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PACKING MEASURE IN GENERAL
METRIC SPACE

Abstract

Packing measures are counterparts to Hausdorff measures, used in
measuring fractal dimension of sets. C. Tricot defined them for subsets
of finite-dimensional Euclidean space. We consider here the proper way
to phrase the definitions for use in general metric spaces, and for Haus-
dorff functions other than the simple powers, in particular non-blanketed
Hausdorff functions. The question of the Vitali property arises in this
context. An example of a metric space due to R. O. Davies illustrates
the concepts.

1 Packing Measure

We begin with the definition of the packing measure (see [24], [22], [21]). Let
d be a positive integer, and write Rd for d-dimensional Euclidean space. For
x ∈ Rd and r > 0, the open and closed balls are

Br(x) =
{
y ∈ Rd : ‖y − x‖ < r

}
, Br(x) =

{
y ∈ Rd : ‖y − x‖ ≤ r

}
.

Let A ⊆ Rd be a set. A centered-ball packing of A is a countable
disjoint collection of open balls with center in A:

{Br1(x1), Br2(x2), · · · } ,

where xi ∈ A and Bri(xi) ∩Brj (xj) = ∅ for i 6= j.

Definition 1.1. Let s be a positive number. For ε > 0, define

Psε (A) = sup
∑
i

(
diamBri(xi)

)s
,
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where the supremum is over all packings of A by centered balls with diameter
≤ ε. The s-dimensional packing pre-measure of A is

P̃s(A) = lim
ε→0
Psε (A).

The s-dimensional packing outer measure is the outer measure Ps defined
from the set function P̃s by method I. That is,

Ps(A) = inf

{ ∑
D∈D

P̃s(D) : D is a countable cover of A

}
.

Then Ps is a metric outer measure on Rd.

1.1 Generalizations

Now we will consider possible generalizations of the definition. First, we will
consider a general metric space (S, ρ) in place of Rd. As has been observed by
C. Cutler [3] and H. Haase [9],1 it is preferable to use the “radius” definition∑(

2ri
)s instead of the “diameter” definition

∑(
diamBri(xi)

)s. In order to
handle this difference conveniently, we introduce the next definition.

Definition 1.2. A constituent in the metric space (S, ρ) is an ordered pair
(x, r), where x ∈ S and r > 0.

We think of the constituent (x, r) as representing the ball Br(x). In metric
spaces other than Euclidean spaces it is possible that two balls Br(x), Br′(x′)
may be equal as point-sets even if x 6= x′ and/or r 6= r′.

Definition 1.3. Let ε > 0. A collection π of constituents is said to be ε-fine
iff r ≤ ε for all (x, r) ∈ π.

Secondly, we wish to use a Hausdorff function ϕ not necessarily of the form

ϕ(r) = (2r)s. (1)

Let us say that ϕ : [0,∞)→ [0,∞) is a Hausdorff function iff ϕ is contin-
uous,2 nondecreasing, and ϕ(r) = 0 if and only if r = 0. In place of sums of
the form

∑(
2ri
)s, we will use sums of the form

∑
ϕ
(
ri
)
.

1Additional reasons to prefer the “radius” definition over the “diameter” definition are
pointed out by McClure [18] §3.5 and Mattila & Mauldin [17] §5.

2Continuity will not be an important consideration here. It seems to me that left-
continuity is enough when we work with packing measures, but right-continuity is what we
want when working with Hausdorff (or covering) measures.
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One use of this generality is the possibility of making delicate adjustments
in the Hausdorff function by including logarithmic factors ([11], § 8):

ϕ(r) = rs0(log(1/r))−s1(log log(1/r))−s2 . (2)

Another use is to measure the dimension of infinite-dimensional sets, where
Hausdorff functions that vanish more rapidly than any power may be useful
(see [15], [2], [8], [19]). For example:

ϕ(r) = 2−M/rα . (3)

Following Larman [16] we will say that a Hausdorff function ϕ is blanketed
iff there is a constant C <∞ such that

ϕ(2r) ≤ Cϕ(r) (4)

for all r ≤ 1. (This is also known as the doubling condition, the Orlicz
condition, or the ∆2 condition.) For example, Hausdorff functions of the
form (1) or (2) are blanketed, but those of the form (3) are not.

The final variants we wish to consider are in the definition of packing.

Definition 1.4. Let (S, ρ) be a metric space, and let π be a collection of
constituents.

(a) π is an (a)-packing iff ρ(x, x′) ≥ r ∨ r′ for all (x, r) 6= (x′, r′) in π;

(b) π is a (b)-packing iff Br(x) ∩Br′(x′) = ∅ for all (x, r) 6= (x′, r′) in π;

(c) π is a (c)-packing iff ρ(x, x′) ≥ r + r′ for all (x, r) 6= (x′, r′) in π.

Note that ρ(x, x′) ≥ r ∨ r′ in (a) may be interpreted as: x′ 6∈ Br(x) and
x 6∈ Br′(x′). This sort of packing was used in [14]. Although (b) and (c) are
the same thing in Euclidean space, for a general metric space we have: every
(c)-packing is a (b)-packing, and every (b)-packing is an (a)-packing.

If we were using closed balls rather than open balls, the inequalities would
perhaps be changed to (a) ρ(x, x′) > r ∨ r′, and (c) ρ(x, x′) > r + r′.

