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INFINITE PEANO DERIVATIVES

Abstract

Let f(n) and f (n) denote the nth Peano derivative and the nth lower
Peano derivative of the function f : [a, b] → R. We investigate the
validity of the following statements.

(Mn). If the set H = {x ∈ [a, b] : f (n)(x) > 0} is of positive outer
measure, then f is n-convex on a subset of H having positive outer
measure.

(Zn). The set En(f) = {x ∈ [a, b] : f(n)(x) =∞} is of measure zero for
every f : [a, b]→ R.

We prove that (Mn) and (Zn) are true for n = 1 and n = 2, but
false for n ≥ 3. More precisely we show that for every n ≥ 3 there is an
(n − 1) times continuously differentiable function f on [a, b] such that
f(n)(x) =∞ a.e. on [a, b], and that such a function cannot be n-convex
on any set of positive outer measure.

We also show that the category analogue of (Zn) is false for every
n. Moreover, the set En(f) can be residual. On the other hand, the
category analogue of (Mn) is true for every n. More precisely, if {x ∈
[a, b] : f (n)(x) > 0} is of second category, then f is n-convex on a
subinterval of [a, b]. As a corollary we find that En(f) cannot be residual
and of full measure simultaneously.

1 Introduction

Let f ′ denote the lower derivative of the function f : [a, b] → R, and let λ
denote Lebesgue outer measure. Our starting point is the following simple
fact.

(M1). If the set H = {x ∈ [a, b] : f ′(x) > 0} is of positive outer measure, then
there is a subset A ⊂ H such that λ(A) > 0 and f is increasing on A.
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Proof. Let Hn = {x ∈ H : f(y)−f(x)
y−x > 0 for every 0 < |y − x| < 1/n}. Since

H = ∪∞n=1Hn, there is an index n such that λ(Hn) > 0. For a suitable k the
set A = Hn ∩

(
k−1
n , kn

)
is of positive outer measure, and it is clear that f is

increasing on A.

The following statement is also well-known.

(Z1). The set {x ∈ [a, b] : f ′(x) =∞} is of measure zero for every f : [a, b]→
R.

In this note we shall investigate the generalizations of the statements (M1)
and (Z1) involving the notions of Peano derivatives and convexity of higher
order. Let f be continuous at x, and suppose that there exists a polynomial p
such that f(x+t) = p(t)+o(tn) (t→ 0). Then the number p(k)(0) is called the
kth Peano derivative of f at x and is denoted by f(k)(x) for every 0 ≤ k ≤ n.
It is easy to see that f(n)(x) equals the limit

lim
t→0

n!
tn

(
f(x+ t)−

n−1∑
i=0

f(i)(x)
i!

ti

)
. (1)

If the limit (1) equals infinity, then we write f(n)(x) =∞. Replacing the limit
by lim inf in (1) we obtain the nth lower Peano derivative of f at x, denoted
by f

(n)
(x). Note that f(n)(x) or f (n)(x) are defined only if f(n−1)(x) exists

and is finite.
The unilateral derivates f(n)+(x) and f(n)−(x) are defined by taking the

corresponding unilateral limits. We shall also consider the derivatives f(n)(x)
and f (n)(x) in the case when f is defined on a set A and x ∈ A is a limit point
of A. The definitions are the same except that all the limit relations have to
be restricted to the set A.

Let f be a real valued function defined on the set A ⊂ R. The divided
differences of f are defined by induction as follows. Let [x1; f ] = f(x1) for
every x1 ∈ A. If n ≥ 1 and [x1, . . . , xn; f ] is defined whenever x1, . . . , xn are
distinct elements of A, then we put

[x1, . . . , xn, xn+1; f ] =
[x2, . . . , xn+1; f ]− [x1, . . . , xn; f ]

xn+1 − x1
(2)

for every system of distinct points x1, . . . , xn+1 ∈ A. An easy computation
shows that

[x1, . . . , xn; f ] =
n∑
i=1

f(xi)∏
j 6=i(xi − xj)
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and thus [x1, . . . , xn; f ] is independent of the order of x1, . . . , xn. The function
f is said to be p-convex on A if [x1, . . . , xp+1; f ] ≥ 0 for every system of distinct
points x1, . . . , xp+1 ∈ A. For p = 0 this means that f is nonnegative on A.
The function f is 1-convex if it is increasing on A; while 2-convexity coincides
with the notion of usual convexity. If A is an open interval and n ≥ 2, then
f is n-convex on A if and only if f is n − 2 times continuously differentiable
and f (n−2) is convex on A. (See [2].)

In this note we shall investigate the validity of the following generalizations
of (M1) and (Z1).

(Mn). If the set H = {x ∈ [a, b] : f (n)(x) > 0} is of positive outer measure,
then there is a subset A ⊂ H such that λ(A) > 0 and f is n-convex on A.

