Suppriya Pal, Serampore College, Serampore, Hooghly, West Bengal, India.D. K. Ganguly, Department of Pure Mathematics, University of Calcutta, 35Ballygunge Circular Road, Calcutta 700-019, India.

Lee Peng Yee, Division of Mathematics, National Institute of Education, Singapore 259756. e-mail: pylee@nie.edu.sg

HENSTOCK-STIELTJES INTEGRAL NOT INDUCED BY MEASURE

Abstract

The present paper concerns with the introduction of a new type of generalized Stieltjes integral with an integrator function which depends on multiple points in a division and cannot be induced by a measure. Some properties of this integral were studied.

1 Introduction

The Stieltjes integral integrates a function f with respect to another function g on [a, b]. In other words, the integral is approximated by Stieltjes sums $(D) \sum f(\xi)g(u, v)$ using Henstock notation where D is a division of [a, b] and g(u, v) = g(v) - g(u). In the literature there are many Stieltjes-type integrals where the integrator functions g in the Stieltjes sums are taken to depend on more than the endpoints of interval [u, v], for example RG_k , RS_k^* as in [1,2]. Motivated by an attempt to present a uniform approach to these integrals, we here define an integral called GR_k integral, where GR refers to generalized Riemann. In the GR_k integral the integrator is a function from $[a, b]^{k+1}$ to R. Also a new concept of jump is introduced which plays an important role in formulating the properties of the integral. The GR_k integral includes the classical Stieltjes integral as a special case.

We shall generalize the δ -fine division of Henstock [3]. Using it we shall define our new integral. Let k be a fixed positive integer and δ a positive function defined on [a, b]. We shall call a division D of [a, b] given by $a = x_0 < x_1 < \cdots < x_n = b$ with associated points $\{\xi_0, \xi_1, \cdots, \xi_{n-k}\}$ satisfying

 $\xi_i \in [x_i, x_{i+k}] \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i)) \text{ for } i = 0, 1, \cdots, n-k,$

Key Words: Henstock Integral, $\delta\text{-find}$ division, GR_K integral, Saks-Henstock Lemma, $g^k\text{-variation}$

Mathematical Reviews subject classification: 26A39 Received by the editors January 5, 2000

⁸⁵³

a δ^k -fine division of [a, b]. For a given positive function δ , we denote a δ^k -fine division D by $\{([x_i, x_{i+k}], \xi_i)\}_{i=0,1,\cdots,n-k}$. When k = 1, it coincides with the usual definition of a δ -fine division.

Let g be a real-valued function defined on a closed interval $[a, b]^{k+1}$ in the (k+1)-dimensional space, and f a real-valued function defined on [a, b]. We say that f is GR_k integrable with respect to g to I on [a, b] if for every $\epsilon > 0$ there is a function $\delta(\xi) > 0$ such that for any δ^k -fine division $D = \{([x_i, x_{i+k}], \xi_i)\}_{i=0,1,\dots,n-k}$ we have

$$\sum_{i=0}^{n-k} f(\xi_i)g(x_i,\cdots,x_{i+k}) - I \Big| < \epsilon.$$

We shall denote the above Riemann sum by s(f, g; D). If f is integrable with respect to g in the above sense, we write $(f, g) \in GR_k[a, b]$ and denote the integral by $\int_a^b f dg$.

Let $x \in [x_i, x_{i+k}]$ where $x_i < x_{i+1} < \cdots < x_{i+k}$. The jump of g at x, denoted by J(g; x), is defined by

$$J(g;x) = \lim_{x_i \to x, x_{i+k} \to x} g(x_i, \cdots, x_{i+k}),$$

if the limit exists finitely. Next, let $[a_i, b_i]$, $i = 1, 2, \dots, p$, be pairwise nonoverlapping, and $\bigcup_{i=1}^{p} [a_i, b_i] \subset [a, b]$. Then $\{D_i\}_{i=1,2,\dots,p}$ is said to be a δ^k fine partial division of [a, b] if each D_i is a δ^k -fine division of $[a_i, b_i]$. Its corresponding partial Riemann sum is given by $\sum_{i=1}^{p} s(f, g; D_i)$.

