
Real Analysis Exchange
Vol. (), , pp. 773–794

Kamo Hiroyasu, Faculty of Science, Nara Women’s University,
wd@ics.nara-wu.ac.jp

Kawamura Kiko, Department of Mathematics, University of North Texas,
kiko@unt.edu

Takeuti Izumi, Graduate School of Informatics, Kyoto University,
takeuti@kuis.kyoto-u.ac.jp

COMPUTATIONAL COMPLEXITY OF
FRACTAL SETS

Abstract

In studies on fractal geometry, it is important to determine whether
the classification by means of computational complexity is independent
of the classification by means of fractal dimension. In this paper, we
show that each self-similar set defined by polynomial time computable
functions is polynomial time computable, if the self-similar set satisfies
a polynomial time open set condition. This fact provides us examples of
sets whose computational complexity are polynomial time computable,
and which have non integer Hausdorff dimension. We also construct
a set with computational complexity NP-complete and with an integer
Hausdorff dimension. These two examples establish the independence
of computational complexity and Hausdorff dimension.

1 Introduction

The aim of this paper is to find a mathematical tool other than fractal dimen-
sion to estimate the complexity in fractal geometry. Although many of the
traditional studies of fractal geometry have been made by means of Hausdorff
or other dimensions [1], it is not always easy to obtain the exact value of the
dimension. Many of the studies of fractal figures use self-similar sets, because
they are easy to define, to draw, and to calculate.

The box-counting method often appears in the manipulation of self-similar
sets. Consider a subset A in the unit square [0, 1]2. We partition [0, 1]2 into
2n × 2n small squares called pixels and paint each pixel Pi,j obeying the rule

Key Words: Time complexity, Fractals, Self-similar sets
Mathematical Reviews subject classification: 03F60, 28A80, 03D15, 68Q25
Received by the editors October 1, 2000

773

774 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

that Pi,j is black if A∩Pi,j 6= Ø and white otherwise. By counting the number
of black pixels for a large enough n, we obtain a sufficient approximation of
box-counting dimension on A.

In this paper, we consider both the efficiency of approximation and the
time of computation. Although the former has been investigated; e.g., [9], [7],
the latter has never been studied. This is the motivation for investigating the
time to compute an approximation of box-counting dimension as one of the
tools for estimation of complexity in fractal geometry.

Before investigating the time complexity, we must check the computabil-
ity of self-similar sets as the first step. From the point of view of Pour-El–
Richards’s style computable analysis [8], it is already known that a self-similar
set which is defined by computable contractions is computable [4], [5].

In this paper, we investigate self-similar sets from the viewpoint of com-
putable analysis and propose computational complexity as one of the tools for
estimating the complexity of self-similar sets, other than Hausdorff dimension.
First, we recall computational complexity in analysis. The definitions of com-
putational complexity in this paper are equivalent to those in [11], [12] and
known to be equivalent to those in [8]. Next, we provide a sufficient condition
for a recursive self-similar set to be in the computational complexity class P.
We obtain two theorems.

Theorem 1.1. A self-similar set constructed by a set of polynomial time
computable functions is in the computational complexity class NP.

Theorem 1.2. A self-similar set constructed by a set of polynomial time
computable functions is in the computational complexity class P, if the self-
similar set satisfies the polynomial time open set condition.

By using these theorems, we can estimate the computational complexity
of most of the well-known self-similar sets. For examples, the Koch curve
is in the computational complexity class P, and its Hausdorff dimension is
log 4/ log 3, which is a computable noninteger real number. As a related work,
Ko [6] constructed some figures with P as its computational complexity and
an uncomputable number as its Hausdorff dimension. He wasn’t concerned
with self-similar sets, and his figures were not self-similar sets.

Lastly, we give the following theorem to show an example of NP-complete
subsets of the Euclidean plane. It is the image of a polynomial time com-
putable Hölder function. In addition, we prove that each Hölder polynomial
time computable function is in the computational complexity class NP. This
example shows that the classification by means of computational complexity
does not coincide with the one by means of Hausdorff dimension.

Computational Complexity of Fractal Sets 775

Theorem 1.3. There exists a closed set in the plane whose computational
complexity is NP-complete, and the Hausdorff dimension is 1.

In this paper, we use the notation N for the set of all the natural numbers
{0, 1, 2, ...}, Q for the set of all the rational numbers, and R for the set of all
the real numbers.