(Zn). The set {x ∈ [a, b] : f(n)(x) = ∞} is of measure zero for every f :
[a, b]→ R.

First we consider the case of n = 2.

Proposition 1. Both (M2) and (Z2) are true.

Proof. We start with (M2). Suppose that H = {x ∈ [a, b] : f (2)(x) > 0} is
of positive outer measure. Let

Hn = {x ∈ H :f(y)− f(x)− f ′(x)(y − x) > 0 for every y ∈ (a, b)
satisfying 0 < |y − x| < 1/n}.

It is clear that H = ∪∞n=1Hn, and thus there is an n such that λ(Hn) > 0.
Choose a subinterval I of [a, b] such that |I| < 1/n and λ(Hn ∩ I) > 0. Let
A = Hn ∩ I. Then f(y) − f(x) − f ′(x)(y − x) > 0 for every x ∈ A and y ∈ I
with y 6= x. Let x, y, z ∈ A, x < y < z. Then f(x) − f(y) − f ′(y)(x − y) > 0
and f(z)− f(y)− f ′(y)(z − y) > 0. If we divide the first inequality by y − x,
the second inequality by z − y, and add the resulting inequalities, then we
obtain that the second divided difference of f at the points x, y, z is positive.
Therefore f is convex on A.

Now we prove (Z2). Suppose that (Z2) is false, and let f : [a, b] → R be
such that E = {x ∈ [a, b] : f(2)(x) = ∞} is of positive measure. By (M2),
there is a set A ⊂ E such that λ(A) > 0 and f is convex on A. We can select
two points, c, d ∈ A such that c < d and λ(A ∩ [c, d]) > 0. It is well-known
that f |A ∩ [c, d] can be extended to [c, d] as a convex function. It is also
well-known that every convex function has a finite second Peano derivative
almost everywhere. However, if x ∈ A ∩ (c, d), then f(2)(x) =∞ and thus no
extension of f |A ∩ [c, d] can have a finite second Peano derivative at x. Since
λ(A ∩ [c, d]) > 0, this is a contradiction, and thus (Z2) is true.



814 Miklós Laczkovich

It was claimed by P. S. Bullen and S. N. Mukhopadhyay [3, (7.24) Corol-
lary] that (Zn) is true for every n; however, their proof is in error1. In fact,
as we shall see, both (Mn) and (Zn) are false for every n ≥ 3. We remark,
however, that the following special case of (Zn) is true.

Proposition 2. If f : A → R is n-convex on A, then the set {x ∈ A :
f(n)(x) =∞} is of measure zero.

We shall give the proof in the next section. It is well-known that the
following stronger version of (Z1) is also true. The set {x ∈ [a, b] : f ′+(x) =∞}
is of measure zero for every f : [a, b] → R. (See [5, (4.4) Theorem, p. 270].)
We shall prove that this statement does not generalize to n = 2.

Theorem 3. There exists a continuously differentiable function f on [0, 1]
such that f(2)+(x) = +∞ and f(2)−(x) = −∞ holds a.e. on [0, 1].

For n ≥ 3 we can prove the following.

Theorem 4. For every n ≥ 3 there is an n−1 times continuously differentiable
function f on [0, 1] such that f(n)(x) = +∞ holds a.e. on [0, 1].

Corollary 5. (Mn) and (Zn) are false for every n ≥ 3.

Proof. Let n ≥ 3. It is clear that Theorem 4 contradicts (Zn). Suppose that
(Mn) is true. Let f be a function as in Theorem 4. Since E = {x ∈ [a, b] :
f(n)(x) =∞} is of positive measure, it follows from (Mn) that f is n-convex on
a set A ⊂ E with λ(A) > 0. By Proposition 2, the set {x ∈ A : f(n)(x) =∞}
is of measure zero. However, this set equals A, a contradiction.

We shall give the proofs of Theorems 3 and 4 in Section 3.
It is easy to see that the category analogue of (Zn) fails for every n. Indeed,

let H ⊂ [0, 1] be a residual null set. It is well-known that there is an increasing
continuous function f : [0, 1] → R such that f ′(x) = ∞ for every x ∈ H.
That is, the set {x : f ′(x) = ∞} can be residual. If we take the (n − 1)st

integral function of f , then we obtain an n-convex function g such that the
set {x ∈ [0, 1] : g(n)(x) = ∞} is residual. We shall prove, however, that the
category analogue of (Mn) is true for every n.

Theorem 6. Let f : [a, b] → R be such that the set {x ∈ [a, b] : f (n)(x) > 0}
is of second category. Then f is n-convex on a subinterval of [a, b].

