and has positive measure. A detailed
analysis of this proposed set is given in [2] together with other examples and
results for 1-straight sets.

Given a nonempty bounded subset B of R?, define diam(B) = sup{d(z,y) :
x,y € B} where d(z,y) denotes the usual distance function in RP. Define
diam(()) = 0. We write diam®(E) in place of [diam(FE)]*.

Definition 1.1. Let E be a subset of RP and s > 0. Given co > § > 0, define
my(F) = inf {Z diam®(E;) : E = U E;, diam(E;) < fori=1,2,.. } .
i=1 i=1

Set m*(E) = supg~om; (E) and set mi(E) =m (E).

oo
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The outer measure m; is known as a Method I outer measure. The
outer measure m° is a metric outer measure on RP. Hence, every closed
subset of R” is m°-measurable. See [3, pp. 132-144] for details. If E is an
m *-measurable subset of R, then we write H*(E) in place of m*(E). If
(A,)52, is a decreasing sequence of compact subsets of R? and if § > 0, then
mg (o, An) = lim,, oo MJ(A,). In [6], Foran defines s-straight and proves
Theorem 1.3, providing a useful equivalent formulation of s-straight.

Definition 1.2. Given a subset E of RP and s > 0, we say E is s-straight if
m*(E) < oo and m*(E) =mi(E).

Theorem 1.3. Let E be a subset of RP withm®*(E) < co. Then E is s-straight
if and only if m*(E N K) < diam®(E N K) for each compact subset K of RP.

2 Graphs of Functions and S-Straight Sets

Definition 2.1. Let A1,..., A, be subsets of RP. We say that A1, ..., A, are
s-aligned if diam®(B) > Y7, diam®(B N A;) for each bounded subset B of
AjU---UA,.

Example. If diam(AUB) > diam(A)+diam(B), then A and B may not be
1-aligned. Let A = {(z,sinz) : 0 < a < 7} and B = {(,sinz) : —7 <2 < 0}.
Then diam(A U B) = diam(A) + diam(B). If A; = {(z,sinz) : 0 < z < 7/2},
then diam(A4; UB) < diam(A;)+diam(B). Hence, A and B are not 1-aligned.

The motivation for the definition of s-aligned arises from the following
result.

Proposition 2.2. Let Aq,..., A, be s-aligned subsets of RP. If A1,..., A,
are s-straight, then A1 U ---U A, is s-straight.

Proof. Let K be a compact set in RP. Then m*[K N (A; U---UA,)] <
i omi(KNA;) <Y diam®(K NA;) <diam®[K N (A U---UA,)].

Suppose A and B are s-aligned subsets ofiRp . Let A and B denote the
closure of A and B, respectively. Then AN B contains at most one point.
Hence, m*(A; U By) =m®*(A1) + m*(By) for each Ay C A and B; C B.

Theorem 2.3. Let (¢,)52, be a sequence of positive integers. Set Q" =
{(i1y . yin) 1 <1 < qr,...,1 <ip < qn} form=1,2,.... Let {Ag: B €
Q" for some n > 1} be a family of compact subsets of RP such that Aq, ..., Aq,
are s-aligned and such that

(a) Ay Aa,q,) are s-aligned if 3 € Q" 1,

(b) Ag D) A(@l) U---u A(B,qn) if B € anl and
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(c) lim,_,o max{diam®(Ag): € Q"} =0.
Let P, =J{Ap: B € Q"}. Then (.2, P, is s-straight.

Proof. If E C P,, then diam®(E) > > ;con diam®(E N Ag). Let P =
Mo~y Pn. The set P is closed and P, O P,y for n > 1. Let K be a compact
subset of RP. It suffices to show that diam®(P N K) > mi(P N K) for each
§ > 0. Let § > 0. Choose ¢ such that diam®(Ag) < § for each 8 € Q°. Then
for each n > ¢

diam®(P, N K) > Y diam®*(43 N K) > m§(P, N K).
BeQ™
Hence, lim,, o diam®(P, N K) > lim, mg(P NK)>mj(PNK). Since

P is closed, diam®(P N K) = lim,,_,» diam®(P, N K). Thus dlam (PNK)>
mg (PN K). It follows that P is s-straight.