2 Complexity of Analytical Objects

We discuss the computational complexities of real valued functions. The com-
plexity of such a function is determined by a standard encoding of rational
numbers. We have a polynomial time computable standard encoding. First,
we give the formal definition of polynomial time computability.

Definition 2.1. Let f be a function from Nn to N. The function f is
polynomial time computable iff there exist a Turing machine M and k ∈
N such that M returns the integer f(x1, x2, . . . , xn) as the output in time
O((log(x1 · x2 · · ·xn))k), if an n-tuple of natural numbers 〈x1, x2, . . . , xn〉 is
given as the input.

Definition 2.2. The standard encoding of rational numbers is a one-to-one
mapping Q 7→ N, denoted q 7→ dqe satisfying the following conditions.

1. There exists a polynomial time computable function f1 : N2 → N such
that for each positive integer d and each integer n 6= 0, the natural
number dn/de = f1(d, n).

2. There exists a polynomial time computable function f2 : N → N such
that for each natural number e, f2(e) = 0 iff there exists a rational
number q such that e = dqe.

3. There exist polynomial time computable functions f3, f4 : N → N such
that for each natural number e 6= 0, if f2(e) = 0, then f3(e) 6= 0 and
e = df4(e)/f3(e)e.

Such a encoding q 7→ dqe surely exists [10]. We regard dqe as the standard
code of the rational number q. For n ∈ N, the size of n is written as s =
size (n) ∈ N, and is defined by 2s−1 ≤ n < 2n or s = n = 0. For q ∈ Q,
size (q) = size (dqe).

We also define the standard encoding of pairing which is polynomial time
computable.

Definition 2.3. The standard encoding of pairing consists of three polynomial
time computable functions: pair : N×N→ N, left : N→ N, and right : N→ N
such that

776 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

n = pair (left (n), right (n)), m = left (pair (m,n)) and n = right (pair (m,n))

for all natural numbers m,n.

We denote the pair (m,n) by d〈m,n〉e and call d〈m,n〉e the code of the
pair 〈m,n〉. Similarly we abbreviate d〈l,m, n〉e for pair (l, pair (m,n)), and call
d〈l,m, n〉e the code of the triple 〈l,m, n〉. Recursively, we write d〈k, l,m, n〉e
for pair (k, pair (l, pair (m,n))) and call d〈k, l,m, n〉e the code of the quadruple
〈k, l,m, n〉.

We regard d〈dq1e, dq2e, ..., dqne〉e as the encoding of an n-tuple of rational
numbers 〈q1, q2, ..., qn〉 and write simply d〈q1, q2, ..., qn〉e. In general, we use
the notation dxe for denoting the coding of a non-natural-number object x.
That is, for a set X 6= N, the map x 7→ dxe : X → N is a one-to-one function.
Thus, the code of 〈m,n〉 ∈ N2 is d〈m,n〉e = pair (m,n) ∈ N and the code of
〈q, r〉 ∈ Q2 is d〈q, r〉e = pair (dqe, dre) ∈ N.

We write PN,N for the set of polynomial time computable functions over
natural numbers.

Definition 2.4. The set PN,Q is the set of functions from N to Q such that f
is in PN,Q iff there is g ∈ PN,N such that df(n)e = g(n) for all n ∈ N.

The set PQ,N is the set of functions from Q to N such that f is in PQ,N iff
there is g ∈ PN,N such that f(q) = g(dqe) for all q ∈ Q.

The set PQ,Q is the set of functions of Q into Q such that a function f is
in PQ,N iff there is g ∈ PN,N such that df(q)e = g(dqe) for all q ∈ Q.

A function f ∈ PN,Q or f ∈ PQ,N or f ∈ PQ,Q is called polynomial time
computable.

Similarly we define the sets PQ×N,Q, PQ,Q×Q, and so forth. The sets PQ×N,Q
is a set of functions from Q× N to Q.

Example 2.5. All of the following functions are in PQ×Q,Q.

1. addition: (q, q′) 7→ q + q′ : Q×Q→ Q

2. subtraction: (q, q′) 7→ q − q′ : Q×Q→ Q

3. multiplication: (q, q′) 7→ q · q′ : Q×Q→ Q

4. division: (q, q′) 7→
{
q′/q (q 6= 0)
0 (q = 0) : Q×Q→ Q

Definition 2.6. The set PR is a subset of R such that r ∈ PR iff there is a
function q ∈ PN,Q such that |q(k)− r| < 1/k for each positive integer k.

