F. S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207, USA

NOTE ON THE OUTER MEASURES OF IMAGES OF SETS

Abstract

Let f be a real function on \mathbb{R} , let $\{I_v\}$ be a family of intervals covering a set E such that $m(E \cap I_v) \ge m(f(E \cap I_v))$ for each I_v . We prove that $m(f(E)) \le 2 \cdot m(E)$. No coefficient smaller than 2 will suffice here in general.

This note concerns the following well-known [HS] result.

Proposition. Let f be a real valued function on the line \mathbb{R} , differentiable at each point of a set $E \subset \mathbb{R}$, such that $|f'(x)| \leq 1$ for each $x \in E$. Then $m(f(E)) \leq m(E)$, where m denotes Lebesgue outer measure.

The usual proofs [HS] employ appropriate Vitali coverings of E or of f(E). We wonder if the conclusion holds when we dispense with the derivative and just let E be covered by a family of intervals $\{I\}$ such that $m(E \cap I) \ge$ $m(f(E \cap I))$ for each I in the family. That $m(E) \ge m(f(E))$ need not hold is shown in Proposition 1. Indeed m(f(E)) could be almost twice m(E).

Theorem 1. Let f be a real valued function on \mathbb{R} , let E be a subset of \mathbb{R} and let $\{I_v\}$ be a family of intervals covering E. Let $m(I_v) \ge m(f(E \cap I_v))$ for each I_v . Then $m(f(E)) \le 2m(\bigcup_v I_v)$. If moreover $m(E \cap I_v) \ge m(f(E \cap I_v))$ for each I_v , then $m(f(E)) \le 2 \cdot m(E)$.

PROOF. Let $U = \bigcup_v (\text{interior } I_v)$. Every point in $E \setminus U$ must be an endpoint of a component of U. Thus $E \setminus U$ is at most a countable set. Without loss of generality we can (and do) assume that $E \subset U$ and each I_v is an open interval. By the Lindelöf Theorem [C], there are countably many intervals I_1, I_2, I_3, \ldots such that $U = \bigcup_{j=1}^{\infty} I_j$.

Let k be a real number such that k < m(f(E)). Choose an index N such that

$$m\big(f(E \cap \bigcup_{j=1}^{N} I_j)\big) \ge k.$$
(1)

Key Words: coverings, Lebesgue outer measure

Mathematical Reviews subject classification: 28A12 Received by the editors October 31, 2000

We consider each subfamily of $X = \{I_1, I_2, \ldots, I_N\}$ for which the union of its intervals equals $I_1 \cup I_2 \cup \ldots \cup I_N$. Let $\{K_1, K_2, \ldots, K_t\}$ be such a subfamily with a minimum number of intervals. Then no K_i can be a subset of $\cup_{j \neq i} K_j$; otherwise we could delete K_i . Thus no two K_i can have the same left endpoint. Say the K_i are (a_1, b_1) , $(a_2, b_2), \ldots, (a_t, b_t)$, where $a_1 < a_2 < \ldots < a_t$. Now (a_1, b_1) cannot meet (a_j, b_j) for any j > 2; for if it did, either $(a_j, b_j) \subset (a_2, b_2)$ where $b_j \leq b_2$, or $(a_2, b_2) \subset (a_1, b_1) \cup (a_j, b_j)$ where $b_j > b_2$. It follows likewise that the intervals (a_1, b_1) , (a_3, b_3) , (a_5, b_5) , ... are mutually disjoint, and the intervals (a_2, b_2) , (a_4, b_4) , (a_6, b_6) , ... are mutually disjoint. But

$$m(\cup_{v} I_{v}) \ge m((a_{1}, b_{1})) + m((a_{3}, b_{3})) + m((a_{5}, b_{5})) + \dots$$

$$\ge m(f(E \cap (a_{1}, b_{1}))) + m(f(E \cap (a_{3}, b_{3}))) + \dots$$

$$+ m(f(E \cap (a_{5}, b_{5}))) + \dots$$
(2)

and

$$m(\cup_{v} I_{v}) \ge m((a_{2}, b_{2})) + m((a_{4}, b_{4})) + m((a_{6}, b_{6})) + \dots$$

$$\ge m(f(E \cap (a_{2}, b_{2}))) + m(f(E \cap (a_{4}, b_{4}))) + \dots$$

$$+ m(f(E \cap (a_{6}, b_{6}))) + \dots$$
(3)