We remark that some authors [1] defined Riemann sums over [a', b'] with $a' < a < b < b', a' \rightarrow a$, and $b' \rightarrow b$. Eventually it reduces to the case on [a, b]. Hence for simplicity we consider only [a, b]. Note that using compactness of [a, b] it is easy to show that for a positive function δ there exists a δ^k -fine division of [a, b]. For k = 1 and $g(u, v) = \alpha(v) - \alpha(u)$, we obtain the Henstock-Stieltjes integral. Also for $g(x_i, x_{i+1}, \cdots, x_{i+k}) = (x_{i+k} - x_i)Q_k(\alpha; x_i, x_{i+1}, \cdots, x_{i+k})$ where $Q_k(\alpha; x_i, x_{i+1}, \cdots, x_{i+k})$ is the k-th divided difference of α , the GR_k integral includes the RS_k^* integral of Russell [5] and its corresponding Henstock type version. See Section 3 for other examples.

2 Some Properties

We shall prove some simple properties of the integral. The first theorem follows readily from the definition.

Theorem 2.1. Let $(f_i, g) \in GR_k[a, b]$ and $(f, g_i) \in GR_k[a, b]$ for $i = 1, 2, \dots, n$. Then for real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ we have

(i)
$$(\sum_{i=1}^{n} \lambda_i f_i, g) \in GR_k[a, b]$$
 and $\int_a^b \sum_{i=1}^{n} (\lambda_i f_i) dg = \sum_{i=1}^{n} \lambda_i (\int_a^b f_i dg).$
(ii) $(f, \sum_{i=1}^{n} \lambda_i g_i) \in GR_R[a, b]$ and $\int_a^b fd(\sum_{i=1}^{n} \lambda_i g_i) = \sum_{i=1}^{n} \lambda_i \int_a^b fdg_i.$
(iii) If $f_1(x) \leq f_2(x)$ for all $x \in [a, b]$ and $g : [a, b]^{k+1} \to [0, \infty)$, then $\int_a^b f_1 dg \leq \int_a^b f_2 dg.$

Theorem 2.2. Let $(f,g) \in GR_k[a,c]$ and $(f,g) \in GR_k[c,b]$. If J(g;c) exists then $(f,g) \in GR_k[a,b]$ and

$$\int_{a}^{b} f dg = \int_{a}^{c} f dg + \int_{c}^{b} f dg + (k-1)f(c)J(g;c).$$

PROOF. Since $(f,g) \in GR_k[a,c]$ and $(f,g) \in GR_k[c,b]$, given $\epsilon > 0$ there exist positive functions δ_1 , δ_2 defined on [a,c] and [c,b] respectively such that for any δ_1^k -fine division D_1 of [a,c] and any δ_2^k -fine division D_2 of [c,b] we have

$$|s(f,g;D_1) - I_1| < \epsilon \text{ and } |s(f,g;D_2) - I_2| < \epsilon,$$

where I_1 and I_2 denote the integrals of (f, g) on [a, c] and on [c, b] respectively. Now we define $\delta(\xi) = \min\{\delta_1(\xi), c-\xi\}$ when $\xi \in [a, c), \min\{\delta_1(c), \delta_2(c)\}$ when $\xi = c$, and $\min\{\delta_2(\xi), \xi - c\}$ when $\xi \in (c, b]$.

Let $D = \{([x_i, x_{i+k}], \xi_i)\}_{i=0,1,\cdots,m-k}$ be a δ^k -fine division of [a, b]. Note that $c = x_n$ for some n < m. Also by definition of δ , no other interval will cover c except the one using c as an associated point. More precisely, c is the associated point of the (k + 1) intervals $[x_{n-k}, x_n], [x_{n-k+1}, x_{n+1}], \cdots, [x_n, x_{n+k}]$. Since J(g; c) exists, there exists $\eta > 0$ such that for $0 < x_{i+k} - x_i < \eta$ we have

$$|g(x_i,\cdots,x_{i+k}) - J(g;c)| < \epsilon.$$

Next we modify δ at c if necessary by $0 < \delta(c) < \eta/2$. Then for any δ^k -fine D we have

$$|s(f,g;D) - I_1 - I_2 - (k-1)f(c)J(g;c)| \le |\sum_{i=0}^{n-k} f(\xi_i)g(x_i,\cdots,x_{i+k}) - I_1| + |\sum_{i=n}^{m-k} f(\xi_i)g(x_i,\cdots,x_{i+k}) - I_2|$$

$$+ \sum_{i=n-k+1}^{n-1} f(c)g(x_i, \cdots, x_{i+k}) - (k-1)f(c)J(g;c) | < 2\epsilon + (k-1)|f(c)|\epsilon.$$

Hence $(f,g) \in GR_k[a,b]$ and the equality holds.