1The error appears in the proof of (7.16) Lemma on p. 274. Here the quantities δ1, etc.
are treated as constants, while δ1 depends on xr, δ2 depends on xr and xr−1, etc.
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We shall give the proof in Section 4. Theorem 6 has the following interest-
ing consequence.

Corollary 7. The set En(f) = {x ∈ [a, b] : f(n)(x) = ∞} cannot be residual
and of full measure simultaneously. More precisely, if En(f) is of full measure,
then it is of first category.

Proof. Suppose that En(f) is of full measure and of second category. By
Theorem 6, there is a subinterval I ⊂ [a, b] such that f is n-convex on I.
Then the nth Peano derivative of f is finite almost everywhere in I. However,
f(n)(x) = ∞ at each point of En(f) ∩ I, which is a set of positive measure.
This contradiction proves the statement.

We note that En(f) can be residual and of positive measure; see Remark
9 following the proof of Theorem 4.

2 Proof of Proposition 2

The statement of Proposition 2 is an immediate corollary of the following the-
orem by P. S. Bullen and S. N. Mukhopadhyay [3, (6.1) Theorem, p. 267]: If f
is n-convex on a measurable set A on which f(n−1) exists finitely, then f(n),ap

(the approximative nth Peano derivative of f) exists finitely almost everywhere
on A. Unfortunately, the proof given by P. S. Bullen and S. N. Mukhopadhyay
is not correct 2. Actually, the proof does not use the n-convexity of f, only the
fact that f(n−1) is increasing on A. Under this weaker condition the statement
may fail even for n = 2. In fact, it is easy to construct a continuously differ-
entiable function f and a perfect set A of positive measure such that f ′ = 0
on A (In particular, f ′ is increasing on A.), but f(2),ap does not exist at any
point of A. The question, whether the statement of [3, (6.1) Theorem] is true
or not, remains open.

The following simple lemma is well-known (see [2]). For the sake of com-
pleteness, we give the proof.

Lemma 8. Suppose that f is n-convex on A. If {x1, . . . , xn} and {y1, . . . , yn}
are two sets of distinct elements of A such that xi ≤ yi (i = 1, . . . , n), then
[x1, . . . , xn; f ] ≤ [y1, . . . , yn; f ].

Proof. Let x1, . . . , xn−1 ∈ A be distinct elements, and define a function
g by g(x) = [x1, . . . , xn−1, x; f ]. Clearly [x1, . . . , xn, xn+1; f ] = [xn, xn+1; g]

2The error appears in the estimate (6.7), where it is assumed that the relations (6.3) and
(6.4) hold uniformly in the intervals (xi, xi + δi). However, the uniformity of these relations
is not proved in Theorem (3.1).
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for every xn, xn+1 ∈ A \ {x1, . . . , xn−1}. Since f is n-convex, it follows that
every difference quotient of g is nonnegative; that is, g is increasing. Therefore
[x1, . . . , xn; f ] ≤ [x1, . . . , xn−1, yn; f ] whenever xn ≤ yn. Using the fact that
the divided differences do not depend on the order of the elements xi we find
that [x1, . . . , xn; f ] is an increasing function of each of the variables xi, from
which the statement of the lemma is obvious.

Proof of Proposition 2. Let f : A → R be n-convex, and put E =
{x ∈ A : f(n)(x) = ∞}. We have to prove λ(E) = 0. Deleting a suitable
countable subset, we may assume that every point of A is a bilateral point
of accumulation of A. Let u = inf A and v = supA. It is enough to show
that λ(E ∩ (a, b)) = 0 for every u < a < b < v. Fix such an a and b. Since
A has no isolated points, the sets A ∩ [u, a) and A ∩ (b, v] are infinite. We
fix distinct elements u1, . . . , un ∈ A ∩ [u, a) and v1, . . . , vn ∈ A ∩ (b, v], and
put [u1, . . . , un; f ] = L, [v1, . . . , vn; f ] = M. Then, by Lemma 8, we have
L ≤ [x1, . . . , xn; f ] ≤M for every x1, . . . , xn ∈ E ∩ [a, b].

For every interval J ⊂ [a, b] we shall denote by C(J) the convex hull of the
set of numbers [x1, . . . , xn; f ], where x1, . . . , xn are arbitrary distinct elements
of A ∩ J. Then C(J) ⊂ [L,M ] for every interval J ⊂ [a, b]. It follows from
Lemma 8 that if J1, J2 are disjoint subintervals of [a, b], then the intervals
C(J1) and C(J2) are nonoverlapping.

Let K > 0 and let UK be the family of all intervals [c, d] ⊂ [a, b] for which
there are elements c = x1 < · · · < xn+1 = d such that [x1, . . . , xn+1; f ] > K.
We show that |C(J)| > K · |J | for every J ∈ UK . Indeed, let J = [c, d],
and let c = x1 < · · · < xn+1 = d be such that [x1, . . . , xn+1; f ] > K. Let
[x1, . . . , xn; f ] = α and [x2, . . . , xn+1; f ] = β. Then by (2)

K < [x1, . . . , xn+1; f ] =
β − α

(xn+1 − x1)
=
β − α
|J |

.