We add (2) and (3) and obtain

$$2 \cdot m(\cup_{v} I_{v}) \geq m\left(f\left(E \cap (a_{1}, b_{1})\right)\right) + m\left(f\left(E \cap (a_{2}, b_{2})\right)\right)$$
$$+ \ldots + m\left(f\left(E \cap (a_{t}, b_{t})\right)\right)$$
$$\geq m\left(f\left(E \cap \cup_{j=1}^{t} (a_{j}, b_{j})\right)\right).$$
(4)

But because $\cup_{j=1}^{t}(a_j, b_j) = \cup_{i=1}^{N} I_i$

$$m\left(f\left(E\cap\cup_{j=1}^{t}(a_{j},b_{j})\right)\right) = m\left(f\left(E\cap\cup_{i=1}^{N}I_{i}\right)\right).$$
(5)

From (1), (4) and (5) we obtain $2 \cdot m(\bigcup_v I_v) \ge k$. Because k was arbitrary, we have $2 \cdot m(\bigcup_v I_v) \ge m(f(E))$.

For the second conclusion in Theorem 1, replace (a_i, b_i) with $E \cap (a_i, b_i)$ in (2), (3) and (4).

We now show that 2 is the smallest coefficient we can use in Theorem 1.

Proposition 1. For each number d < 2, there is a continuous piecewise linear function F_d on \mathbb{R} and intervals J_{d1} , J_{d2} in \mathbb{R} for which

$$m(J_{d1}) = m(J_{d2}) = m(F_d(J_{d1})) = m(F_d(J_{d2})),$$

and

$$m\big(F_d(J_{d1}\cup J_{d2})\big)>d\cdot m\big(J_{d1}\cup J_{d2}\big)\,.$$

PROOF. Fix a real number p for which $0 . In the plane <math>\mathbb{R}^2$, draw the segments from $(-\infty, 0)$ to (0, 0), from (0, 0) to (p, 1), from (p, 1) to (1 - p, 1), from (1 - p, 1) to (1, 2), and from (1, 2) to $(\infty, 2)$. Let f_p be the real function on \mathbb{R} whose graph is the broken line just constructed. From this graph we infer that $f_p\left(\frac{p^2}{1-p}\right) = \frac{p}{1-p}$, $f_p\left(\frac{1-p-p^2}{1-p}\right) = \frac{2-3p}{1-p}$ and $f_p(p) = f_p(1-p) = 1$. Let I_1 be the interval on the x-axis with endpoints $x = \frac{p^2}{1-p}$ and x = 1 - p. Let I_2 be the interval on the x-axis with endpoints x = p and $\frac{1-p-p^2}{1-p}$. It follows that the interval $f_p(I_1)$ on the y-axis has endpoints $y = \frac{p}{1-p}$ and y = 1; the interval $f_p(I_2)$ on the y-axis has endpoints y = 1 and $y = \frac{2-3p}{1-p}$.

$$m(I_1) = m(I_2) = m(f_p(I_1)) = m(f_p(I_2)) = \frac{1-2p}{1-p},$$

$$m(I_1 \cup I_2) = \frac{1-p-2p^2}{1-p} \quad \text{and} \quad m(f_p(I_1 \cup I_2)) = \frac{2-4p}{1-p}$$

It follows that $\frac{m(f_p(I_1 \cup I_2))}{m(I_1 \cup I_2)} = \frac{2-4p}{1-p-2p^2}$. Clearly, for any positive number d < 2, there is a positive number $p < \frac{1}{4}$ (depending on d), for which

$$m(f_p(I_1 \cup I_2)) > d \cdot m(I_1 \cup I_2).$$

We infer from this the conclusion of Proposition 1.

