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NOTE ON THE OUTER MEASURES OF
IMAGES OF SETS

Abstract

Let f be a real function on R, let {Iv} be a family of intervals covering
a set E such that m(E ∩ Iv) ≥ m

`
f(E ∩ Iv)

´
for each Iv. We prove that

m
`
f(E)

´
≤ 2 ·m(E). No coefficient smaller than 2 will suffice here in

general.

This note concerns the following well-known [HS] result.

Proposition. Let f be a real valued function on the line R, differentiable at
each point of a set E ⊂ R, such that

∣∣f ′(x)
∣∣ ≤ 1 for each x ∈ E. Then

m
(
f(E)

)
≤ m(E), where m denotes Lebesgue outer measure.

The usual proofs [HS] employ appropriate Vitali coverings of E or of f(E).
We wonder if the conclusion holds when we dispense with the derivative and
just let E be covered by a family of intervals {I} such that m(E ∩ I) ≥
m
(
f(E ∩ I)

)
for each I in the family. That m(E) ≥ m

(
f(E)

)
need not hold

is shown in Proposition 1. Indeed m
(
f(E)

)
could be almost twice m(E).

Theorem 1. Let f be a real valued function on R, let E be a subset of R and
let {Iv} be a family of intervals covering E. Let m(Iv) ≥ m

(
f(E ∩ Iv)

)
for

each Iv. Then m
(
f(E)

)
≤ 2m

(
∪vIv

)
. If moreover m(E ∩ Iv) ≥ m

(
f(E ∩ Iv)

)
for each Iv, then m

(
f(E)

)
≤ 2 ·m(E).

Proof. Let U = ∪v(interiorIv). Every point in E \ U must be an endpoint
of a component of U . Thus E \ U is at most a countable set. Without loss of
generality we can (and do) assume that E ⊂ U and each Iv is an open interval.
By the Lindelöf Theorem [C], there are countably many intervals I1, I2, I3, . . .
such that U = ∪∞j=1Ij .

Let k be a real number such that k < m
(
f(E)

)
. Choose an index N such

that
m
(
f(E ∩ ∪N

j=1Ij)
)
≥ k . (1)
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We consider each subfamily of X = {I1, I2, . . . , IN} for which the union of its
intervals equals I1 ∪ I2 ∪ . . . ∪ IN . Let {K1, K2, . . . ,Kt} be such a subfamily
with a minimum number of intervals. Then no Ki can be a subset of ∪j 6=iKj ;
otherwise we could delete Ki. Thus no two Ki can have the same left endpoint.
Say the Ki are (a1, b1), (a2, b2), . . . , (at, bt), where a1 < a2 < . . . < at. Now
(a1, b1) cannot meet (aj , bj) for any j > 2; for if it did, either (aj , bj) ⊂ (a2, b2)
where bj ≤ b2, or (a2, b2) ⊂ (a1, b1)∪ (aj , bj) where bj > b2. It follows likewise
that the intervals (a1, b1), (a3, b3), (a5, b5), . . . are mutually disjoint, and the
intervals (a2, b2), (a4, b4), (a6, b6), . . . are mutually disjoint. But

m
(
∪vIv

)
≥m

(
(a1, b1)

)
+ m

(
(a3, b3)

)
+ m

(
(a5, b5)

)
+ . . .

≥m
(
f
(
E ∩ (a1, b1)

))
+ m

(
f
(
E ∩ (a3, b3)

))
+ m

(
f
(
E ∩ (a5, b5)

))
+ . . .

(2)

and

m
(
∪vIv

)
≥m

(
(a2, b2)

)
+ m

(
(a4, b4)

)
+ m

(
(a6, b6)

)
+ . . .

≥m
(
f
(
E ∩ (a2, b2)

))
+ m

(
f
(
E ∩ (a4, b4)

))
+ m

(
f
(
E ∩ (a6, b6)

))
+ . . . .

(3)

We add (2) and (3) and obtain

2 ·m
(
∪vIv

)
≥m

(
f
(
E ∩ (a1, b1)

))
+ m

(
f
(
E ∩ (a2, b2)

))
+ . . . + m

(
f
(
E ∩ (at, bt)

))
≥m

(
f
(
E ∩ ∪t

j=1(aj , bj)
))

.

(4)

But because ∪t
j=1(aj , bj) = ∪N

i=1Ii

m
(
f
(
E ∩ ∪t

j=1(aj , bj)
))

= m
(
f
(
E ∩ ∪N

i=1Ii

))
. (5)

From (1), (4) and (5) we obtain 2 ·m
(
∪vIv

)
≥ k. Because k was arbitrary,

we have 2 ·m
(
∪vIv

)
≥ m

(
f(E)

)
.

For the second conclusion in Theorem 1, replace (ai, bi) with E ∩ (ai, bi)
in (2), (3) and (4).

