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Politechniki 11, I-2, 90-924  Lódź, Poland and Faculty of Mathematics,
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SOME EXAMPLES OF MEAGER SETS IN
BANACH SPACES

Abstract

We show that some sets in the spaces c0 × c0, L1[0, 1]×L1[0, 1] and
C[0, 1], that appear in analysis, are meager.

Introduction

We consider the following separable Banach spaces:

• the space R of real numbers;

• the space c0 of sequences of reals convergent to zero, with the norm
||(an)|| = maxn∈N |an|;

• the space L1[0, 1] of Lebesgue integrable functions on [0, 1] (written
briefly as L1);

• the space C[0, 1] of real-valued continuous functions on [0, 1], with the
sup norm.

We shall prove that some natural sets in the product X × Y (where X,Y are
the respective spaces from those listed above) are meager (i.e. of the first
category). Consequently, the complements of these sets are comeager (or,
residual) which mean that they describe some typical behaviour of objects in
the space. Several strong theorems concerning typical properties belong to
the classical real analysis. (See [Br] and [Jo].) One of the first unexpected

Key Words: Baire category, summable sequences, Lebesgue integrable functions, I-
approximate derivative

Mathematical Reviews subject classification: 54E52, 26A24, 40A05, 46A45
Received by the editors June 30, 2000

877



878 Marek Balcerzak and Artur Wachowicz

results in that direction, due to Banach [B] and Mazurkiewicz [M], states that
a typical continuous function on [0, 1] is nondifferentiable in any point. The
first two of our theorems are connected with multiplying of two sequences in c0
and of two functions in L1. The idea of the proofs is elementary. We observe
that the respective sets are Fσ with empty interiors. The third theorem is
deeper. Its proof uses a technique based on the Kuratowski-Ulam theorem
and proposed by Kharazishvili in [Kh]. Our result describes the behaviour of
a typical continuous function with respect to differentiability in the sense of
the category approximate derivative, so it can be treated as the next result in
the series following the classical Banach-Mazurkiewicz theorem.

1 Some properties in c0 × c0 and L1 × L1

Let N = {1, 2, . . . }. Observe that two sequences (ak), (bk) in c0 can produce
a sequence (akbk) for which the set of sums

∑n
k=1 akbk, n ∈ N, is unbounded.

Put for instance ak = bk = 1/
√
k, k ∈ N. We shall show that this behaviour

is typical.

Theorem 1.1. The set

E = {((ai), (bi)) ∈ c0 × c0 :

(
n∑
i=1

aibi

)
n∈N

is bounded }

is a meager set of type Fσ.

Proof. We have

E =
∞⋃
m=1

∞⋂
n=1

Emn

where

Emn = {((ak), (bk)) ∈ c0 × c0 : |
n∑
k=1

akbk| ≤ m}.

Observe that each set Emn is closed. Hence E is of type Fσ. Let (ak), (bk) ∈ c0
and ε > 0. Pick an k0 ∈ N such that |ak| < ε/2 and |bk| < ε/2 for each
k ≥ k0. Let k1 = max{k0, 4/ε2}. Put ãk = b̃k = 1/

√
k for each k ≥ k1, and

ãk = ak, b̃k = bk, otherwise. Clearly, ||(ãk)− (ak)|| < ε, ||(b̃k)− (bk)|| < ε, and
∞∑

k=k0

ãk b̃k =
∞∑

k=k0

1
k

=∞.

Hence ((ãk), (b̃k)) ∈ (c0 × c0) \ E. Consequently, E is a boundary Fσ set and
therefore it is meager.
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Remark. A referee has observed that Theorem 1.1 resembles the classical
Banach-Steinhaus theorem. However, for us it is unclear how to obtain our
result as a simple corollary.

Now, we shall deal with multiplying of two Lebesgue integrable functions.
First observe that two integrable functions f, g on [0, 1] can produce a nonin-
tegrable function fg. Namely, let for instance f(x) = g(x) = 1/

√
x for x 6= 0,

and f(0) = g(0) = 0. We shall prove that this property is typical.
We need the following lemma:

Lemma 1.1. If fk → f in L1 then for each c ≥ 0 we have min{|fk|, c} →
min{|f |, c} in L1.

Proof. We have ∫ 1

0

|min{|fk|, c} −min{|f |, c}|

=
∫
{|f |≤c∧|fk|≤c}

||fk| − |f ||+
∫
{|f |≤c∧|fk|>c}

(c− |f |) +
∫
{|f |>c∧|fk|≤c}

(c− |fk|)

≤ 3
∫ 1

0

||fk| − |f || ≤ 3
∫ 1

0

|fk − f | → 0.

Theorem 1.2. The set

E = {(f, g) ∈ L1 × L1 :
∫ 1

0

|fg| <∞}

is meager of type Fσ.

Proof. We have

E =
∞⋃
m=1

∞⋂
n=1

Emn

where

Emn = {(f, g) ∈ L1 × L1 :
∫ 1

0

min{|f |, n}min{|g|, n} ≤ m}.