Since α, β ∈ C(J), we find |C(J)| ≥ β − α > K · |J |, as we stated.
Next we show that UK is a Vitali cover of the set E ∩ (a, b). Indeed, let

x ∈ E ∩ (a, b) and δ > 0 be given. Since f(n)(x) =∞, it follows from [3, (4.1)
Lemma, p. 266] that

lim
xn+1∈A
xn+1→x

. . . lim
x1∈A
x1→x

[x1, . . . , xn+1; f ] =∞.

Since x is a bilateral point of accumulation of A, we may find distinct elements
x1, . . . , xn+1 ∈ A such that [x1, . . . , xn+1; f ] > K and x−δ < c ≤ x ≤ d < x+δ,
where c = min1≤i≤n+1 xi and d = max1≤i≤n+1 xi. Then x ∈ [c, d] ∈ UK and
[c, d] ⊂ (x− δ, x+ δ), proving that UK is indeed a Vitali cover of E ∩ (a, b). By
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Vitali’s covering theorem, there is a sequence Ji of pairwise disjoint elements
of UK covering a.e. point of E ∩ (a, b). Now the intervals C(Ji) are pairwise
nonoverlapping and are contained in [L,M ]. Therefore

λ(E ∩ (a, b)) ≤
∑
i

|Ji| <
∑
i

|C(Ji)|/K ≤ (M − L)/K.

Since K was arbitrary, we conclude that λ(E ∩ (a, b)) = 0.

3 Proofs of Theorems 3 and 4

The proofs of Theorems 3 and 4 are based on the construction of certain sym-
metric Cantor sets defined as follows. Let α and β be real numbers satisfying
0 < β < 1 and

1− α

1− β
> α > 0. (3)

We put I∅ = [0, 1]. Let n ≥ 0, i1, . . . , in ∈ {0, 1}, and suppose that the closed
interval Ii1...in has been defined such that

|Ii1...in | =
1
2n

(
1−

n−1∑
k=0

α · βk
)
.

(The condition is satisfied for n = 0.) Let Ji1...in denote the open interval
concentric with Ii1...in and of length α · (β/2)n. Since

|Ii1...in | >
1
2n

(
1− α

∞∑
k=0

βk
)

=
1
2n

(
1− α

1− β

)
>

α

2n
> α · (β/2)n,

Ji1...in is a subinterval of Ii1...in . Let Ii1...in0 and Ii1...in1 denote the two com-
ponents of Ii1...in \ Ji1...in . Then

|Ii1...in0| = |Ii1...in1| =
1

2n+1

(
1−

n∑
k=0

α · βk
)
.

In this way we have defined Ii1...in and Ji1...in for every finite 0− 1 sequence
i1, . . . , in. The intervals Ji1...in are pairwise disjoint. Let Gα,β denote the union
of the intervals Ji1...in , and let Pα,β = [0, 1]\Gα,β . Then Gα,β is a dense, open
subset of [0, 1], Pα,β is perfect, and

λ(Pα,β) = 1−
∞∑
n=0

α · βn = 1− α

1− β
> α > 0.
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Proof of Theorem 3. Let 1
2 < β < 1 be fixed and choose an α satisfying

(3). Let P = Pα,β . We define g(x) = 0 if x ∈ P , 1/(n+ 1) if x is the midpoint
of Ji1...in , and define g linearly in the closures of both halves of Ji1...in . Then g
is nonnegative and continuous on [0, 1]. We put φ(x) =

∫ x
0
g(t) dt (x ∈ [0, 1]);

then φ is continuously differentiable and strictly increasing on [0, 1].
Let x, y ∈ P, x < y be given. There are n ≥ 0 and i1, . . . , in = 0, 1 such

that x, y ∈ Ii1...in , x ∈ Ii1...in0, and y ∈ Ii1...in1. Then y− x ≤ |Ii1...in | ≤ 1/2n

and

φ(y)− φ(x) =
∫ y

x

g(t) dt ≥
∫
Ji1...in

g(t) dt =
1
2
· α · (β/2)n · 1

n+ 1
.

If x ∈ P is fixed, y ∈ P, y > x and y → x, then n→∞ and hence

φ(y)− φ(x)
(y − x)2

≥ 1
2
· α · (β/2)n · 1

n+ 1
· 4n →∞,

as β > 1/2. Suppose now that x is a density point of P, and let xk > x, xk →
x, xk ∈ Gα,β . If xk ∈ (ak, bk) where (ak, bk) is an interval contiguous to P,
then (bk − x)/(ak − x)→ 1 as k →∞, and hence

φ(xk)− φ(x)
(xk − x)2

>
φ(ak)− φ(x)

(bk − x)2
=
φ(ak)− φ(x)

(ak − x)2
·
(
ak − x
bk − x

)2

→∞.