Theorem 2.3 (Cauchy Condition). The pair $(f,g) \in GR_k[a,b]$ if and only if for every $\epsilon > 0$ there is a positive function δ on [a,b] such that for all δ^k -fine divisions D_1 and D_2 of [a,b] we have $|s(f,g;D_1) - s(f,g;D_2)| < \epsilon$.

PROOF. We prove only the sufficiency. Suppose the condition holds. We can choose $\delta_n(\xi) > 0$ and δ_n^k -fine divisions D_n such that for all n, m

$$|s(f,g;D_n) - s(f,g;D_m)| < \frac{1}{n} + \frac{1}{m}.$$

Hence $\{s(f,g;D_n)\}$ is a Cauchy sequence and the limit exists, say, *I*. Thus, for every $\epsilon > 0$ choose *N* such that $|s(f,g;D_N) - I| < \epsilon$. We may assume $\delta_N \leq \delta$. Then we find that for any δ_N^k -fine division *D* of [a, b] we have

$$|s(f,g;D) - I| \le |s(f,g;D) - s(f,g;D_N)| + |s(f,g;D_N) - I| < 2\epsilon.$$

That is, $(f,g) \in GR_k[a,b]$.

Theorem 2.4. If $(f,g) \in GR_k[a,b]$ and $a \leq c < d \leq b$, then $(f,g) \in GR_k[c,d]$ provided J(g;c) and J(g;d) exist.

PROOF. It is sufficient to prove that $(f,g) \in GR_k[a,c]$ provided J(g;c) exists. Since $(f,g) \in GR_k[a,b]$, for every $\epsilon > 0$ there is $\delta(\xi) > 0$ such that for any δ^k -fine divisions D and D' of [a,b] we have $|s(f,g;D) - s(f,g;D')| < \epsilon$. Also, since J(g;c) exists, there exists $\eta > 0$ such that for $0 < u_{i+k} - u_i < \eta$ and $c \in [u_i, u_{i+k}]$ we have $|g(u_i, \cdots, u_{i+k}) - J(g;c)| < \epsilon$. Modify δ if necessary as in the proof of Theorem 2.2 so that c is always a division point of any δ^k -fine division D of [a, b] and furthermore $\delta(\xi) \leq \eta/2$ for all ξ .

Fix a δ^k -fine division D_0 of [c, b], where $D_0 = \{([x_i, x_{i+k}], \xi_i)\}_{i=0,1,\cdots,m-k}$ and $\xi_0 = x_0 = c$. Next, take any two δ^k -fine divisions D_1 and D_2 of [a, c]. Write $D_1 = \{([y_i, y_{i+k}], \eta_i)\}_{i=0,1,\cdots,n-k}$ and $D_2 = \{([z_i, z_{i+k}], \zeta_i)\}_{i=0,1,\cdots,p-k}$. Note that $\eta_{n-k} = y_n = \zeta_{p-k} = z_p = c$. Define

$$D = D_1 \cup \{([y_{i+n-k}, x_i], c)\}_{i=1,2,\cdots,k-1} \cup D_0, D' = D_2 \cup \{([z_{i+p-k}, x_i], c)\}_{i=1,2,\cdots,k-1} \cup D_0.$$

Then we obtain

$$|s(f,g;D_1) - s(f,g;D_2)| \le |s(f,g;D) - s(f,g;D')| + 2(k-1)|f(c)|e^{-k(d-1)|f(c)|f(c)|e^{-k(d-1)|f(c)|e^{-k(d-1)|f(c)|f(c)|e^{-k(d-1)|f(c)|e^{-k(d-1)|f(c)|f(c)|f(c)|e^{-k(d$$

856

$$<(1+2(k-1)|f(c|)\epsilon.$$

By Theorem 2.3, $(f,g) \in GR_k[a,c]$.