A real number r ∈ PR is called polynomial time computable.

Computational Complexity of Fractal Sets 777

This definition is equivalent to the condition that a real number r belongs
to PR iff there exists a Turing machine which computes its approximation with
n significant digits in polynomial time of n [10] [11] [12].

Example 2.7. All algebraic numbers, π, and e are in PR.

Usually, the complexity of a real valued function is defined by the run time
of a Type-2 Machine [10], or an oracle Turing machine [6]. In this paper we
define complexity in another way. We define the complexity of a real function
by using an ordinal Turing machine, not a Type-2 machine. However, these
definitions are equivalent; that is, the class of polynomial time computable real
functions by our definition is equal to the class of polynomial time computable
real functions by the traditional definition.

Definition 2.8. We say a function f : R → R is in PR,R iff there exist
functions g ∈ PQ2,Q and h ∈ PQ2×N,Q such that the following hold.

1. For each rational number x and each positive rational number epsilon >
0, g(x, epsilon) is a rational number such that |g(x, epsilon) − f(x)| <
epsilon.

2. Let x, l be arbitrary rational numbers and k be an arbitrary natural
number. Let z, z′ be rational numbers which satisfy z ∈ (x − l, x + l)
and z′ ∈ (x − l, x + l). Suppose |z − z′| < h(x, l, k). Then we have
|f(z′)− f(z)| < 1/k.

A function f ∈ PR,R is called polynomial time computable.

Condition 1 of Definition 2.8 involves the modulus of approximation. Con-
dition 2 involves the modulus of uniform continuity. Similarly define the set
PR2,R2 . The notation |(x, y)| stands for the absolute value; i.e., |(x, y)| =√
x2 + y2, and B((x, y), ρ) =

{
(x′, y′)

∣∣∣ |(x′, y′)− (x, y)| < ρ
}

.

Definition 2.9. The set PR2,R2 is a set of functions from R2 to R2 such that
a function f : R2 → R2 is in PR2,R2 iff there exist functions g ∈ PQ3,Q2 and
h ∈ PQ3,Q such that the following hold.

1. For each x ∈ Q2 and each rational number epsilon > 0, g(x, epsilon) is
in Q2 and |g(x, epsilon)− f(x)| < 1/epsilon.

2. Let x be an arbitrary rational point ∈ Q2, and epsilon, ρ be arbitrary
positive rational number. Let z, z′ be rational numbers satisfying z ∈
B(x, ρ) and z′ ∈ B(x, ρ). Suppose |z − z′| < h(x, ρ, epsilon). Then
|f(z′)− f(z)| < epsilon.

778 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

The following propositions are easily verified.

Proposition 2.10. The set PR is closed under real functions in PR,R.

Proposition 2.11. The set PR,R is closed under composition.

3 Computational Complexity of Figures

We define the complexity of geometrical figures. We regard geometrical figures
as closed subsets of R2. The notation P(X) stands for the power set of X;
that is, E ∈ P(X) iff E ⊂ X.

Definition 3.1. A problem is a subset of N. Let P be a problem; that is,
P ⊂ N and n be a natural number. If n ∈ P , then we say that the answer to
P for the instance n is ‘yes’. If n 6∈ P , then we say that the answer to P for
the instance n is ‘no’.

Definition 3.2. The set PP(N) is a subset of P(N) such that a problem P is
in PP(N) iff there is f ∈ PN,N such that P = {n ∈ N | f(n) = 0}. A problem
P ∈ PP(R) is called polynomial time computable.

Definition 3.3. The set NPP(N) is a subset of P(N) such that a problem P is
in NPP(N) iff there is Q ∈ PP(N) and f ∈ PN,N such that for each n, n ∈ P iff
there is a number m ≤ f(n) such that d〈n,m〉e ∈ P . A problem P ∈ NPP(N)

is called nondeterministic polynomial time computable, or NP.

Definition 3.4. For problems P and Q, the relation P ≤P Q holds iff there
is a function f ∈ PN,N such that P = f−1(Q). When P ≤P Q, we say that P
is polynomial time reducible into Q.