Therefore limy→x+0
φ(y)−φ(x)

(y−x)2 = ∞ for every density point x of P. Similarly

we can prove that limy→x−0
φ(y)−φ(x)

(y−x)2 = −∞ for every density point x of P.
Summing up, we constructed a function φ with the following properties.

(i) φ is continuously differentiable on [0, 1];

(ii) φ is strictly increasing on [0, 1];

(iii) φ′(x) = 0 if x ∈ P ;

(iv) φ is twice differentiable a.e. in [0, 1] \ P ;

(v) lim
y→x±0

φ(y)− φ(x)
(y − x)2

= ±∞ if x is a density point of P.

(As for (iv), note that φ is locally a quadratic polynomial at each point of
[0, 1] \ P apart from the midpoints of the intervals contiguous to P.)

Let P denote the family of all subsets of [0, 1] that are homothetic with
P. Then P is a Vitali cover of [0, 1], and thus there is a sequence (Pk) of
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pairwise disjoint elements of P that cover a.e. point of [0, 1] (see [5, Chapter
IV, Theorem (3.1), p. 109]). Let ck = minPk and dk = maxPk (k = 1, 2, . . . ).
We define

fk(x) =


0 if x ∈ [0, ck]
dk − ck

2k
φ

(
x− ck
dk − ck

)
if x ∈ [ck, dk]

dk − ck
2k

φ(1) if x ∈ [dk, 1]

for every k. Then fk is continuously differentiable on [0, 1]. Also,

0 ≤ fk(x) ≤ 1
2k
φ(1) and 0 ≤ f ′k(x) ≤ 1

2k
max
t∈[0,1]

φ′(t) =
1
2k

for every x ∈ [0, 1]. We put f =
∑∞
k=1 fk. Then f is continuously differentiable

on [0, 1] and f ′ =
∑∞
k=1 f

′
k.

We claim that almost every x ∈ [0, 1] has the following properties.

(vi) There is a k1 = k1(x) such that x is a density point of Pk1 ;

(vii) There is a k2 = k2(x) such that x /∈ [ck, dk] for every k > k2; and

(viii) If k is such that x /∈ Pk, then fk is twice differentiable at x.

Indeed, (vi) is obvious from the fact that ∪∞k=1Pk covers a.e. point of [0, 1].
In order to prove (vii), note that each Pk is homothetic with P, and thus
λ(Pk)/(dk − ck) = λ(P ) for every k. Therefore

∞∑
k=1

(dk − ck) =
∞∑
k=1

dk − ck
λ(Pk)

λ(Pk) =
1

λ(P )

∞∑
k=1

λ(Pk) =
1

λ(P )
<∞,

and thus the set of points contained by infinitely many of the intervals [ck, dk]
is null. Finally, (viii) is immediate from (iv). We shall complete the proof by
showing that if a point x ∈ [0, 1] satisfies (vi)-(viii), then f(2)±(x) = ±∞. Let
x be such a point, and put

fk(y)− fk(x)− f ′k(x)(y − x)
(y − x)2

= Ak(y)

for every k = 1, 2, . . . and y > x. Let k1 and k2 be as in (vi) and (vii). If
k > k2, then x /∈ [ck, dk] and thus f ′k(x) = 0. Since fk is increasing, we find
that Ak(y) ≥ 0 for every k > k2 and y > x. Let k3 = max(k1, k2). Then for
every y > x we have

f(y)− f(x)− f ′(x)(y − x)
(y − x)2

=
∞∑
k=1

Ak(y) ≥
k3∑
k=1

Ak(y). (4)
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Since x is a density point of Pk1 , we have

lim
y→x+0

Ak1(y) = lim
y→x+0

fk1(y)− fk1(x)
(y − x)2

=∞.

If k 6= k1, then x /∈ Pk and thus, by (viii), fk is twice differentiable at x and
limy→x+0Ak(y) = f ′′k (x)/2. Therefore, by (4) we obtain

lim inf
y→x+0

f(y)− f(x)− f ′(x)(y − x)
(y − x)2

≥
∑
k≤k3
k 6=k1

f ′′k (x)
2

+ lim inf
y→x+0

Ak1(y) =∞,

and thus f(2)+(x) = +∞. Similar argument gives f(2)−(x) = −∞.

Proof of Theorem 4. It is enough to construct a twice continuously dif-
ferentiable function f such that f(3) =∞ a.e. Indeed, if we take the (n− 3)rd

integral function of f , then we obtain a function satisfying the requirements
of the theorem.