Theorem 2.5 (Saks-Henstock Lemma). If $(f,g) \in GR_k[a,b]$ and J(g;c) exists for all $c \in (a,b)$, then for every $\epsilon > 0$, there exists a positive function δ on [a,b] such that for any δ^k -fine division D of [a,b] and for any δ^k -fine partial division $\{D_i\}_{i=1,2,\dots,p}$ of [a,b] we have

$$|s(f,g;D) - F(a,b)| < \epsilon \text{ and } \Big| \sum_{i=1}^{p} \{s(f,g;D_i) - F(a_i,b_i)\} \Big| < (k+1)\epsilon,$$

where each D_i is a δ^k -fine division of $[a_i, b_i]$ and F(u, v) denotes the GR_k integral on $[u, v] \subset [a, b]$.

PROOF. Since $(f,g) \in GR_k[a,b]$, for every $\epsilon > 0$ there exists $\delta_1(\xi) > 0$ such that for any δ_1^k -fine division D of [a,b] we have $|s(f,g;D) - F(a,b)| < \epsilon$, where F(a,b) denotes the integral of (f,g) on [a,b]. Let $\{D_i\}_{i=1,1,\cdots,p}$ be a δ_1^k -fine partial division of [a,b] where each D_i is a δ_1^k -fine division of $[a_i,b_i]$. By Theorem 2.4, (f,g) is integrable on the complement of $\cup_{i=1}^p [a_i,b_i]$ called $[c_j,d_j]$ for $j = 1, 2, \cdots, q$. So there exists $\delta_2(\xi) > 0$ defined on $\cup_{j=1}^q [c_j,d_j]$ such that for any δ_2^k -fine division P_j of $[c_j,d_j]$ for $j = 1, 2, \cdots, q$ we have

$$\Big|\sum_{j=1}^q s(f,g;P_j) - \sum_{j=1}^q F(c_j,d_j)\Big| < \epsilon,$$

where again $F(c_j, d_j)$ denotes the integral of (f, g) on $[c_j, d_j]$. Let Λ denote the set of endpoints of $[a_i, b_i]$ for $i = 1, 2, \dots, p$ and $[c_j, d_j]$ for $j = 1, 2, \dots, q$. The set Λ is finite, say consisting of m elements. Since J(g; c) exists for each $c \in (a, b)$, there exists $\eta_c > 0$ such that for $0 < x_k - x_0 < \eta_c$ with $c \in [x_0, x_k]$ and $x_0 < x_1 < \dots < x_k$ we have

$$|g(x_0,\cdots,x_k) - J(g;c)| < \frac{\epsilon}{m|f(c)|}$$

Now define $\delta = \min\{\delta_1, \delta_2\}$ and $\eta = \min\{\eta_c : c \in \Lambda\}$. Modify δ if necessary so that points in Λ are always division points of any δ^k -fine division of [a, b], and $\delta(x) < \eta/2$ for all x. Let $\{D_i\}_{i=1,2,\cdots,p}$ be a δ^k -fine partial division of [a, b]. Then we may choose δ^k -fine division P_j of $[c_j, d_j]$ for $j = 1, 2, \cdots, q$ such that for $x \in \Lambda$,

$$x \in [x_{\ell}, x_{\ell+k}] \subset (x - \delta(x), x + \delta(x))$$
 for $\ell = 1, 2, \cdots, k - 1$,

in which x_{ℓ} are division points in D_i or P_j for some i, j.