Each set Emn is closed. Indeed, fix m,n ∈ N, and assume that (fk, gk) ∈ Emn,
k ∈ N, and (fk, gk) → (f, g) in L1 × L1. For ϕ ∈ L1 let ϕ? = min{|ϕ|, n}.
From Lemma 1.1 it follows that (f?k , g

?
k)→ (f?, g?). We have∫ 1

0

f?g? =
∫ 1

0

(f?g? − f?kg?) +
∫ 1

0

(f?kg
? − f?kg?k) +

∫ 1

0

f?kg
?
k
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≤
∫ 1

0

g?(f? − f?k ) +
∫ 1

0

f?k (g? − g?k) +m

≤ n||f? − f?k ||+ n||g? − g?k||+m→ m

whenever k →∞. Thus (f, g) ∈ Emn.
Now, let f, g ∈ L1 and ε > 0. By the absolute continuity of Lebesgue

integral, pick an a > 0 such that
∫ a
0
|f | < ε/2 and

∫ a
0
|g| < ε/2. Let b =

min{a, ε2/16}. Define f̃(x) = g̃(x) = 1/
√
x for each x ∈ (0, b], and f̃(x) =

f(x), g̃(x) = g(x) for the remaining x’s in [0, 1]. Then we have

||f̃ − f || ≤
∫ b

0

1√
x

+
∫ b

0

|f | < ε and similarly ||g̃ − g|| < ε.

On the other hand ∫ b

0

f̃ g̃ =
∫ b

0

1
x

=∞.

Hence (f̃ , g̃) ∈ (L1 × L1) \ E. Consequently, E is a boundary Fσ set and
therefore it is meager.

2 I-approximate differentiability of continuous functions

Assume that X and Y are topological spaces and Y possesses a countable
π-base. For E ⊂ X × Y and x ∈ X we let E(x) = {y ∈ Y : (x, y) ∈ E}.
The Kuratowski-Ulam theorem [O] states that if E is meager then the set
{x ∈ X : E(x) is nonmeager} is meager. The converse is true provided E
possesses the Baire property. By a partial function from X to Y we mean a
function, with values in Y , whose domain is contained in X.

In [Kh] Kharazishvili presented a useful version of the Kuratowski-Ulam
theorem which can be formulated as follows.

Proposition 2.1. [Kh] Let X be a topological space and let Y,Z be topological
vector spaces where Y is additionally Polish and Z has a countable base. As-
sume that a set D ⊂ X×Y and a mapping Φ: D → Z possesses the Baire prop-
erty. Assume also that for almost all (in the sense of category) points x ∈ X
the set D(x) is a linear subspace of Y and the mapping Φ(x, ·) is linear and
discontinuous. Then D is meager in X×Y and {x ∈ X : D(x) is nonmeager}
is meager in X.

Our application of Proposition 2.1 concerns the I-approximate derivative.
Recall that Jarnik [J] obtained a result dealing with continuous functions with
no approximate derivative at any point, which is stronger than the classical
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Banach-Mazurkiewicz theorem. Kharazishvili [Kh], by the use of Proposition
2.1, proved a version of Jarnik’s result stating that, for almost all (in the sense
of category) functions in C[0, 1], a (finite) approximate derivative can exist
for a meager set of points in [0, 1]. Wilczyński in [W] introduced a category
analog of a density point. Soon after that, a category version of an approximate
derivative (called an I-approximate derivative) appeared in [LW]. We shall
present a category analog of the above-mentioned Kharazishvili theorem. This
seems to be the first result of that kind concerning I-approximate derivatives.

Let us start with definitions. Let I stand for the σ-ideal of all meager
subsets of R. We say [W] that a number x ∈ R is an I-density point of a set
A ⊂ R with the Baire property if each increasing sequence (nk) of positive
integers has a subsequence (nmk

) such that the sequence of characteristic
functions

χ(−1,1)∩nmk
(A−x)(t)

(where n(A− x) = {n(a− x) : a ∈ A}) tends to χ(−1,1)(t) for all points t ∈ R
except for those that belong to a meager set. There exist several equivalent
variants of the above definition that are useful in various situations. One of
the possible formulations is the following

Lemma 2.1. (See [CLO, Th. 2.2.2(vii)].) A number x ∈ R is an I-density
point of a set A ⊂ R with the Baire property if and only if

(∀(a, b) ⊂ (−1, 1))(∃k,m)(∀n > m)(∃(c, d) ⊂ (a, b))((c, d) ⊂ n(A−x)∧|d−c| ≥ 1/k)

where a, b, c, d, are rationals and k,m, n are positive integers.

If, in the above definition and Lemma 2.1, we replace (−1, 1) by (0, 1)
(respectively, by (−1, 0)), we get a notion of the right-hand I-density point of
A (left-hand I-density point of A).

Assume now that a function f : [0, 1] → R has the Baire property and
x ∈ [0, 1). Let E+

x,f be equal to

{y ∈ R : x is a right-hand I-density point of {t ∈ (x, 1] :
f(t)− f(x)

t− x
≤ y}}.