Definition 3.5. The set NPhardP(N) is a subset of P(N) such that a problem
P is in NPhardP(N) iff for any Q ∈ NPP(N), Q ≤P P . The set NPcompP(N) is
a subset of P(N) such that NPcompP(N) = NPP(N) ∩NPhardP(N). A problem
P ∈ NPhardP(N) is called NP-hard. A problem P ∈ NPcompP(N) is called
NP-complete.

We characterize a closed set X in a plane by determining for given x ∈ R2

whether X intersects B(x, epsilon) for each epsilon > 0. This means the
following. Fix a point x ∈ R2 and a closed set X ⊂ R2. Then, does it holds
that X ∩ B(x, epsilon) 6= Ø for each epsilon > 0 ? If yes, then x ∈ X. If no,
then x 6∈ X.

Unfortunately, it is not computable whether X ∩ B(x, epsilon) 6= Ø in
general. However, for some X, it may be computable whether X intersects to
B(x, epsilon) or is separated from B(x, epsilon/2). Therefore, we define the
computable complexity of closed sets as follows.

Computational Complexity of Fractal Sets 779

Definition 3.6. For a point x ∈ R2 and a set X ⊂ R2, the notation d(x,X)
stands for the distance between x and X, which is defined as

d(x,X) = inf
x′∈X

|x′ − x| (X 6= Ø), d(x,Ø) =∞.

We write F(R2) for the set of all closed sets in R2.

Definition 3.7. Let P be a problem; that is, P ⊂ N and let X be a closed
set in F(R2). We say P ` X iff the following conditions hold.

1. If d〈x, y, epsilon〉e ∈ P , then X ∩ B((x, y), 2epsilon) 6= Ø. That is,
d((x, y), X) < 2epsilon.

2. If d〈x, y, epsilon〉e 6∈ P , then X ∩ B((x, y), epsilon) = Ø. That is,
d((x, y), X) > epsilon.

We say that P determines X iff P ` X.

This definition is equivalent to the definition in [10].

Proposition 3.8. For a problem P and closed sets X,X ′ ⊂ F(R2), if P ` X
and P ` X ′, then X = X ′.

Definition 3.9. The set PF(R2) is a subset of F(R2) such that a closed set
X is in PF(R2) iff there exists P ∈ PP(N) such that P ` X. A closed set
X ∈ PF(R2) is called polynomial time computable.

Definition 3.10. The set NPF(R2) is a subset of F(R2) such that a closed set
X is in NPF(R2) iff there exists P ∈ NPP(N) such that P ` X. A closed set
X ∈ NPF(R2) is called nondeterministic polynomial time computable, or NP.

Definition 3.11. The set NPhardF(R2) is a subset of F(R2) such that a closed
set X is in NPF(R2) iff for any problem P , if P ` X then P ∈ NPhardP(N). The
set NPcompF(R2) is a subset of F(R2) such that NPcompF(R2) = NPF(R2) ∩
NPhardF(R2). A closed set X ∈ NPhardF(R2) is called NP-hard. A closed set
X ∈ NPcompF(R2) is called NP-complete.

Lemma 3.12. For a closed set X ∈ F(R2), X ∈ NPhardF(R2) iff there exists
an NP-hard problem P and a polynomial time computable function f of N into
N which satisfies the following conditions.

1. For each n ∈ f(N), there are rational numbers x, y and a positive rational
number epsilon such that n = d〈x, y, epsilon〉e.

2. If d〈x, y, epsilon〉e ∈ f(P), then d((x, y), X) ≤ epsilon.

780 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

3. If d〈x, y, epsilon〉e ∈ f(N− P), then d((x, y), X) ≥ 2epsilon.

Proof. Suppose that Q is a problem and Q ` X. Then we show P ≤P Q, and
therefore Q ∈ NPhardP(N). If n ∈ P , then there is a triple (x, y, epsilon) such
that f(n) = d〈x, y, epsilon〉e and d((x, y), X) ≤ epsilon. By the definition of
Q ` X, we have f(n) ∈ Q. On the other hand, if n 6∈ P , then there is a triple
(x, y, epsilon) such that f(n) = d〈x, y, epsilon〉e and d((x, y), X) ≥ 2epsilon.
By the definition of Q ` X, we have f(n) 6∈ Q. Therefore P = f−1(Q).