Let 1√
2
< β < 1 be fixed, and choose an α satisfying (3). Let P = Pα,β .

We define a function g as follows. First, if x ∈ P , then we put g(x) = 0.
Next we define g on the intervals contiguous to P. Let Ji1...in = (a, b) be
such an interval, and let c = a + (b − a)/3 and d = a + 2(b − a)/3. We put
g(c) = 1/(n+ 1), g(d) = −1/(n+ 1), and let g be linear on each of the closed
intervals [a, c], [c, d], and [d, b]. In this way we defined g on [0, 1]. It is easy to
see that g is continuous.

Let h(x) =
∫ x
0
g(t) dt (x ∈ [0, 1]). Then h is continuously differentiable on

[0, 1]. Since the integral of g over each interval contiguous to P equals zero, it
follows that h(x) = 0 if x ∈ P. It is easy to see that h(x) > 0 if x ∈ [0, 1] \ P.
It is also easy to check that∫

Ji1...in

h(x) dx =
1

9(n+ 1)
|Ji1...in |

2 =
α2

9(n+ 1)
· (β/2)2n.

Now we put φ(x) =
∫ x
0
h(t) dt (x ∈ [0, 1]). Then φ is twice continuously differ-

entiable and φ′′ = g.
Let x, y ∈ P, x < y be given. There are n ≥ 0 and i1, . . . , in = 0, 1 such

that x, y ∈ Ii1...in , x ∈ Ii1...in0, and y ∈ Ii1...in1. Then y− x ≤ |Ii1...in | ≤ 1/2n

and

φ(y)− φ(x) =
∫ y

x

h(t) dt ≥
∫
Ji1...in

h(t) dt =
α2

9(n+ 1)
· (β/2)2n.

Therefore
φ(y)− φ(x)

(y − x)3
≥ α2

9(n+ 1)
· (β/2)2n · 8n →∞



Infinite Peano Derivatives 821

if y → x + 0 and y ∈ P. The same is true if y → x − 0 and y ∈ P. If x is
a density point of P, then in a similar way as in the proof of Theorem 3 we
conclude that limy→x

φ(y)−φ(x)
(y−x)3 =∞.

Summing up, we constructed a function φ with the following properties.

(ix) φ is twice continuously differentiable on [0, 1];

(x) φ is strictly increasing on [0, 1];

(xi) φ′(x) = φ′′(x) = 0 if x ∈ P ;

(xii) φ is three times differentiable a.e. in [0, 1] \ P ;

(xiii) lim
y→x

φ(y)− φ(x)
(y − x)3

=∞ if x is a density point of P.

Now we repeat the argument of the proof of Theorem 3. Let Pk, ck, dk be
as in the proof of Theorem 3. We define

fk(x) =


0 if x ∈ [0, ck],
(dk − ck)2

2k
φ
(
x−ck

dk−ck

)
if x ∈ [ck, dk],

(dk − ck)2

2k
φ(1) if x ∈ [dk, 1]

for every k. Then fk is continuously differentiable on [0, 1], and

0 ≤ fk(x) ≤ 1
2k
φ(1), 0 ≤ f ′k(x) ≤ 1

2k
and 0 ≤ f ′′k (x) ≤ 1

2k

for every x ∈ [0, 1]. We put f =
∑∞
k=1 fk. Then f is twice continuously differ-

entiable on [0, 1], f ′ =
∑∞
k=1 f

′
k and f ′′ =

∑∞
k=1 f

′′
k .

Suppose that a point x ∈ [0, 1] satisfies (vi) and (vii) (See the proof of
Theorem 3.) as well as the following property.

(xiv) If k is such that x /∈ Pk, then fk is three times differentiable at x.

We shall prove that in this case f(3)(x) = ∞. Since (vi), (vii) and (xiv) hold
for a.e. point, this will complete the proof. Let x be a point satisfying (vi),
(vii) and (xiv), and for every k = 1, 2, . . . and y 6= x put

fk(y)− fk(x)− f ′k(x)(y − x)− f ′′
k (x)
2 (y − x)2

(y − x)3
= Bk(y).



822 Miklós Laczkovich

Let k1 and k2 be as in (vi) and (vii). If k > k2, then x /∈ [ck, dk] and thus
f ′k(x) = f ′′k (x) = 0. Since fk is increasing, we find that Bk(y) ≥ 0 for every
k > k2 and y 6= x. Let k3 = max(k1, k2). Then for every y 6= x we have

f(y)− f(x)− f ′(x)(y − x)− f ′′(x)
2 (y − x)2

(y − x)3
=
∞∑
k=1

Bk(y) ≥
k3∑
k=1

Bk(y). (5)

Since x is a density point of Pk1 , we have

lim
y→x

Bk1(y) = lim
y→x

fk1(y)− fk1(x)
(y − x)3

=∞.