We now show that 2 is the smallest coefficient we can use in Theorem 1.
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Proposition 1. For each number d < 2, there is a continuous piecewise linear
function Fd on R and intervals Jd1, Jd2 in R for which

m(Jd1) = m(Jd2) = m
(
Fd(Jd1)

)
= m

(
Fd(Jd2)

)
,

and
m
(
Fd(Jd1 ∪ Jd2)

)
> d ·m

(
Jd1 ∪ Jd2

)
.

Proof. Fix a real number p for which 0 < p < 1
4 . In the plane R2, draw the

segments from (−∞, 0) to (0, 0), from (0, 0) to (p, 1), from (p, 1) to (1− p, 1),
from (1− p, 1) to (1, 2), and from (1, 2) to (∞, 2). Let fp be the real function
on R whose graph is the broken line just constructed. From this graph we
infer that fp

(
p2

1−p

)
= p

1−p , fp

(
1−p−p2

1−p

)
= 2−3p

1−p and fp(p) = fp(1−p) = 1. Let

I1 be the interval on the x-axis with endpoints x = p2

1−p and x = 1− p. Let I2

be the interval on the x-axis with endpoints x = p and 1−p−p2

1−p . It follows that
the interval fp(I1) on the y-axis has endpoints y = p

1−p and y = 1; the interval
fp(I2) on the y-axis has endpoints y = 1 and y = 2−3p

1−p . Direct computations
give

m(I1) = m(I2) = m
(
fp(I1)

)
= m

(
fp(I2)

)
=

1− 2p

1− p
,

m(I1 ∪ I2) =
1− p− 2p2

1− p
and m

(
fp(I1 ∪ I2)

)
=

2− 4p

1− p
.

It follows that
m
(
fp(I1∪I2)

)
m(I1∪I2)

= 2−4p
1−p−2p2 . Clearly, for any positive number d < 2,

there is a positive number p < 1
4 (depending on d), for which

m
(
fp(I1 ∪ I2)

)
> d ·m(I1 ∪ I2).

We infer from this the conclusion of Proposition 1.

We now list some consequences of our Theorem 1.

Corollary 1. Let f ∈ RR and let {Iv} be a family of intervals such that(
diameter f(Iv)

)
≤ (diameterIv) for each Iv. Then m

(
f(∪vIv)

)
≤ 2·m

(
∪vIv

)
.

Proof. Note that m
(
f(Iv)

)
≤
(
diameter f(Iv)

)
. Put E = ∪vIv in Theorem

1.

Corollary 2. Let f be absolutely continuous on R and let {Iv} be a family
of intervals such that ∪vIv ⊂ [0, 1], m

(
∪vIv

)
= 1 and m

(
f(Iv)

)
≤ m(Iv) for

each Iv. Then max f [0, 1] − min f [0, 1] ≤ 2.
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Proof. Now ∪vIv is evidently measurable and m
(

[0, 1]\(∪vIv)
)

= 0. Because

f is absolutely continuous we have m
(
f
(
[0, 1] \ (∪vIv)

))
= 0. Apply Theorem

1 with E = ∪vIv.

Corollary 3. Let f be continuous on R and let {Iv} be a family of intervals
such that ∪vIv ⊂ [0, 1], the set [0, 1]\(∪vIv) is a countable set, and m

(
f(Iv)

)
≤

m(Iv) for each Iv. Then max f [0, 1] − min f [0, 1] ≤ 2.

Proof. Use a scheme much like the proof of Corollary 2.

Corollary 4. Let f be nondecreasing and let
{

(av, bv)
}

be a family of intervals
such that f(bv)− f(av) ≤ bv − av for each interval (av, bv). Then

m
(
f
(
∪v(av, bv)

))
≤ 2 ·m

(
∪v(av.bv)

)
.

Proof. Corollary 1.

Corollary 5. Let f be a continuous strictly increasing function on R and let{
(av, bv)

}
be a family of intervals such that f(bv)− f(av) ≥ bv − av for each

(av, bv). Then m
(
f
(
∪v(av, bv)

))
≥ m

(
∪v(av,bv)

)
2 .

Proof. Let g be the inverse function of f on f(R). Apply Corollary 4 to g
and the family of intervals

{
f(av), f(bv)

}
.

In the proof of Theorem 1 we should not expect that there necessar-
ily exists a subfamily of mutually nonoverlapping intervals I1, I2, I3, . . . with∑

j m(Ij) ≥ m(∪vIv)
2 . Let, for example, Jn =

(
−5−n,

∑n
i=1 2−i

)
for each

positive integer n, and E =
(
∪∞n=1Jn

)
∪
(
∪∞n=1(−Jn)

)
. Then each subfamily

of mutually nonoverlapping intervals is a singleton family, but the length of
no interval here is as large as m(E)

2 .
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