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NOTE ON THE OUTER MEASURES OF
IMAGES OF SETS

Abstract

Let f be areal function on R, let {I, } be a family of intervals covering
a set E such that m(EN1,) > m(f(ENI,)) for each I,. We prove that
m(f(E)) < 2-m(E). No coefficient smaller than 2 will suffice here in
general.

This note concerns the following well-known [HS] result.

Proposition. Let f be a real valued function on the line R, differentiable at
each point of a set E C R, such that ‘f’(x)’ < 1 for each x € E. Then
m(f(E)) < m(E), where m denotes Lebesgue outer measure.

The usual proofs [HS] employ appropriate Vitali coverings of E or of f(E).
We wonder if the conclusion holds when we dispense with the derivative and
just let E be covered by a family of intervals {I} such that m(E N 1) >
m(f(EN1I)) for each I in the family. That m(E) > m(f(E)) need not hold

is shown in Proposition 1. Indeed m(f(E)) could be almost twice m(E).

Theorem 1. Let f be a real valued function on R, let E be a subset of R and
let {I,} be a family of intervals covering E. Let m(I,) > m(f(E N1,)) for
each I,. Then m(f(E)) < 2m(U,1,). If moreover m(EN1L,) > m(f(ENI,))
for each I, then m(f(E)) <2-m(E).

PrROOF. Let U = U, (interiorl,). Every point in E\ U must be an endpoint
of a component of U. Thus E \ U is at most a countable set. Without loss of
generality we can (and do) assume that E C U and each I, is an open interval.
By the Lindelof Theorem [C], there are countably many intervals Iy, I, I3, . . .
such that U = U72,I;.
Let k be a real number such that k < m(f(E)) Choose an index N such
that
m(f(ENUN, L)) > k. (1)
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We consider each subfamily of X = {I, I5, ..., In} for which the union of its
intervals equals Iy U Iy U...UIy. Let {Ky, Ko,...,K;} be such a subfamily
with a minimum number of intervals. Then no K; can be a subset of U;; K ;
otherwise we could delete K;. Thus no two K; can have the same left endpoint.
Say the K; are (a1,b1), (az2,b2),...,(as,bs), where a; < as < ... < a;. Now
(a1,b1) cannot meet (aj,b;) for any j > 2; for if it did, either (a;,b;) C (a2, b2)
where b; < ba, or (ag,b2) C (a1,b1) U (aj,b;) where bj > bo. It follows likewise
that the intervals (a1,b1), (as,b3), (as,b5), ... are mutually disjoint, and the
intervals (ag,b2), (a4,bs), (ag,bg), ... are mutually disjoint. But
m(Uply) >m((a1,b1)) +m((as, bs)) +m((as,bs)) + ...
>m(f(E0(ar,00)) +m(f(EN (as,b3)) ) (@)
+ m(f(E N (as, b5))) +
and
m(UyL,) =m((az,b2)) +m((as,bs)) + m((ag, bs)) + ...
zm(f(Eﬁ(ag,bg))> +m<f(Eﬂ(a4,b4))> (3)
+ m(f(E N (as, be))) +

We add (2) and (3) and obtain
2 m(UyI,,) Zm(f(Eﬁ (al,bl))> +m(f(Em (a2,b2)))
+...+m(f(Eﬂ(at7bt))) (4)
zm(f(Eﬂ u§=1(aj,bj))) :

But because Uf_, (aj,b;) = UL, I;

m(f(Emu;:1<aj,bj>)) :m(f(EﬁUf\Llli)). (5)

From (1), (4) and (5) we obtain 2-m(U,I,) > k. Because k was arbitrary,
we have 2-m(U,I,) = m(f(E)).

For the second conclusion in Theorem 1, replace (a;,b;) with E N (a;,b;)
in (2), (3) and (4). O

We now show that 2 is the smallest coefficient we can use in Theorem 1.
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Proposition 1. For each number d < 2, there is a continuous piecewise linear
function Fy on R and intervals Jq1, Jg2 in R for which

m(Ja1) = m(Jaz) = m(Fa(Jar)) = m(Fa(Ja2)) ,

and
m(Fd(Jdl U Jdg)) >d- m(Jd1 @] Jdg) .