Clearly the δ^k -fine partial divisions $\{D_i\}_{i=1,2,\dots,p}$, $\{P_j\}_{j=1,2,\dots,q}$ and the partial division $\{([x_\ell, x_{\ell+k}, x)\}_{\ell=1,2,\dots,k-1}$ corresponding to each $x \in \Lambda$ together constitute a δ^k -fine division D of [a, b]. Then

$$s(f,g;D) = \sum_{i=1}^{p} s(f,g;D_i) + \sum_{j=1}^{q} s(f,g;P_j) + \sum_{x \in \Lambda} \sum_{\ell=1}^{k-1} f(x)g(x_{\ell}\cdots,x_{\ell+k}),$$

and in view of Theorem 2.2

$$I = \sum_{i=1}^{p} F(a_i, b_i) + \sum_{j=1}^{q} F(c_j, d_j) + \sum_{x \in \Lambda} (k-1)f(x)J(g; x).$$

Hence $|s(f,g;D) - F(a,b)| < \epsilon$. This proves the first inequality. Also for any δ^k -fine partial division $\{D_i\}_{i=1,2,\dots,p}$ of [a,b], where each D_i is a δ^k -fine division of $[a_i, b_i]$, we have

$$\begin{split} \left| \sum_{i=1}^{p} s(f,g;D_{i}) - \sum_{i=1}^{p} F(a_{i},b_{i}) \right| &\leq |s(f,g;D) - F(a,b)| \\ &+ \left| \sum_{j=1}^{q} s(f,g;P_{j}) - \sum_{j=1}^{q} F(c_{j},d_{j}) \right| \\ &+ \left| \sum_{x \in \Lambda} \sum_{\ell=1}^{k-1} f(x)g(x_{0},\cdots,x_{k}) - \sum_{x \in \Lambda} (k-1)f(x)J(g;x) \right| \\ &< 2\epsilon + (k-1)\epsilon. \end{split}$$

3 Examples

Let $X \subset [a, b]$. We define $V_g^k(X) = \inf_{\delta} \sup_{b \in X} |g(x_i, \cdots, x_{i+k})|, D = \{[x_i, x_{i+k}], \xi_i\}_{i=0, \cdots, n-k}$ being any δ^k -fine division of [a, b]. A set $X \subset [a, b]$ is said to be of g^k -variation zero if $V_g^k(X) = 0$. Let g be a function from $[a, b]^{k+1}$ to R. Then g is said to be of $BV^k[a, b]$ if $V_g^k[a, b]$ is finite. Clearly, g is of $BV^k[a, b]$ if and only if $\sum_{i=0}^{n-k} |g(x_i, \cdots, x_{i+k})| < M$ for all δ^k -fine division $D = \{[x_i, x_{i+k}], \xi_i\}_{I=0, \cdots, n-k}$ of [a, b]. For example, let α be any increasing function on [a, b] and g defined on $[a, b]^3$ as $g(u, v, w) = \alpha(u) - 2\alpha(v) + \alpha(w)$. Then g is of $BV^2[a, b]$.

Theorem 3.1. Let f(x) = 0 for all x in [a, b] except for a set X of g^k -variation zero, then $(f, g) \in GR_k[a, b]$ and $\int_a^b fdg = 0$.

PROOF. Let $X_i = \{x \in X : i - 1 < |f(x)| \le i\}$, $i = 1, 2, \cdots$. So $X_i \subset X$ and $\bigcup_{i=1}^{\infty} X_i = X$, and $V_g^k(X_i) = 0$ for $i = 1, 2, \cdots$. Hence given $\epsilon > 0$, there exists $\delta_i(x) > 0$ defined on [a, b] such that $\sup_D \sum_{\xi_i \in X_i} |g(x_j, \cdots, x_{j+k})| < \frac{\epsilon}{i2^i}$ for $i = 1, 2, \cdots, D = \{([x_j, x_{j+k}], \xi_j)\}_{j=0,1,\cdots,n-k}$ being a δ^k -fine division of [a, b]. We define $\delta(x) = \delta_i(x)$ for $x \in X_i$, and 1 otherwise. If

$$D = \{([y_i, y_{j+k}], \eta_j)\}_{j=0,1,\cdots,m-k}$$

is a δ^k -fine division of [a, b], then

$$|s(f,g;D)| = |\sum_{\eta_j \in X} f(\eta_j)g(y_j,\cdots,y_{j+k})| < \sum_{i=1}^{\infty} \frac{\epsilon}{2^i} = \epsilon.$$

So $(f,g) \in GR_k[a,b]$ and $\int_a^b f dg = 0$.