Definition 1.5. An (a)-packing of a set A is an (a)-packing π such that
x ∈ A for all (x, r) ∈ π. Similarly for (b)- and (c)-packings.

¿From these three types of packing, we may define three packing measures.
I will write out case (a).
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Definition 1.6. Let (S, ρ) be a metric space, let ϕ be a Hausdorff function,
and let A ⊆ S. For ε > 0, define

(a)Pϕε (A) = sup
∑

(x,r)∈π

ϕ(r),

where the supremum is over all ε-fine (a)-packings π of A. Let

(a)P̃ϕ(A) = lim
ε→0

(a)Pϕε (A)

and

(a)Pϕ(A) = inf

{ ∑
D∈D

(a)P̃ϕ(D) : D is a countable cover of A

}
.

Then (a)Pϕ is a metric outer measure on S.

Similar definitions may be given for the (b)-packing measure (b)Pϕ and the
(c)-packing measure (c)Pϕ. Because of the relations between the three types
of packings, we have

(c)Pϕ(A) ≤ (b)Pϕ(A) ≤ (a)Pϕ(A).

Note that if π is an (a)-packing, then the “halved” set of constituents

πh = { (x, r/2) : (x, r) ∈ π }

is a (c)-packing. This shows that if ϕ is blanketed, with constant C as in (4),
then

(a)Pϕ(A) ≤ C · (c)Pϕ(A).

So for blanketed ϕ, all three definitions agree within a constant factor. But
for Hausdorff functions that are not blanketed (such as (3)), they need not
agree within a constant factor.

1.2 Gauge Variation

It was shown in [20] (in the real line and in [6] for metric space) that the packing
measure is a gauge variation (in the sense of Henstock [13] and Thomson
[23]). But that was proved only for Hausdorff functions of the form (1) and
for (b)-packings. We will consider here how this works in the present setting.
Primarily we will simply follow [6].
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Definition 1.7. Let (S, ρ) be a metric space and let A ⊆ S. A gauge for A
is a function ∆ : A→ (0,∞).

Definition 1.8. If ∆ is a gauge and π is a collection of constituents, then we
say π is ∆-fine iff r ≤ ∆(x) for all (x, r) ∈ π.

Definition 1.9. Let ϕ be a Hausdorff function. For a gauge ∆, define

(a)Pϕ∆(A) = sup
∑

(x,r)∈π

ϕ(r),

where the supremum is over all ∆-fine (a)-packings π of A. As ∆ decreases
pointwise, the value (a)Pϕ∆(A) decreases. For the limit, write

(a)Pϕ• (A) = inf
∆

(a)Pϕ∆(A),

where the infimum is over all gauges ∆ for A.

The set-function (a)Pϕ• is a metric outer measure. The proof is the same
as in [23], [6].

If the gauge ∆ is the constant ε, then the notations agree:

(a)Pϕε (A) = (a)Pϕ∆(A).

We will see below that (a)Pϕ• (A) = (a)Pϕ(A).
In the definition of (a)Pϕ∆(A), it suffices to use finite packings, because of

the sup in the definition. Also, since we are using ϕ(r) and not ϕ(diamBr(x)),
it does not matter if we use closed balls instead of open balls for the definitions:
Indeed, if {Bri(xi)} is a packing by closed balls, then {Bri(xi)} will be a
packing by open balls with the same radii ri; and if {Bri(xi)} is a packing
by open balls, then {Bri−ηi(xi)} is a packing by closed balls for any positive
values of ηi, and by (left-)continuity

∑
ϕ(ri− ηi) may be made as close as we

like to
∑
ϕ(ri).

Proposition 1.10. Let A denote the closure of A. Then

(a)P̃ϕ(A) = (a)P̃ϕ
(
A
)
.

Proof. Any ε-fine (a)-packing of A is also an ε-fine (a)-packing of A, so
(a)Pϕε (A) ≤ (a)Pϕε (A ), and thus (a)P̃ϕ(A) ≤ (a)P̃ϕ(A ). On the other hand,
let π = {(xi, ri)}ni=1 be a finite (a)-packing of A. Given η > 0, choose yi ∈ A
with ρ(yi, xi) < η. Then {(yi, ri−2η)}ni=1 is an (a)-packing of A and choosing η
small enough makes

∑n
i=1 ϕ(ri−2η) as close as we like to

∑n
i=1 ϕ(ri), because
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ϕ is (left-)continuous. This shows that, for any ε > 0, (a)Pϕε (A) ≥ (a)Pϕε (A ).
[Note: this does not work for (a)Pϕ∆, since ∆(yi) could be much smaller than
∆(xi).] So we have (a)P̃ϕ(A) = (a)P̃ϕ(A ). �

¿From the preceding result we see that in the definition of (a)Pϕ(E), we
may use covers by closed sets:

Ps(A) = inf

{ ∑
D∈D

P̃s(D) : D is a countable cover of A by closed sets

}
.

The next consequence is the regularity of (a)Pϕ: If A is any set, then there
is an Fσδ-set E with A ⊆ E and (a)Pϕ(A) = (a)Pϕ(E). ¿From regularity we
conclude: if En ↗ E, then (a)Pϕ(En) → (a)Pϕ(E), even for non-measurable
En.

Proposition 1.11. For any set E, we have (a)Pϕ• (E) = (a)Pϕ(E).