Lemma 2.4. Let f : [a,b] — R be continuously differentiable with 0 < m <
f'(t) < M. If I is a subinterval of [a,b], let F(I) = {(z, f(z)) : & € I}. Sup-
pose 0 < w < 1 satisfies (1 +w)v1+m? > 2wv/1+ M?2. Then for each posi-
tive integer n, there exist disjoint subintervals I, ..., I, of [a,b] each of length
w(b—a)/n such that H'[Jy_, F(Ix)] > w?*H[F([a,b])] and F(I1),...,F(I,)

are 1-aligned.

Proof. It suffices to consider the case where [a,b] = [0,1]. Let F(s,t) =
{(z,f(x)) : s <z <t} if0<s <t <1 Assume (1+w)V1+m? >
2wy 1+ M? where 0 < w < 1. Set @ = arctanm and § = arctan M. Then
tana < f/ < tanf and (1 + w)seca > 2wsecf. If 0 < s < t < 1, then
(t — s)seca < HYF(s,t)] < (t — s)sec3. Let n be a positive integer. Set
0 =(1—w)/(2n). Define a, = (k—1)/n+4, b = k/n—¢ and I = [ag, by for
k=1,...,n. Then H|Up_; F(Ix)] = > pey HF(Ig)] > >opy [ Ik|seca =

w sec o where |I;| denotes the length of I,. Hence

sec « 2uw?

F(Ie)] 2w g F0,1)] 2 7

HF(0,1)] > w?H[F(0,1)].

H

bl
s

Since f is increasing, to show that F(Iy),..., F(I,) are 1l-aligned, it suffices
to show that diam[F(s,t)] > Y7 _, diam[F ([s,t] NIifo<s<t <1 If
s,t belong to a single Iy, this inequality is clear. Let a; < s < b; and let
ar <t < by where j < k. Set

®(s,t) = diam[F (s, t)] — diam[F (s, b;)] — diam[F (az, ¢ Z diam|[F (a;, b;)].
—jJrl
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To show that F(I1),...,F(I,) are 1-aligned, it suffices to show that ®(s,t) >
0. Set m=k+1—7>2. We have

Ds,t) = (t—s)seca— (b —s)+ (¢ — ) + IS (b - ai) | sec 3
> (b~ ag)seca — (b — a) 4 (b — o) + I (b — i) see
_ #Sem,%mﬁ
_ [m—lﬂvsm_wsecﬁ}

>

|3 =33

[1+w }
5 seca —wsec 3| .

Hence, ®(s,t) > 0 and so F(Iy),...,F(I,) are 1-aligned.

Theorem 2.5. Let f : [a,b] — R be continuously differentiable with 0 < f' <
M. LetT = {(z, f(z)) : a < x < b}. Then there exists closed 1-straight subset
P of T such that HY(P) > H*(T')/[4(1 + M?)].

Proof. If I is a subinterval of [a, b], set F((I) = {(z, f(x)) : x € I}, m(f',I) =
min{f'(z) : € I} and M(f',I) = max{f'(z) : € I}. Set 3 = arctan(M)
and let wy; be the positive number such that 1 + w; = 2w; sec S, that is,
wy = 1/(2sec 3—1). Then w? > 1/[4(1+M?)]. Choose wa, w3, ...in (0,1) such
that [[,—, w = 1/[4(1 + M?)]. By Lemma 2.4 and by uniform continuity of
/' on [a,b], we may choose an integer ¢ > 2 and closed subintervals I, ..., I,
of [a, b] each of length w1 (b — a)/q such that

F(),...,F(I;) are 1-aligned,
HUU™, P(L,)] > wiHA(T) and
1+w2 1—|—m2(f’,Ij)

2’U.)2 1 +M2(f/,1j)

(step 1)

>lforj=1,...,q1

Let P, = F(I;)U---UF(I;). Then H*(P1) > w}H!(T'). By Lemma 2.4 and
by uniform continuity of f’ on [a,b], we may choose an integer ¢o > 2 and
closed subintervals I, 1,...,1; 4, of I; each of length wiwa(b — a)/(q1g2) for
i=1,...,q such that