A property is said to hold g^k -almost everywhere $(g^k \text{ a.e.})$ in [a, b] if it holds everywhere in [a, b] except in a set of g^k -variation zero. Thus if $f_1 = f_2$, g^k a.e. in [a, b] then $\int_a^b f_1 dg = \int_a^b f_2 dg$. The following is easily verified.

Theorem 3.2. Let f be continuous on [a, b] and g of $BV^k[a, b]$. Then $(f, g) \in$ $GR_k[a,b].$

4 Integration by parts

We now establish an integration by parts formula for k = 2 for particular functions.

Theorem 4.1. Let g be continuous on [a, b] and f_1 of $BV^2[a, b]$. Then $\int_a^b f d^2g$ exists and $\int_a^b f d^2g = \int_a^b g d^2f + g(a)[f(a+) - f(a)] + g(b)[f(b-) - f(b)]$, provided f(a+), f(b-) exist and where $\int_a^b f d^2g$ and $\int_a^b g d^2f$ mean $\int_a^b f dg_1$ and $\int_a^b g df_1$ respectively with

$$f_1(u, v, w) = f(u) - 2f(v) + f(w), \ g_1(u, v, w) = g(u) - 2g(v) + g(w).$$

PROOF. Since g is continuous on [a, b] and f_1 is of $BV^2[a, b]$, by Theorem 3.2, $(g, f_1) \in GR_2[a, b]$. Also since g is uniformly continuous on [a, b] and f_1 is of $BV^{2}[a, b]$, given $\epsilon > 0$ there is a constant $\eta > 0$ such that for any division $D_1 = \{([x_i, x_{i+2}], \xi_i)\}_{i=0,1,\dots,n-2}$ with $\xi_i \in [x_i, x_{i+2}] \subset (\xi_i - \eta, \xi_i + \eta)$ we have

$$\sum_{i=0}^{n-2} g(\xi_i) f_1(x_i, x_{i+1}, x_{i+2}) - I| < \epsilon$$

where $I = \int_{a}^{b} g df_{1}$. Also since f(a+), f(b-) exist we can find $\delta_{1} > 0$ such that $x-a < \delta_{1}$ implies $|f(x) - f(a+)| < \epsilon$, $|g(x) - g(a)| < \epsilon$ and $b-y < \delta_{1}$ implies $|f(y) - f(b-)| < \epsilon$, $|g(y) - g(b)| < \epsilon$. Let $\delta(\xi)$ be any function satisfying $0 < \delta(\xi) < \frac{1}{2} \min\{\delta_{1}, \eta\}$. For any δ^{2} -fine division $D = \{([x_{i}, x_{i+2}], \xi_{i})\}_{i=0,1,\cdots,n-2}$ of [a, b] we have

$$\begin{aligned} |s(f,g;D) - I - g(a)[f(a+) - f(a)] - g(b)[f(b-) - f(b)]| \\ &\leq |\sum_{i=1}^{n-1} [f(\xi_{i-2}) - 2f(\xi_{i-1}) + f(\xi_i)] - I| \\ &+ |g(a)||f(\xi_0) - f(a+)| + |f(a)||g(x_1) - g(a)| \\ &+ |g(b)||f(\xi_{n-2}) - f(b-)| + |f(b)||g(x_{n-1}) - g(b)| \\ &< \epsilon(1 + |g(a)| + |f(a)| + |g(b)| + |f(b)|), \end{aligned}$$

where $\xi_{-1} = a, \ \xi_{n-1} = b.$

Acknowledgement. The authors are grateful to the referee for his valuable suggestions.

References

- U. Das and A. G. Das, Convergence in k-th variation and RK_k integrals, J. Austral. Math. Soc. Ser A **31** (1981), 163–174.
- [2] A. G. Das, Mahadev Chandra Nath, and Gokul Sahu, Generalized Henstock Stieltjes Integral, Bull. Inst. Math., Acad. Sinica, 26 (1998), 61–75.
- [3] P. Y. Lee, Lanzhou Lectures on Henstock integration, World Scientific 1989.
- [4] A. M. Russell, *Functions of bounded k-th variation*, Proc. London Math. Soc. (3) 26 (1973), 547–563.
- [5] A. M. Russell, Stieltjes-type integrals, J. Austral. Math. Soc. Ser A 20 (1975), 431–448.