Proof. Constants ε are among the gauges ∆, so (a)P̃ϕ(E) ≥ (a)Pϕ• (E). If E ⊆⋃
En, then (a)Pϕ• (E) ≤

∑
n

(a)Pϕ• (En) ≤
∑
n

(a)P̃ϕ(En). Take the infimum
over all covers to obtain (a)Pϕ• (E) ≤ (a)Pϕ(E).

On the other hand, suppose ∆ is a gauge on a set E. For each positive
integer n, let

En =
{
x ∈ E : ∆(x) ≥ 1

n

}
.

Then En ↗ E. For each n,

(a)Pϕ∆(E) ≥ (a)Pϕ∆(En) ≥ (a)Pϕ1/n(En) ≥ (a)P̃ϕ(En) ≥ (a)Pϕ(En).

Take the limit as n → ∞ to get (a)Pϕ∆(E) ≥ (a)Pϕ(E). This is true for all
gauges ∆, so (a)Pϕ• (E) ≥ (a)Pϕ(E). �

1.3 (b)- and (c)-Packings

The interested reader may check that everything in subsection 1.2 works also
for the (b)- and (c)-packing measures.

2 Strong Vitali Property

To what extent do the known results about packing measures Ps in Euclidean
space generalize to other metric spaces, other Hausdorff functions, and/or
other types of packings? As we have seen above, many such results remain
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true with the same proofs (at least when we are careful to use (twice the)
radius and not the actual diameter of a ball).

But in my discussion [7] of the packing measures Ps, there are a few places
where the “strong Vitali property” is used. Since Euclidean spaces Rd have
this property it is not a restrictive assumption. Does this mean, however, that
the results do not generalize beyond Euclidean space?

Here are the usual definitions.

Definition 2.1. Let (S, ρ) be a metric space, and let A ⊆ S. A fine cover of
A is a collection β of constituents (x, r) such that for every x ∈ A and every
ε > 0, there is (x, r) ∈ β with r < ε.

Definition 2.2. Let (S, ρ) be a metric space, and let µ be a Borel measure
on S. We say that µ has the strong Vitali property iff for any Borel set
E ⊆ S with µ(E) < ∞ and any fine cover β of E, there exists a countable
π ⊆ β such that the balls Br(x) with (x, r) ∈ π are disjoint and

µ

E \ ⋃
(x,r)∈π

Br(x)

 = 0.

According to Besicovitch [1] every Borel measure in Euclidean space Rd
has the strong Vitali property (see [7], Theorem 1.3.13). More generally, a
metric space is said to be “finite-dimensional in the sense of Larman” iff there
is a fixed constant K so that every ball Br(x) can be covered by K balls of
radius r/2. Larman [16] showed that every Borel measure in such a metric
space has the strong Vitali property.

What can be said about other metric spaces? Certainly the strong Vitali
property fails for some measures in some metric spaces, but is it perhaps
always true for packing measures (a)Pϕ? A counterexample to this is given
below. Or perhaps the strong Vitali property is true for packing measures
Ps for finite s? Even that is not clear, since a metric space that is finite-
dimensional in the sense of Hausdorff measure or packing measure need not
be finite-dimensional in the sense of Larman. This question is (1.8.5) in [7].
Note that Haase ([10], Theorem 2) proved that certain packing-type measures
necessarily have a Vitali property. But (as Cutler noted in [3], Remark 3.19)
Haase’s theorem does not include the centered-ball radius-packing measures
we are considering here.

We may formulate variants of the strong Vitali property corresponding to
our three types of packings. Many other variant Vitali properties may be
found in [12].
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Definition 2.3. Let (S, ρ) be a metric space, and let µ be a Borel measure
on S. We say that µ has the (a)-Vitali property (respectively, (b)-Vitali,
(c)-Vitali) iff for any Borel set E ⊆ S with µ(E) <∞ and any fine cover β of
E, there exists a countable (a)-packing π ⊆ β of E (respectively, (b)-packing,
(c)-packing) such that

µ

E \ ⋃
(x,r)∈π

Br(x)

 = 0.

Of course, the (b)-Vitali property is just another name for the strong Vitali
property defined above. If a measure µ has the (c)-Vitali property, then µ has
the (b)-Vitali property. If µ has the (b)-Vitali property, then µ has the (a)-
Vitali property.

2.1 Density Inequality

One result that uses the strong Vitali property in its proof (at least in [7], The-
orem 1.5.11) is the density inequality, useful in estimating a packing measure
or packing dimension.

Definition 2.4. Let (S, ρ) be a metric space, let x ∈ S, let ϕ be a Hausdorff
function, and let µ be a finite Borel measure. The lower ϕ-density of µ at x
is:

Dϕ
µ(x) = lim inf

r↘0

µ
(
Br(x)

)
ϕ(r)

.

The upper ϕ-density is defined with lim sup instead of lim inf.

Here is the theorem using the strong Vitali property. Since it is normally
stated only in Euclidean space, or only for packing measures Ps, I will repeat
the proof here.

Theorem 2.5. Let S be a metric space, and let µ be a finite Borel measure
Let E ⊆ S be a Borel set, and let ϕ be a Hausdorff function. Then

(b)Pϕ(E) inf
x∈E

Dϕ
µ(x) ≤ µ(E). (5)

It follows that
(c)Pϕ(E) inf

x∈E
Dϕ
µ(x) ≤ µ(E).