F(l;1),...,F(I;4,) are 1-aligned for i =1,..., ¢

H U2, F(1iy)] =2 wiH!' [F(L;)] for i =1,...,q1 and

1+ws [1+m?(f', ;)
2U}3 1 +M2(f/7fi)j)

(step 2)

>1fori=1,....cqand j=1,...,¢
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Let P, = U{F(L;;) : 1 < i < grand1l < j < go}. Then H'(P) >
wiw3dHY(T). Continuing this process, we obtain, in accordance with Theo-
rem 2.3, a decreasing sequence (P,,)22; of compact subsets of I' such that
HY(P,) > ([1p_; wi)H'(T) for each n > 1 and (), P, is l-straight. Let
P = (2., P,. Then P is a closed l-straight subset of T' with H!(P) >
HL(T) /1AL + M2)].

Let f : [a,b] — R be continuous and let T" be the graph of f. Assume that
H!(T) is finite. If each closed subset of I' with positive H! measure contains a
closed 1-straight subset of positive 7! measure, then I' is the countable union
of closed 1-straight subsets together with a set of 7! measure zero since the
measure H' is regular. See [2] for a similar result.

Corollary 2.6. Let f : [a,b] — R be continuously differentiable. Then the
graph of f is the countable union of closed 1-straight sets together with a set
of H' measure zero.

Proof. If I is a subinterval of [a,b], let F(I) = {(z, f(x)) : # € I'}. Choose
closed subintervals Iy, ..., I, of [a,b] that cover [a,b] such that f' >0, f' <0
or |f'| < V3/3 on I for each k = 1,...,n. If |f'| < v/3/3 on I;, then
F(I;) rotated by 30° coincides with the graph of a continuously differentiable
function g with ¢’ > 0. It follows from Theorem 2.5 that each F(Ij) is the
countable union of closed 1-straight subsets together with a subset of H!
measure zero and so likewise for the graph of f.

Theorem 2.7. Let f : [a,b] — R be absolutely continuous. Then the graph
of f is the countable union of closed 1-straight sets together with a set of H*
measure zero.

Proof. Let I'y = {(z, f(x)) : a < x < b}. Let p denote Lebesgue measure
on [a,b]. Let E be a closed subset of I'y with positive H! measure. Set
B = {z € [a,b] : (z,f(z)) € E}. Since f is absolutely continuous, B is
a compact subset of [a,b] with u(B) > 0. But f is differentiable almost
everywhere and f’ is p-measurable. By a theorem due to Federer, see [5,
Theorem 3.1.15] and [1, p. 1160], there exists a compact subset K of B and
a continuously differentiable function g on [a,b] such that g = f on K and
w(K) > 0. Let T'o(K) = {(z,9(x)) : « € K}. Then I'y(K) is a compact subset
of the graph of g with positive H!' measure. By Corollary 2.6, there exists a
closed 1-straight subset P of the graph of g with H'(PNT,(K)) > 0. Since P
is 1-straight, P NT'(K) is a closed 1-straight subset of E. Hence, the graph
of f is the countable union of closed 1-straight subsets together with a set of
H! measure zero.
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Corollary 2.8. Let f : [a,b] — R be continuous and increasing. Then the
graph of f is the countable union of closed 1-straight sets together with a set
of H* measure zero.

Proof. The graph of f rotated clockwise by 45° coincides with the graph of
a continuous Lipschitz function, which is absolutely continuous.

3 Regular Sets and S-Straight Sets

If E C RP, we say F is an s-set if E is i ®-measurable and 0 < H*(E) < oo.
If x € R, let B,(x) denote the closed ball of radius > 0 centered at z. We
next recall some definitions concerning density, regular sets and contingents.

Definition 3.1. [4, pp. 20-21]. We say z is a regular point of E if the
He-density of x with respect to E, defined as lim,_o+[H*(E N B,.(x))/(2r)],
exists and equals 1. A set E is called a reqular set if almost every point of E
is reqular. Here we consider only the case s = 1 and sets E C R2.