(1)
The upper right I-approximate derivative of f at the point x is defined as
inf E+

x,f and is denoted by f
′+
I (x). If in the definition of E+

x,f we replace “≤”
by “≥” then the lower right I-approximate derivative of f at x is defined as
supE+

x,f and is denoted by f
′+
I (x). We adopt the usual convention inf ∅ = +∞

and sup ∅ = −∞. The lower and the upper left I-approximate derivatives of
f at x ∈ (0, 1] are defined analogously. If the lower and upper one-sided
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I-approximate derivatives are equal, their common value is called the one
sided I-approximate derivative and is denoted by f

′+
I (x) or f

′−
I (x). Finally,

f is I-approximately differentiable at x ∈ (0, 1), if f
′+
I (x) = f

′−
I (x) ∈ R (the

common value is written as f ′I(x)). We additionally put f ′I(0) = f
′+
I (0) and

f ′I(1) = f
′−
I (1). The definitions given above are analogous to those already

well-known from the measure case; e.g. see [G, Def. 16.21], [Br, Chap. 10]
and compare with [LW].

Theorem 2.1. For almost all (in the category sense) functions f in C[0, 1],
a finite right (respectively, left) I-approximate derivative f

′+
I (x) (respectively,

f
′−
I (x)) can exist for points x ∈ [0, 1] that form a meager set in [0, 1].

Proof. First, define a partial function Φ from [0, 1]×C[0, 1] to R by Φ(x, f) =
f

′+
I (x). Denote X = [0, 1] and Y = C[0, 1]. Observe that the complement of

the domain D of Φ is equal to F ∪G ∪H where

F = {(x, f) ∈ X × Y : f
′+
I (x) < f

′+
I (x)},

G = {(x, f) ∈ X × Y : f
′+
I (x) = +∞},

H = {(x, f) ∈ X × Y : f
′+
I (x) = −∞}.

Observe that, for an arbitrary w ∈ R, the inequality f
′+
I (x) > w is equiv-

alent to

(∃n ∈ N)(∀y ∈ R)(y /∈ E+
x,f ∨ y > w + 1/n) ∨ (∀y ∈ R)(y /∈ E+

x,f ) (2)

where E+
x,f is given by the formula (1). Note that y /∈ E+

x,f if and only if x is
not a right-hand I-density point of the set

A+
x,f,y := {t > x :

f(t)− f(x)
t− x

≤ y},

which, by Lemma 2.1, is equivalent to

(∃(a, b) ⊂ (0, 1))(∀k,m)(∃n > m)(∀(c, d) ⊂ (a, b))

(|d− c| < 1/k ∨ (∃s ∈ R)(s ∈ ((c/n) + x, (d/n) + x) ∧ s /∈ A+
x,f,y))

where a, b, c, d are rationals and k,m, n – positive integers. If c, d, n are fixed
then the formula (∃s ∈ R)(s ∈ ((c/n) + x, (d/n) + x) ∧ s /∈ A+

x,f,y) of the
variables (x, f, y) ∈ X × Y × R describes an open set. Hence the formula
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y /∈ E+
x,f describes a Borel set in X × Y × R. Consequently, by (2), the for-

mula f
′+
I (x) > w of the variables (x, f) ∈ X × Y describes a coanalytic set in

X × Y . (See [Ke, 32A].) Hence the set

Fw = {(x, f) ∈ X × Y : f
′+
I (x) > w}

possesses the Baire property [Ke, Th. 21.6]. Similarly, one can show that the
set

Fw = {(x, f) ∈ X × Y : f
′+
I (x) < w}

has the Baire property. Consequently, F =
⋃
w(Fw ∩ Fw) possesses the Baire

property where the index w runs over all rationals. Let us consider the set
G. Since f

′+
I (x) = +∞ is equivalent to E+

x,f = ∅, we infer, as above, that G
is coanalytic and therefore it possesses the Baire property. It can be shown
similarly that H has the Baire property. Consequently, D has the Baire prop-
erty. Now, observe that the mapping Φ : D → R has the Baire property
since Φ(x, f) = f

′+
I (x) for (x, f) ∈ D and we have already proved that the set

{(x, f) ∈ X × Y : w < f
′+
I (x) < +∞} has the Baire property for each w ∈ R.

Next, notice that, for each x ∈ X, the set D(x) is a linear subspace of Y
and the mapping Φ(x, ·) is linear. (Compare [G, Th. 16.11]; the respective
properties for I-approximate derivatives are analogous.) Finally, note that
Φ(x, ·) is discontinuous. Indeed, fix x ∈ X and put fn(t) = (1/n) sinn(t− x)
and f0(t) = 0 for n ∈ N and t ∈ X. Then (fn) tends uniformly to f0 (thus
fn → f0 in Y ) but for x ∈ X \ {1} we have

Φ(x, fn) = f ′n(x) = cos 0 = 1→ 1 6= 0 = f ′0(x) = Φ(x, f0).

Now by Proposition 2.1, we obtain the assertion. The proof for f
′−
I is

analogous.
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