If µ has the (a)-Vitali property, then

µ(E) ≤ (a)Pϕ(E) sup
x∈E

Dϕ
µ(x), (6)
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provided this product is not 0 times ∞. If µ has the (b)-Vitali property, then

µ(E) ≤ (b)Pϕ(E) sup
x∈E

Dϕ
µ(x), (7)

provided this product is not 0 times ∞. If µ has the (c)-Vitali property, then

µ(E) ≤ (c)Pϕ(E) sup
x∈E

Dϕ
µ(x), (8)

provided this product is not 0 times ∞. Finally, if the Hausdorff function ϕ
satisfies (4), then even if µ satisfies no Vitali property, we have

µ(E) ≤ C2 · (b)Pϕ(E) sup
x∈E

Dϕ
µ(x), (9)

provided this product is not 0 times ∞.

Proof. We begin with the proof of (b)Pϕ(E) infx∈E Dϕ
µ(x) ≤ µ(E). We may

assume that infx∈E Dϕ
µ(x) > 0. Let h > 0 be a constant such that Dϕ

µ(x) > h

for all x ∈ E. I must show that h · (b)Pϕ(E) ≤ µ(E). Let ε > 0 be given.
Then there is an open set V ⊇ E such that µ(V ) < µ(E) + ε. For x ∈ E, let
∆(x) > 0 be so small that

µ
(
Br(x)

)
ϕ(r) > h for all r < ∆(x)

∆(x) < dist(x, S \ V ).

Then ∆ is a gauge for E. Let π be a ∆-fine (b)-packing of E. Then
⋃
π Br(x)

is contained in V , and∑
(x,r)∈π

ϕ(r) <
1
h

∑
π

µ
(
Br(x)

)
≤ 1
h
µ(V ).

This shows that

(b)Pϕ(E) ≤ (b)Pϕ∆(E) ≤ 1
h
µ(V ) ≤ 1

h

(
µ(E) + ε

)
.

Let ε→ 0 to obtain (b)Pϕ(E) ≤ (1/h)µ(E) as required.
Next, suppose µ has the (a)-Vitali property. I must show that

µ(E) ≤ (a)Pϕ(E) sup
x∈E

Dϕ
µ(x).
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We may assume that supx∈E D
ϕ
µ(x) < ∞. Let h < ∞ satisfy Dϕ

µ(x) < h for
all x ∈ E. I must show that µ(E) ≤ h · (a)Pϕ(E). Let ∆ be a gauge on E.
Then

β =

{
(x, r) : x ∈ E, r < ∆(x),

µ
(
Br(x)

)
ϕ(r)

≤ h

}
is a fine cover of E. By the (a)-Vitali property, there is an (a)-packing π ⊆ β
of E with µ(E) = µ

(
E ∩

⋃
π Br(x)

)
. Thus

µ(E) = µ

(
E ∩

⋃
π

Br(x)

)
≤
∑
π

µ
(
Br(x)

)
≤ h

∑
π

ϕ(r).

So µ(E) ≤ h · (a)Pϕ∆(E). But ∆ was arbitrary, so µ(E) ≤ h · (a)Pϕ(E) as
required.

The proofs for the (b)- and (c)-Vitali properties are the same.
Now if ϕ satisfies (4), then we have ϕ(4r) ≤ C2ϕ(r). I must show that

µ(E) ≤ C2 · (b)Pϕ(E) sup
x∈E

Dϕ
µ(x).

We may assume that supx∈E D
ϕ
µ(x) < ∞. Let h < ∞ satisfy Dϕ

µ(x) < h for
all x ∈ E. I must show that µ(E) ≤ hC2 · (a)Pϕ(E). Let ∆ be a gauge on E.
Then

β =

{
(x, r) : x ∈ E, r < ∆(x),

µ
(
B4r(x)

)
ϕ(4r)

≤ h

}
is a fine cover of E. Now use for example [7], Theorem 1.3.1, to conclude that
there is a (b)-packing { (xi, ri) : i = 1, 2, · · · } ⊆ β such that

E ⊆
∞⋃
i=1

B3ri(xi) ⊆
∞⋃
i=1

B4ri(xi).

Thus

µ(E) ≤
∞∑
i=1

µ
(
B4ri(xi)

)
≤ h

∞∑
i=1

ϕ(4ri) ≤ hC2
∞∑
i=1

ϕ(ri).

So µ(E) ≤ hC2 · (b)Pϕ∆(E). But ∆ was arbitrary, so µ(E) ≤ hC2 · (b)Pϕ(E)
as required. �

3 Davies’ Space

R. O. Davies [4] constructed an interesting example of a metric space in which
the strong Vitali property fails. This space (or a variant of it) will be described
here.
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Figure 1: Graph G(5)...

3.1 The Metric Space

For a given positive integer N , let G(N) be a (finite) graph defined as follows.
The vertices are pairs (i, j) of integers with 1 ≤ i ≤ N , 0 ≤ j ≤ N . The total
number of vertices is N(N +1). Vertices (i, 0) are called central vertices, and
vertices (i, j), j 6= 0, are called peripheral vertices. The edges in the graph
G(N) are as follows: A peripheral vertex (i, j) is joined only to (i, 0), called
its central neighbor. A central vertex (i, 0) is joined to all other central
vertices (i′, 0), as well as to the vertices (i, j), j 6= 0, called the peripheral
neighbors of (i, 0). Given two vertices v, u, we will write v ∼ u if v = u or v
is joined to u by an edge. We write v � u if not v ∼ u. Note that each vertex
has an odd number of neighbors: a peripheral vertex has only one neighbor;
while a central vertex has 2N − 1 neighbors.