PROOF. Fix a real number p for which 0 < p < %. In the plane R?, draw the
segments from (—o0,0) to (0,0), from (0,0) to (p, 1), from (p,1) to (1 —p,1),
from (1 —p, 1) to (1,2), and from (1,2) to (c0,2). Let f,, be the real function
on R whose graph is the broken line just constructed. From this graph we

2 _p_p2 —
infer that fp(lpfp) = &, fp(l 1”7; ) = 21732’ and fy(p) = fp(1—p) = 1. Let

I, be the interval on the z-axis with endpoints x = % and z =1 —p. Let I

be the interval on the z-axis with endpoints x = p and 171{ ;p ® 1t follows that
the interval f,(I1) on the y-axis has endpoints y = ﬁ and y = 1; the interval
fp(I2) on the y-axis has endpoints y = 1 and y = %. Direct computations
give
1—-2p
m(I1) = m(l2) = m(fy(I)) = m(f,(I2)) = 1=

2 —4dp

and m(f,(I; Uly)) = T

1—p—2p?
1-p

m([1 U 12) =

m(f,(1UI2)) 2—4
It follows that — = = 17p,§pz~

there is a positive number p < % (depending on d), for which

Clearly, for any positive number d < 2,

m(fp(ll U 12)) >d- m(Il U Ig).
We infer from this the conclusion of Proposition 1. O

We now list some consequences of our Theorem 1.

Corollary 1. Let f € R and let {I,} be a family of intervals such that
(diameter f(Iv)) < (diameterl,) for each I,,. Then m(f(UvLJ)) < 2~m(UvIv).

PROOF. Note that m(f(I,)) < (diameter f(I,)). Put E = U,I, in Theorem
1. O

Corollary 2. Let f be absolutely continuous on R and let {I,} be a family
of intervals such that U,I, C [0,1], m(UvIv) =1 and m(f(Iv)) < m(I,) for
each I,. Then max f[0,1] — min f[0,1] < 2.



830 F. S. CATER

Proor. Now U, I, is evidently measurable and m ([0, 1]\(UUIU)) = 0. Because

f is absolutely continuous we have m(f([O7 17\ (UUL,))> = 0. Apply Theorem
1 with F = U,I,. O

Corollary 3. Let f be continuous on R and let {I,} be a family of intervals
such that U, I, C [0,1], the set [0,1]\(Uy1,,) is a countable set, and m(f(I,)) <
m(I,) for each I,. Then max f[0,1] — min f[0,1] < 2.

PRrROOF. Use a scheme much like the proof of Corollary 2. O

Corollary 4. Let f be nondecreasing and let {(av, bv)} be a family of intervals
such that f(by) — f(ay) < by, — ay, for each interval (a,,b,). Then

m(f(uv(av,bv))) < 2.m(uv(av.bv)).

Proor. Corollary 1. O

Corollary 5. Let f be a continuous strictly increasing function on R and let

{(av,by)} be a family of intervals such that f(by) — f(ay) > by, — a, for each
m Uv(avybv)

(ay,by). Then m(f(UU(av,bv))> > ¥

PROOF. Let g be the inverse function of f on f(R). Apply Corollary 4 to g
and the family of intervals { f(a,), f(bv)}. O

In the proof of Theorem 1 we should not expect that there necessar-
ily exists a subfamily of mutually nonoverlapping intervals I, I5, I3, ... with

> ym(ly) > W Let, for example, J, = (—5_”, Dy 2") for each

positive integer n, and E = (U;’f:lJn) U (U;l’ozl(—Jn)). Then each subfamily
of mutually nonoverlapping intervals is a singleton family, but the length of

. . E
no interval here is as large as m(2 )
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