Example 3.13. Let l,m, n be integers, not all of which are zero. Then a line
lx + my = n is polynomial time computable. The reason is as follows. For
each rational point (x2/x1, y2/y1), the distance d between the point and the
line is calculated as

d =

√
| l · x2/x1 +m · y2/y1 + n |

l2 +m2 .

Then, it is polynomial time computable to determine whether d ≥ epsilon or
d < epsilon, since this is equivalent to determine whether d2 ≥ epsilon2, and
this requires only the comparison of fractions. We can make the computation
in polynomial time of size (x) + size (y) + size (epsilon).

4 Self-Similar Sets

In this section, we discuss the complexities of self-similar sets. We begin with
some preliminaries on contractions and Hausdorff metric.

Definition 4.1. Let (V, d) be a metric space. A function φ over V is a
contraction iff there is a real number α < 1 such that for any points x, y ∈ V ,
d(φ(x), φ(y)) ≤ αd(x, y). We also say that φ is a contraction with an upper
bound of magnification α < 1.

Definition 4.2. We define the Hausdorff metric between x ∈ V and X ⊂ V ,
and between sets X ⊂ V and Y ⊂ V .

d(x,X) = inf
y∈X

d(x, y), d(X,Y) = max
{

inf
x′∈X

d(x′, Y), inf
y′∈Y

d(y′, X)
}
.

For the empty set, d(x,Ø) =∞. If either X or Y is empty, then d(X,Y) =∞.

When V = R2, this definition of d(x,X) is identical to Definition 3.6. Note
that for compact sets X,Y , if d(X,Y) = 0, then X = Y . For a contraction
φ with an upper bound of magnification α < 1, we have d(φ(X), φ(Y)) ≤
αd(X,Y).

Computational Complexity of Fractal Sets 781

Definition 4.3. A self-similar set is a compact non-empty subset X ⊂ V
such that for contractions φ1, φ2, . . . , φn we have X =

⋃n
i=1 φi(X). We call the

sequence of the contractions φ1, φ2, . . . , φn a self-similar system. If a compact
non-empty subset X ⊂ V satisfies this equation, then we say that X is a
self-similar set defined by the self-similar system φ1, φ2, . . . , φn.

The fundamental properties of self-similar sets were studied by Hutchinson,
Hata and others [2], [3]. One of the most important properties is the following
lemma.

Lemma 4.4. Suppose that the metric space V is complete. Then for each
sequence of contractions {φ1, φ2, . . . , φn}, there exists exactly one self-similar
set defined by φ1, φ2, . . . , φn.

Proof. We provide a proof including their proof for completeness and for
our notation. First we show the construction of the self-similar set. The
proof of uniqueness follows the construction immediately. Let σ be the set
{1, 2, . . . , n}. Then σl denotes a set of l-tuples of elements in σ; that is, σl =
{〈i1, i2, . . . , il〉| ik ∈ σ for each k }, and σω denotes a set of infinite sequences
of elements in σ; that is, σω = {〈i1, i2, . . . , ik, . . .〉| ik ∈ σ for each k }. For
〈i1, i2, . . . , il〉 ∈ σl, a function φ〈i1,i2,...,il〉 is defined as

φ〈i1,i2,...,il〉(x) = φi1(φi2(. . . (φil(x)) . . .)).

For 〈i1, i2, . . .〉 ∈ σl, a function φ〈i1,i2,...〉 is defined as

φ〈i1,i2,...〉(x) = lim
l→∞

φ〈i1,i2,...,il〉(x).

For any 〈i1, i2, . . .〉 ∈ σω, the limit in the definition of φ〈i1,i2,...〉 always ex-
ists. That is because of the following inequalities. Let L be the maximum of
d(x, φ1(x)), d(x, φ2(x)), . . . , d(x, φn(x)). Then d(x, φil(x)) ≤ L. By applying
φil−1 , we get d(φil−1(x), φ〈il−1,il〉(x)) ≤ αL. By applying φil−2 again, we get
d(φ〈il−2,il−1〉(x), φ〈il−2,il−1,il〉(x)) ≤ α2L. After iteration, finally we get

d(φ〈i1,i2,...,il−1〉(x), φ〈i1,i2,...,il〉(x)) ≤ αl−1L.