Now we choose a sequence N1, N2, · · · of integers ≥ 2 such that

∞∏
n=1

Nn − 1
Nn + 1

≥ 1
3
.

For any sequence Nn with
∑

1/Nn <∞, this infinite product converges, and
omitting the first few factors if necessary will give us a sequence so that this
product is ≥ 1/3. Now if we define recursively

γ0 = 1, γn =
1

Nn(Nn + 1)
γn−1,

then the sequence γn strictly decreases to 0.
We will define our metric space. The set of points is the Cartesian product

of countably many graphs:

Ω =
∞∏
n=1

G(Nn).
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If u ∈ Ω, we will write u = (u1, u2, u3, · · · ), where ui ∈ G(Ni) for all i. Next
we define the metric ρ on Ω. If u ∈ Ω, then of course ρ(u, u) = 0. If u, v ∈ Ω
and u 6= v, let n be the least integer such that un 6= vn; if un ∼ vn in G(Nn),
then ρ(u, v) = (1/2)n; if un � vn, then ρ(u, v) = (1/2)n−1. It may be checked
that this defines a metric on Ω. Note that Ω is compact, separable, and totally
disconnected.

Given a finite sequence w1 ∈ G(N1), w2 ∈ G(N2), · · · , wn ∈ G(Nn), define
a cylinder:

Ω(w1, w2, · · · , wn) = {u ∈ Ω : u1 = w1, u2 = w2, · · · , un = wn } .

The diameter of cylinder Ω(w1, w2, · · · , wn) is (1/2)n. We say that a cylinder
Ω(w1, w2, · · · , wn) is central or peripheral according as the last coordinate
wn is central or peripheral. Every cylinder is closed and open (clopen).

We may now describe the open balls in the metric space Ω. Let u ∈ Ω and
r be given, 0 < r < 1. Then define n such that (1/2)n < r ≤ (1/2)n−1. Then

Br(u) = { v : u1 = v1, · · · , un−1 = vn−1, un ∼ vn } .

If un = (i, 0) is central, then Br(u) =⋃
{Ω(u1, u2, · · · , un−1, w) : w = (i′, 0) for some i′ or w = (i, j) for some j }

is a union of 2Nn cylinders, half central and half peripheral. Such a ball will
be called a central ball. If un = (i, j) is peripheral, then

Br(u) =
⋃
{Ω(u1, u2, · · · , un−1, w) : w = (i, j) or w = (i, 0) }

is a union of two cylinders, one central and one peripheral. Such a ball will be
called a peripheral ball.

For future use, we will identify a particular subset of each ball. If u, r, n
are as before, then the ball Br(u) has just been described. If un is peripheral
in G(Nn), so that Br(u) is a peripheral ball, let

Bp
r (u) = Ω(u1, u2, · · · , un−1, un).

This cylinder, “half” of the ball, will be called the principal cylinder of
Br(u). On the other hand, if un = (i, 0) is central in G(Nn), so that Br(u) is
a central ball, then we set (arbitrarily)

Bp
r (u) = Ω(u1, u2, · · · , un−1, (i, 1)).

This cylinder will also be called the principal cylinder of the ball Br(u),
although there is no reason for the choice of (i, 1) over any other peripheral
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Figure 2: Relation between two balls (p and c mean peripheral and central)

(i, j). So with these definitions we have a principal cylinder associated to
each ball. Of course Bp

r (u) ⊆ Br(u). When n and r are related as usual, the
diameter of the principal cylinder Bp

r (u) is (1/2)n.
Now suppose we are given two balls, Br(u), Bs(v). Let us discuss the

criteria for

(a) Br(u) ∩Bs(v) = ∅; and for

(b) v 6∈ Br(u) and u 6∈ Bs(v).

These criteria will be useful information when we describe packings.
First consider the case where the balls of of the same size in the sense

(1/2)n < r, s ≤ (1/2)n−1 for some n. (i) If ui 6= vi for some i < n, then the
balls are disjoint. (ii) If ui = vi for all i < n and un ∼ vn, then each ball
contains the center of the other (this includes the case un = vn, when the balls
coincide). (iii) If ui = vi for all i < n and un � vn, then we must consider
further cases: un and vn are not both central; (iiia) if un and vn are both
peripheral with different central neighbors, then the balls are disjoint; (iiib) if
un and vn are both peripheral with the same central neighbor, then the balls
are not disjoint, but neither ball contains the center of the other; (iiic) if one
of un, vn is central and the other is peripheral, then again the balls are not
disjoint, but neither ball contains the center of the other. So in all of these
cases, either each ball contains the center of the other, or neither ball contains
the center of the other.
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Now consider the case where the balls are of different sizes: say (1/2)n <
r ≤ (1/2)n−1 ≤ (1/2)m < s ≤ (1/2)m−1. (iv) If ui 6= vi for some i < m,
then the balls are disjoint. (v) If ui = vi for all i < m and um � vm, then
again the balls are disjoint. (vi) If If ui = vi for all i < m and um ∼ vm, then
Br(u) ⊆ Bs(v) (this includes the case where um = vm). So for these balls,
either one contains the other, or else they are disjoint.