We now list some consequences of our Theorem 1.

Corollary 1. Let $f \in \mathbb{R}^{\mathbb{R}}$ and let $\{I_v\}$ be a family of intervals such that $(\text{diameter } f(I_v)) \leq (\text{diameter } I_v)$ for each I_v . Then $m(f(\cup_v I_v)) \leq 2 \cdot m(\cup_v I_v)$.

PROOF. Note that $m(f(I_v)) \leq (\text{diameter } f(I_v))$. Put $E = \bigcup_v I_v$ in Theorem 1.

Corollary 2. Let f be absolutely continuous on \mathbb{R} and let $\{I_v\}$ be a family of intervals such that $\bigcup_v I_v \subset [0,1]$, $m(\bigcup_v I_v) = 1$ and $m(f(I_v)) \leq m(I_v)$ for each I_v . Then max $f[0,1] - \min f[0,1] \leq 2$.

PROOF. Now $\cup_v I_v$ is evidently measurable and $m([0,1]\setminus(\cup_v I_v)) = 0$. Because f is absolutely continuous we have $m(f([0,1]\setminus(\cup_v I_v))) = 0$. Apply Theorem 1 with $E = \bigcup_v I_v$.

Corollary 3. Let f be continuous on \mathbb{R} and let $\{I_v\}$ be a family of intervals such that $\bigcup_v I_v \subset [0,1]$, the set $[0,1] \setminus (\bigcup_v I_v)$ is a countable set, and $m(f(I_v)) \leq m(I_v)$ for each I_v . Then $\max f[0,1] - \min f[0,1] \leq 2$.

PROOF. Use a scheme much like the proof of Corollary 2.

Corollary 4. Let f be nondecreasing and let $\{(a_v, b_v)\}$ be a family of intervals such that $f(b_v) - f(a_v) \leq b_v - a_v$ for each interval (a_v, b_v) . Then

$$m\Big(f\big(\cup_v(a_v,b_v)\big)\Big) \leq 2 \cdot m\Big(\cup_v(a_v,b_v)\Big).$$

PROOF. Corollary 1.

Corollary 5. Let f be a continuous strictly increasing function on \mathbb{R} and let $\{(a_v, b_v)\}$ be a family of intervals such that $f(b_v) - f(a_v) \ge b_v - a_v$ for each (a_v, b_v) . Then $m(f(\cup_v(a_v, b_v))) \ge \frac{m(\cup_v(a_v, b_v))}{2}$.

PROOF. Let g be the inverse function of f on $f(\mathbb{R})$. Apply Corollary 4 to g and the family of intervals $\{f(a_v), f(b_v)\}$.

In the proof of Theorem 1 we should not expect that there necessarily exists a subfamily of mutually nonoverlapping intervals I_1, I_2, I_3, \ldots with $\sum_j m(I_j) \geq \frac{m(\cup_v I_v)}{2}$. Let, for example, $J_n = \left(-5^{-n}, \sum_{i=1}^n 2^{-i}\right)$ for each positive integer n, and $E = \left(\bigcup_{n=1}^\infty J_n\right) \cup \left(\bigcup_{n=1}^\infty (-J_n)\right)$. Then each subfamily of mutually nonoverlapping intervals is a singleton family, but the length of no interval here is as large as $\frac{m(E)}{2}$.

References

- [C] H. Cullen, Introduction to General Topology, D. C. Heath, Boston, 1968 (Theorem 18.15).
- [HS] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer- Verlag, New York, 1965 (Exercises (17.25), (17.26), (17.27)).