Therefore, the sequence φ〈i1,i2,...,il〉(x) converges. Moreover we get

d(φ〈i1,i2,...,il〉(x), φ〈i1,i2,...,il,il+1,...〉(x)) ≤ αlL/1− α.

Note that φ〈i1,i2,...〉(x) does not depends on x, because

d(φ〈i1,i2,...〉(x), φ〈i1,i2,...〉(y)) ≤ α∞d(x, y) = 0.

782 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

Now we let X be the closure of {φ〈i1,i2,...〉(x0)| 〈i1, i2, . . .〉 ∈ σω } for a point x0.
Actually, the set {φ〈i1,i2,...〉(x0)| 〈i1, i2, . . .〉 ∈ σω } is compact. Note that X is
defined independently of x0. It is obvious that the set X defined above satisfies
X =

⋃n
i=1 φi(X). Moreover, if another closed bounded set X ′ also satisfies

this set equation, then X = X ′, because d(X,X ′) ≤ d(φi(X), φi(X ′)) ≤
α · d(X,X ′). Thus d(X,X ′) = 0.

We define sets Xl ⊂ V for natural numbers l as

Xl = {φ〈i1,i2,...,il〉(x0)| 〈i1, i2, . . . , il〉 ∈ σl }.

TheseXl’s depend on x0. EachXl is an approximation ofX with the estimated
error. We can easily see that d(X,Xl) ≤ αlL/(1− α).

The following proposition is easily proved.

Proposition 4.5. For a self-similar set X =
⋃
φi(X) (1 ≤ i ≤ n), the

Hausdorff dimension of X is ≤ − log n/ logα.

We have defined contractions and self-similar sets in a general complete
metric space V . Hereafter we discuss only the case where V = R2, the Eu-
clidean plane, and contractions which are functions from R2 to R2. We regard
closed sets as figures on R2.

The notion of computational complexity does not appear in the definition
of self-similar sets. Now we define the notion of a self-similar system with
complexity.

Definition 4.6. A self-similar system (φ1, φ2, . . . , φn) is called polynomial
time computable, or a P-self-similar system, iff all of φi’s are in PR2,R2 .

Proposition 4.7. If all of φ1, φ2, . . . , φn ∈ PR2,R2 are contractions, then each
φ〈i1,i2,...,il〉 is also in PR2,R2 . Moreover, an approximation of φ〈i1,i2,...,il〉(x)
within an error less than 1/2m is computable in polynomial time of l + m +
size (x) for each rational point x.

Proof. Let fi be an approximation to φi such that |φi(x, epsilon)−fi(x, epsilon)| <
epsilon for each i. There is an integer k such that fi(x.epsilon) is com-
putable in the time O((size (x) + size (epsilon))k), for all i, because each
φi is in PQ3,Q2 . Moreover we assume that dn/de is computable in the time
O((size (d)+size (n))k). We will calculate the approximation of φ〈i1,i2,...,il〉(x)
in several steps with auxiliary variables y1, y2, . . . , yl. We will calculate ys in
Step s for 1 ≤ s ≤ l recursively.
Step 1. In this step we will calculate y1. For any l,m, we calculate d1/l·2me,
which is computable in time O((size (l · 2m))k) ≤ O((m · log l)k). Therefore

Computational Complexity of Fractal Sets 783

size (1/l·2m) ≤ O((m · log l)k). Then we calculate y1 = fil(x,
1/l·2m), which is

computable in time O((size (x) + size (1/l·2m))k) ≤ O((size (x) + l · logm)k
2
).

It follows that |y1 − φil | ≤ 1/l·2m . Note that

size (y1) ≤ O((size (x) + size (l · 2m))k) ≤ O((size (x) + l · logm)k),

because y1 is as large as x, and the precision of y1 is 1/l·2m .
Step s. (2 ≤ s ≤ l). In this step, the variables y1, y2, · · · , ys−1 have been
calculated. Now we calculate ys.

size (ys−1) ≤ O
(
(size (x) + size (l · 2m))k

)
≤ O

(
(size (x) + l · logm)k

)
,

|y1 − φ〈il−s+2,il−s+3,...,il〉(x)| < s− 1
l · 2m .

Then, we calculate ys = fil−s+1(ys−1,
1/l·2m), which is computable in time

O((size (ys−1) + size (l · 2m))k
2
)

≤ O((size (x) + 2size (l · 2m))k
2
) ≤ O((size (x) + l ·m)k

2
).