An observation we can make by examining these case is that for two balls
Br(u), Bs(v), if u 6∈ Bs(v) and v 6∈ Br(u), then their principal cylinders
Bp
r (u), Bp

s (v) are disjoint.

3.2 Uniform Measure

The uniform measure on Ω is defined as follows. Let µ
(
Ω(w1, w2, · · · , wn)

)
=

γn. With µ(Ω) = γ0 = 1, we get a set-function defined on the semi-ring of
cylinders. Since G(Nn) has Nn(Nn + 1) points, the recursion for γn shows
that this set function is additive. It is trivially σ-additive in the sense that a
disjoint union of cylinders is only a cylinder when the union is actually finite.
So the usual extension theorem yields an extension to the Borel sets, which
will also be called µ, and which will be called the uniform measure on Ω.

¿From the description of the balls, above, we may compute the measure
of a ball. Let u ∈ Ω and r be given, with 0 < r < 1. Choose n so that
(1/2)n < r ≤ (1/2)n−1. If un is a central vertex of G(Nn), then Br(u) is a
central ball, and µ(Br(u)) = 2Nnγn. If un is a peripheral vertex of G(Nn),
then Br(u) is a peripheral ball, and µ(Br(u)) = 2γn.

3.3 (a)-Packing Measure

Note that the sequence γn decreases to 0, so there is a Hausdorff function ϕ
with

ϕ
(
(1/2)n−1

)
= γn. (10)

This is the type of Hausdorff function that we will consider in our metric space
Ω. We will show that the uniform measure µ is the (a)-packing measure (a)Pϕ.

Proposition 3.1. Let ϕ be a Hausdorff function satisfying (10) and let E ⊆
Ω. Then (a)Pϕ(E) ≤ µ(E).

Proof. If Br(u) is a ball, let n be such that (1/2)n < r ≤ (1/2)n−1. The
principal cylinder Bp

r (u) has measure γn, so

µ
(
Bp
r (u)

)
= γn = ϕ

(
(1/2)n−1

)
≥ ϕ(r).

Recall that if π is an (a)-packing, then the principal cylinders of the balls in
π are disjoint.
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Now let E ⊆ Ω be given. Let U be an open set with E ⊆ U . Then
∆(u) = dist(u,Ω \ U) is a gauge on E. Let π be a ∆-fine (a)-packing of E.
Then by disjointness,∑

(u,r)∈π

ϕ(r) ≤
∑

(u,r)∈π

µ
(
Bp
r (u)

)
≤ µ(U).

Take the supremum on π to get (a)Pϕ∆(E) ≤ µ(U). Thus (a)Pϕ(E) ≤ µ(U).
Take the infimum on U to conclude (a)Pϕ(E) ≤ µ(E). �

Lemma 3.2. Let ϕ be a Hausdorff function satisfying (10). Then (a)Pϕ(Ω) =
1.

Proof. Wrote µ for the outer measure generated by µ. Let ε > 0 be given
and let ∆ be a gauge on Ω. Now ∆(u) > 0 for all u, so (by regularity of the
finite Borel measure µ) we may choose m ∈ N so that

µ
{
u ∈ Ω : ∆(u) > (1/2)m−1

}
> 1− ε

2
.

(We have used the outer measure µ because we do not know that the set is
measurable.)

Choose n ≥ m so that 1/(Nn+1) < ε/2. The graph G(Nn) has Nn(Nn+1)
elements, of which N2

n are peripheral, so µ {u : un is peripheral } > 1 − ε/2.
Write

A =
{
u : un is peripheral and ∆(u) > (1/2)n−1

}
.

So µ(A) > 1− ε.
Now that n has been chosen, we will write r = (1/2)n−1 and define a

packing πn. Let Rn = { (w1, · · · , wn) : Ω(w1, · · · , wn) ∩A 6= ∅ }, and let Mn

be the number of elements of Rn. To estimate Mn, note that the measure of
each cylinder Ω(w1, · · · , wn) is γn and⋃

(w1,··· ,wn)∈Rn

Ω(w1, · · · , wn) ⊇ A,

so Mnγn ≥ µ(A) ≥ 1 − ε. Let the packing πn consist of constituents (u, r),
where one u ∈ Ω(w1, · · · , wn) ∩ A is chosen for each (w1, · · · , wn) ∈ Rn.
Because each wn is peripheral, this is a ∆-fine (a)-packing for Ω. Therefore

(a)Pϕ∆(Ω) ≥
∑
πn

ϕ(r) = Mnγn ≥ 1− ε.

This is true for all ∆, so (a)Pϕ(Ω) ≥ 1 − ε. This is true for all ε > 0, so
(a)Pϕ(Ω) ≥ 1.

The opposite inequality is from 3.1. �
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Theorem 3.3. Let E ⊆ Ω be any Borel set and let ϕ be a Hausdorff function
that satisfies (10). Then (a)Pϕ(E) = µ(E).