If k 6= k1, then x /∈ Pk and thus, by (xiv), fk is three times differentiable at x
and limy→xBk(y) = f ′′′k (x)/6. Therefore, by (5) we obtain

lim inf
y→x

f(y)− f(x)− f ′(x)(y − x)− f ′′(x)
2 (y − x)2

(y − x)3

≥
∑
k≤k3
k 6=k1

f ′′′k (x)
6

+ lim inf
y→x

Bk1(y) =∞

and thus f(3)(x) =∞.

Remark 9. The function φ constructed in the proof of Theorem 4 satisfies
(ix)-(xiii), and thus φ(3)(x) =∞ holds at each density point x of P. Let d(x)
denote the distance of x from P. It is clear that whenever a function ψ satisfies
φ ≤ ψ ≤ φ + d3 on [0, 1], then ψ(3)(x) = ∞ at each density point x of P. As
we mentioned in the introduction, there is a continuous function α on [0, 1]
such that α(3)(x) = ∞ holds at the points of a residual set. It is easy to see
that sticking together suitable affine copies of the graph of α we can construct
a function ψ satisfying φ ≤ ψ ≤ φ + d3. This function has the property that
E3(ψ) is residual (because it is residual in each interval contiguous to P ), and
of positive measure (because it contains the density points of P ).

4 Proof of Theorem 6

In the proof of Theorem 6 we shall apply some ideas of [1, Section 3].

Lemma 10. Let f be locally bounded and right continuous in (c, d), and let µ
be a finite Borel measure on [0, 1] such that µ([1 − δ, 1]) > 0 for every δ > 0.
Suppose that A is a dense subset of (c, d), and for every x ∈ A there is a
real number c(x) such that

∫ 1

0
[f(x+ th)− f(x)− c(x)th] dµ(t) ≥ 0 for every

h ∈ (c− x, d− x). Then f is convex in (c, d).
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Proof. We may assume that d − c ≤ 1. Let C denote the set of points of
continuity of f. Since f is right continuous, (c, d)\C is countable. In particular,
C is dense in (c, d). It is enough to show that f is convex on C; since f is right
continuous, this will imply that f is convex in (c, d).

Suppose f is not convex on C. Then there are points u, v, w ∈ C, u < v < w
such that f(v) lies above the chord joining (u, f(u)) and (w, f(w)). Subtracting
a linear function from f we may assume that f(u) = f(w) = 0 and f(v) > 0.
Let m = sup{f(x) : x ∈ [u,w]}. Then m ≥ f(v) > 0. Since f is locally
bounded, we have m < ∞. Let δ > 0 be such that f(x) < m/4 for every
x ∈ [u, u + δ] ∪ [w − δ, w]. Let 0 < η < m/4 be fixed. There is a point
x0 ∈ (u,w) such that f(x0) > m− η. Since A is dense in (u,w) and f is right
continuous at x0, it follows that there is a point x ∈ (u,w) ∩ A such that
f(x) > m − η. We show that choosing η small enough, both c(x) ≥ 0 and
c(x) ≤ 0 provide a contradiction.

Suppose c(x) ≥ 0, and let h = w − x. Then 0 < h < 1, and

0 ≤
∫ 1

0

[f(x+ th)− f(x)− c(x)th] dµ(t)

≤
∫ 1

0

[f(x+ th)− f(x)] dµ(t) =
∫ 1−δ

0

+
∫ 1

1−δ
= I1 + I2.

If t ∈ [0, 1− δ], then f(x+ th)− f(x) ≤ m− (m− η) = η and therefore I1 ≤
η ·µ([0, 1]). If t ∈ [1− δ, 1], then x+ th ∈ [w− δ, w] and hence f(x+ th) < m/4
and

I2 <
[m

4
− (m− η)

]
µ([1− δ, 1]) < −m

2
µ([1− δ, 1]).

Thus if η < m
2 ·

µ([1−δ,1])
µ([0,1]) , then

I1 + I2 < η · µ([0, 1])− (m/2)µ([1− δ, 1]) < 0.

If c(x) ≤ 0, then take h = u− x < 0 to obtain a similar contradiction.

Lemma 11. Suppose f is k times differentiable in a neighborhood of x, and
the Peano derivative f(k+1)(x) exists. If the right hand derivative

(
f (k)

)′
+

of

f (k) exists at x, then
(
f (k)

)′
+

(x) = f(k+1)(x).