Definition 3.2. [4, pp. 26-29]. A curve (or, Jordan curve) I' is the image of
a continuous one-to-one function v : [a,b] — RP, where [a,b] C R is a closed
interval. In particular, a curve is not self-intersecting. If the length L(T') of
a curve I is defined is the usual way and if L(T') < oo, we say that T is a
rectifiable curve. A 1-set contained in a countable union of rectifiable curves
is called o Y-set [4, p. 33]. Let S(x,6,¢) be the closed one-way infinite cone
with vertex x and axis in direction of angle 6 consisting of those points y such
that the line segment between x and y makes an angle of at most ¢ with that
axis.

Definition 3.3. [7, p. 262]. Let E C R%. For any point x € E, the direc-
tion 6 of a half-line originating at x is the angle made by that half-line with
a fized direction, usually that of the horizontal axis. Such a half-line is de-
noted by 1(x,0). A half-line containing a point y # x is denoted by Ty. A
sequence {l,,(x,0,)}52, of half-lines is said to converge to the half-line l(x,0)
if imy, 00 0, = 0. A half-line I(x,0) is called an intermediate half-tangent
of E at x if there exists a sequence of points {x,}52, C E, with x, # x for
all n such that both lim,,_. ., x, = x, and the sequence of half-lines {x—a:n)}ff:l
converges to l(x,8). Finally, the contingent of E at x, denoted by contgy(x),
is the set of all intermediate half-tangents of E at x. (If x¢ is an isolated
point, then xo has no intermediate half-tangents, and contgg(zo) = 0.)

The following Lemma is part of the so-called Fundamental Theorem on
Contingents of Plane Sets, found in Saks.
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Lemma 3.4. [7, p. 264]. Let 0 be a fized direction, and E C R? be such that
for each x € E, the set contgy(x) contains no half-line of direction 0. If 6 is
the direction of the positive vertical azis, then E = U2, E; such that for each
i the set E; is the graph of a Lipschitz function f; : B; — R where B; is a
bounded subset of R and H'(E;) = L(E;) < co.

Theorem 3.5. Let E C R? be a reqular 1-set. Then E is a countable union
of 1-straight sets together with a set of H' measure zero.

Proof. Besicovitch proved (see [4, p. 45]) that a regular 1-set E C R? consists
of a Y-set together with a set of H'-measure zero. In his proof (see [4, p. 32])
that a rectifiable curve I' in R? has a tangent at almost all of its points, he
proved in particular that for almost all x € T' there exists a direction 6 such
that for suitable ¢,p > 0 it follows that I' N [B,(x) \ (S(z,0,¢) U S(z,0 +
7,¢))] = 0. So at almost all points = of a rectifiable curve I, contgp (z) # R
As in the proof of the Fundamental Theorem on Contingents of Plane Sets
[7, p. 267], let {6,} be a countable everywhere dense set of directions in
R?. Let T, be the set of points of I' at which contgp(x) does not contain
the half-line of direction 6,,. Then since {6,} is dense, it is clear that I' =
U2 Ty, otherwise there exist points z € T’ such that contgp(z) = R?. By
Lemma 3.4, with respect to a line of direction 6,, + 7, each I';, is the countable
union of finite length graphs of Lipschitz functions on bounded domain sets.
Thus T itself equals such a union. It is well-known, as in [7, p. 264], that
any such Lipschitz function can be extended to be Lipschitz on the smallest
closed interval containing its bounded domain. Since a Lipschitz function
is absolutely continuous, by Theorem 2.7 it follows that the graph of each
such extended Lipschitz function is a countable union of 1-straight sets. Since
subsets of 1-straight sets are 1-straight and since translations and rotations of
1-straight sets are 1-straight (see [2]), the subset T of the countable union of
the graphs of these Lipschitz functions is also a countable union of 1-straight
sets. Since this is true for each rectifiable curve I' in R?, it follows that E is
therefore a countable union of 1-straight sets together with a set of H!-measure
7ero.
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