Proof. First, by Proposition 3.1, µ(E) ≥ (a)Pϕ(E). Of course this is also
true for the complement: µ(Ω \ E) ≥ (a)Pϕ(Ω \ E). Now E is a measurable
set, so we get µ(E) = 1−µ(Ω \E) ≤ 1− (a)Pϕ(Ω \E) = (a)Pϕ(E). Therefore
µ(E) = (a)Pϕ(E). �

3.4 (b)-Packing Measure

Next let us consider the (b)-packing measure on Davies’ space Ω. Now the
situation is different. For any Hausdorff function ϕ, either (b)Pϕ(Ω) = 0
or (b)Pϕ(Ω) = ∞. We will characterize the Hausdorff functions for which
(b)Pϕ(Ω) is 0 or ∞ in terms of convergence of the series

∞∑
n=1

ϕ
(
(1/2)n−1

)
(Nn + 1)γn

. (11)

Proposition 3.4. Let ϕ be a Hausdorff function such that (11) converges.
Then (b)Pϕ(Ω) = 0.

Proof. Fix m ∈ N, and write ε = (1/2)m−1. Let π be an ε-fine (b)-packing
for Ω. Any (u, r) ∈ π has (1/2)n < r ≤ (1/2)n−1 for some n ≥ m. Inside
a given cylinder Ω(w1, w2, · · · , wn−1), among the balls Br(u) with (1/2)n <
r ≤ (1/2)n−1, the packing π contains at most one central ball Br(u) with
(1/2)n < r ≤ (1/2)n−1 or at most Nn peripheral balls Br(u) with (1/2)n <
r ≤ (1/2)n−1. Thus∑

(u,r)∈π

ϕ(r)

≤
∞∑
n=m

N1(N1 + 1)N2(N2 + 1) · · ·Nn−1(Nn−1 + 1)Nnϕ((1/2)n−1)

=
∞∑
n=m

ϕ
(
(1/2)n−1

)
(Nn + 1)γn

.

Thus (b)Pϕε (Ω) ≤ the same sum, a tail of a convergent series. So as m → ∞
we see (b)P̃ϕ(Ω) = 0 and therefore (b)Pϕ(Ω) = 0. �

Lemma 3.5. Let ϕ be a Hausdorff function such that (11) diverges. Then,
for any nonempty open set U ⊆ Ω, we have (b)P̃ϕ(U) =∞.
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Proof. Any nonempty open set contains a cylinder Ω(w1, · · · , wm). Let
ε > 0 be given. By decreasing the value of ε and/or increasing the value
of m, we may assume ε = (1/2)m−1. We will define an ε-fine (b)-packing π
for Ω(w1, · · · , wm). Let us say a node (i, j) of the graph G(Nn) is distin-
guished if j = 1. Define the collection π to consist of all constituents (u, r)
such that: (a) r = (1/2)n−1 for some n > m; (b) u1 = w1, · · · , um = wm;
(c) um+1, · · · , un−1 are peripheral but not distinguished; and (d) un is distin-
guished. The balls of π are pairwise disjoint: any pair of them falls in case
(iiia), (iv), or (v). So π is an ε-fine (b)-packing for Ω(w1, · · · , wm). For each
n > m, there are

Nm+1(Nm+1 − 1) · · ·Nn−1(Nn−1 − 1)Nn

constituents in π with radius (1/2)n−1. Recall that the infinite product

∞∏
n=1

Nn − 1
Nn + 1

converges to a value ≥ 1/3. Now compute∑
(u,r)∈π

ϕ(r)

=
∞∑

n=m+1

Nm+1(Nm+1 − 1) · · ·Nn−1(Nn−1 − 1)Nnϕ
(
(1/2)n−1

)
≥ 1

3

∞∑
n=m+1

Nm+1(Nm+1 + 1) · · ·Nn−1(Nn−1 + 1)Nnϕ
(
(1/2)n−1

)
=
γm
3

∞∑
n=m+1

ϕ
(
(1/2)n−1

)
(Nn + 1)γn

=∞.

Thus (b)Pϕε (U) =∞; and since ε was arbitrary, (b)P̃ϕ(U) =∞. �

Proposition 3.6. Let ϕ be a Hausdorff function such that (11) diverges. Then
(b)Pϕ(Ω) =∞.

Proof. Cover Ω =
⋃∞
k=1Ek. By the Baire Category Theorem, at least one

closure Ek has nonempty interior. But then (b)P̃ϕ(Ek) = (b)P̃ϕ
(
Ek
)

=
∞. So

∑
k

(b)P̃ϕ(Ek) = ∞. This is true for any countable cover of Ω, so
(b)Pϕ(Ω) =∞. �
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4 Vitali Property

4.1 Strong Vitali Property

The strong Vitali property fails for the packing measure (a)Pϕ in Davies’
space Ω described above, where the Hausdorff function ϕ satisfies (10). For
the construction that verifies this, we define

θ0 = 3, θn =
Nn − 1
Nn + 1

θn−1.

Then θn decreases to a limit ≥ 1.
Let δn = γn/θn, αn = (γn + δn)/2, and βn = (γn − δn)/2. It follows that:

α0 = 2
3 , β0 = 1

3 , αn ↘ 0, βn ↘ 0, αn > βn > 0
N2
nαn +Nnβn = αn−1, N2

nβn +Nnαn = βn−1.

Now define two measures µ1, µ2, beginning with the cylinders

Ω(w1, w2, · · · , wn).