Proof. By k applications of L’Hôpital’s rule we obtain

f(k+1)(x) = lim
t→+0

(k + 1)!
tk+1

(
f(x+ t)−

k∑
i=0

f (i)(x)
i!

ti
)

= lim
t→+0

f (k)(x+ t)− f (k)(x)
t

=
(
f (k)

)′
+

(x).
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Proof of Theorem 6. The proof is by induction on n. Let n = 1, and
suppose that the set H = {x ∈ [a, b] : f (1)(x) > 0} is of second category. Let
Hk = {x ∈ H : (f(y) − f(x))/(y − x) > 0 for every 0 < |y − x| < 1/k}.
Since H = ∪∞k=1Hk, there is an index k such that Hk is dense in a subinterval
I ⊂ [a, b] with |I| < 1/k. It is clear that f is increasing (= 1-convex) in I.

Let n ≥ 1 and suppose that the statement is true for n. Let f : [a, b]→ R be
such that the set H = {x ∈ [a, b] : f (n+1)(x) > 0} is of second category. Since
f(n)(x) exists and is finite for every x ∈ H, there exists a positive integer K
such that f(n)(x) > −K at the points of a second category subset of H. Adding
K ·xn/n! to f (which does not affect the value of f (n+1) or the (n+1)-convexity
of f in any interval), we may assume that f(n)(x) > 0 and f (n+1)(x) > 0 at
each point of H. Let I be a subinterval of [a, b] such that H is of the second
category in each subinterval of I (see [4, §10, V. p. 85]). By the induction
hypothesis, f is n-convex in a subinterval J ⊂ I. Let Hk denote the set of
points x ∈ H ∩ J such that

(n+ 1)!
hn+1

(
f(x+ h)−

n∑
i=0

f(i)(x)
i!

hi

)
> 0 (6)

for every 0 < |h| < 1/k. Since H ∩ J = ∪∞k=1Hk, there is a k such that Hk is
of the second category. Let (c, d) be a subinterval of J such that d− c < 1/k
and Hk is dense in (c, d). Putting A = (c, d) ∩Hk we find that

(i) f is n-convex in (c, d), and

(ii) at each point of the dense subset A ⊂ (c, d) the Peano derivative f(n)(x)
exists finitely, and (6) holds for every h 6= 0 such that x+ h ∈ (c, d).

We shall prove that f is (n + 1)-convex in (c, d). First suppose n = 1. Then
f is increasing by (i). If x ∈ A, then f(x + h) − f(x) − f ′(x)h > 0 for every
h ∈ (c−x, d−x), h 6= 0. As we saw in the proof of Proposition 1, this implies
that f is convex on A. Since f is increasing, we conclude that f is convex in
(c, d).

Next suppose n > 1. Since f is n-convex in (c, d), f is n − 2 times dif-
ferentiable and f (n−2) is convex in (c, d). Then the right hand side derivative(
f (n−2)

)′
+

= g exists everywhere, and is increasing and right continuous in
(c, d). It follows from Lemma 11 that f(n−1)(x) = g(x) at each point of A.
Since f (n−2) is convex, it is absolutely continuous, and thus f (n−2) equals
the integral function of g. We shall prove that g is convex in (c, d). This will
complete the proof. Indeed, if g is continuous, then f (n−2) is a primitive of
g. Therefore f is n− 1 times differentiable and f (n−1) = g is convex in (c, d);
that is, f is (n+ 1)-convex in (c, d).



Infinite Peano Derivatives 825

It is enough to show that g satisfies the conditions of Lemma 10. Since g
is increasing, it is locally bounded in (c, d). If x ∈ A, then by (ii), we have

(n+ 1)!
hn+1

(
f(x+ h)−

n−2∑
i=0

f (i)(x)
i!

hi − g(x)
(n− 1)!

hn−1 −
f(n)(x)
n!

hn

)
> 0 (7)

for every h 6= 0 such that x + h ∈ (c, d). It is well-known (and easy to prove
by induction on k) that if f (k−1) is absolutely continuous on [x, x+ h], then

f(x+ h)−
k−1∑
i=0

f (i)(x)
i!

hi =
hk

(k − 1)!

∫ 1

0

f (k)(x+ th)(1− t)k−1dt.

Therefore, by (7), we have

0 <
(n+ 1)!
hn+1

(
hn−1

(n− 2)!

∫ 1

0

g(x+ th)(1− t)n−2dt− g(x)
(n− 1)!

hn−1 −
f(n)(x)
n!

hn
)

=
(n+ 1)n(n− 1)

h2

(∫ 1

0

g(x+ th)(1− t)n−2dt− g(x)
(n− 1)

−
f(n)(x)
n(n− 1)

h

)
=

(n+ 1)n(n− 1)
h2

∫ 1

0

[
g(x+ th)− g(x)− f(n)(x)th

]
(1− t)n−2dt

for every h ∈ (c − x, d − x), h 6= 0. Putting µ(B) =
∫
B

(1 − t)n−2dt, we can
see that the conditions of Lemma 10 are satisfied with f = g. Therefore g is
convex on (c, d), which completes the proof.
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