We count how many of the vertices wi are central. If wi is central for an even
number of i with 1 ≤ i ≤ n, then

µ1

(
Ω(w1, w2, · · · , wn)

)
= αn, µ2

(
Ω(w1, w2, · · · , wn)

)
= βn.

If wi is central for an odd number of i with 1 ≤ i ≤ n, then

µ1

(
Ω(w1, w2, · · · , wn)

)
= βn, µ2

(
Ω(w1, w2, · · · , wn)

)
= αn.

(Since 0 is even, we have in particular that µ1(Ω) = α0 = 2/3 and µ2(Ω) =
β0 = 1/3.) These definitions produce set functions µ1, µ2 that are additive
on cylinders, because of the relations N2

nαn +Nnβn = αn−1, N
2
nβn +Nnαn =

βn−1. Thus, as before, these measures may be extended to all Borel sets. Note
that αn + βn = γn, so µ1 + µ2 = µ on cylinders, and therefore on all Borel
sets.

Next we compute the measures of balls. If u ∈ Ω and r satisfies (1/2)n <
r ≤ (1/2)n−1, then the ball Br(u) is described above. If un = (i, j) is periph-
eral, then Br(u) consists of two cylinders,

Ω(u1, u2, · · · , un−1, (i, j)) and Ω(u1, u2, · · · , un−1, (i, 0)).

One of these has an even number of central coordinates, and the other has an
odd number. So the total measure is

µ1

(
Br(u)

)
= αn + βn = γn,
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and similarly
µ2

(
Br(u)

)
= βn + αn = γn.

Similarly, if un = (i, 0) is peripheral, then Br(u) consists of 2Nn cylinders,
half central and half peripheral, and thus

µ1

(
Br(u)

)
= Nn(αn + βn) = Nnγn,

and similarly
µ2

(
Br(u)

)
= Nn(βn + αn) = Nnγn.

So for every ball Br(u) with r < 1 we have µ1(Br(u)) = µ2(Br(u)) =
(1/2)µ(Br(u)).

Now consider the whole space Ω. Its packing measure is (a)Pϕ(Ω) = µ(Ω) =
1. The collection of all balls with radius < 1 is a fine cover of Ω. Suppose
π = {Bri(ui)} is a collection of disjoint balls with ri < 1. We claim that

µ

(
Ω \

∞⋃
i=1

Bri(ui)

)
6= 0.

Indeed,

µ

(
Ω \

∞⋃
i=1

Bri(ui)

)
= 1−

∞∑
i=1

µ
(
Bri(ui)

)
= 1− 2

∞∑
i=1

µ2

(
Bri(ui)

)
≥ 1− 2µ2(Ω) = 1− 2β0 =

1
3
.

So the strong Vitali property fails.

4.2 (a)-Vitali Property: Questions

The uniform measure µ (which is the packing measure (a)Pϕ) fails the strong
Vitali property. That is, µ fails the (b)-Vitali property. So µ also fails the
(c)-Vitali property. What about the (a)-Vitali property? Is the (a)-Vitali
property of any use, anyway?

4.3 Density Inequality

Consider the inequalities in Theorem 2.5. The lower bounds for µ(E) are
stated only for (b)Pϕ and (c)Pϕ, but not for (a)Pϕ. Our example will show
that the inequality is not correct for (a)Pϕ.
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Definition 4.1. A point u = (u1, u2, · · · ) in the Davies metric space Ω is
called eventually peripheral iff all but finitely many of the components uk
are peripheral.

Proposition 4.2. The set P of eventually peripheral points satisfies µ(P ) = 1.

Proof. Write

Pm = {u = (u1, u2, · · · ) ∈ Ω : uk is peripheral for all k ≥ m } .

The graph G(Nk) has Nk(Nk+1) vertices, and N2
k of them are peripheral. So

µ(Pm) =
∞∏
k=m

N2
k

Nk(Nk + 1)
=
∞∏
k=m

Nk
Nk + 1

.

By assumption, the infinite product
∏

(Nk − 1)/(Nk + 1) converges. But
Nk/(Nk + 1) is between (Nk − 1)/(Nk + 1) and 1, so the infinite product∏
Nk/(Nk + 1) also converges. So the “tail” products must approach 1. That

is, µ(Pm) → 1 as m → ∞. But since Pm increases to P , we conclude that
µ(P ) = 1. �

Proposition 4.3. Let Ω be the Davies metric space discussed above. Let µ
be the uniform measure on Ω. Let ϕ be a Hausdorff function satisfying (10).
Then

(a)Pϕ(E) inf
u∈E

Dϕ
µ(u) ≤ µ(E). (12)

is false for some Borel set E.

Proof. In fact, (12) is false for the set P of eventually peripheral points. Let
u be an eventually peripheral point. For r small enough, the ball Br(u) is a
peripheral ball. Now if (as usual) n is chosen so that (1/2)n < r ≤ (1/2)n−1,
then

µ
(
Br(u))

)
ϕ(r)

=
2γn
ϕ(r)

≥ 2γn
ϕ
(
(1/2)n−1

) =
2γn
γn

= 2

with equality for r = (1/2)n−1. Therefore Dϕ
µ(u) = 2. So left-hand side of

(12) is
(a)Pϕ(P ) inf

u∈P
Dϕ
µ(u) = 2

but the right-hand side is µ(P ) = 1. �
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