Then |ys − φ〈il−s+1,il−s+2,...,il〉| ≤
1

l · 2m . Note also that

size (ys) ≤ O(size (x) + size (l · 2m)) ≤ O(size (x) + l ·m),

which is independent of s. That is because |ys| is as large as |x| and the
precision of y1 is 1/l·2m .

Finally, we obtain yl which is the approximation of φ~i(x) with error ≤
1/2m. The total time of calculation is ≤ O((m log l)+l·(size (x)+m log l)k

2
) ≤

O((l +m+ size(x))2k+1).

Each φi is a contraction. This fact prohibits the error of each step φik from
growing too big.

Theorem 4.8. A self-similar set defined by a P-self-similar system belongs
toNPF(R2).

Proof. For the given self-similar set X =
⋃
φi(X) and a rational point x0,

we construct the following NP problem.

For a given rational point x = (x2/x1, y2/y1) and a given small
rational number epsilon = e2/e1 > 0, determine whether there
exists l and~i ∈ σl satisfying

∣∣∣φ~i(x)− x
∣∣∣ < 3epsilon/2, where φ~i(x)

is the rational point which is an approximation of φ~i(x) within an
error < epsilon/4, and l is an integer such that α2epsilon/4 <
αlL/(1− α) < epsilon/4 for L = max{ |φi(x0)− x0| }i.

784 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

The integer l can be calculated as follows. Any integer l such that

log((1− α)epsilon/4L)
− logα

− 2 < l <
log((1− α)epsilon/4L)

− logα

will work. Because α and L are constant numbers, this is computable in
polynomial time of size(epsilon) ≤ O((size(e1) + size (e2))k.

First, we note that this problem is indeed an NP problem; that is, this
question is computable in the polynomial time of size (x) + size (epsilon).
Then we will show the problem determines the self-similar set X. Put z =
φ~i(x). If the ~i above exists, then |φ~i(x0) − x| ≤ |φ~i(x0) − z| + |z − x| <
7epsilon/4. Hence the Hausdorff distance d(x,Xl) is less than 7epsilon/4.
And d(X,Xl) < αlL/(1 − α) < epsilon/4. Therefore d(x,X) < 2epsilon.
Suppose to the contrary, that there does not exist such ~i. Then for each ~i,
the distance is estimated as |φ~i(x0)− x| ≥ |z− x| − |φ~i(x0)− z| > 5epsilon/4.
Thus d(x,Xl) > 5epsilon/4. Hence the Hausdorff distance is estimated as
d(x,X) ≥ d(x,Xl)−d(X,Xl) > epsilon. Thus this problem determines X.

Next, we give more precise estimations of computational complexity for
self-similar sets with some condition. Instead of Theorem 4.8, we know many
polynomial time computable self-similar sets defined by P-self-similar systems.
One of the most famous of them is the Koch curve. We will give a sufficient
condition for such self-similar sets.

Definition 4.9. Let (φ1, φ2, . . . , φn) be a self-similar system, and X be a self-
similar set such thatX =

⋃
φi(X). Then the self-similar system (φ1, φ2, . . . , φn)

satisfies the open set condition iff there is an open set W such that

X ⊂W and φi(W) ∩ φj(W) = Ø for i 6= j.

The Koch curve is defined by a self-similar system which satisfies the open
set condition. Yet, this open set condition is not sufficient to determine the
complexity of self-similar sets, because the open set condition does not have
the notion of complexity. We have to give a stronger definition.

Definition 4.10. Let (φ1, φ2, . . . , φn) be a self-similar system, andX be a self-
similar set such thatX =

⋃
φi(X). The the self-similar system (φ1, φ2, . . . , φn)

satisfies the polynomial time open set condition, or the P-open-set condition, iff
there exists an open set W , a real number α ∈ PR and functions k ∈ PQ3×N2,N
and j ∈ PQ3×N4,N satisfying the following.

1. X ⊂W .

2. φi(W) ∩ φj(W) = ∅ for i 6= j.

Computational Complexity of Fractal Sets 785

3. |φi(y)− φi(x)| ≤ α|y − x| for each i ∈ σ and x, y ∈ R2.

4. For each rational point x = (x2/x1, y2/y1), each positive natural number
c > 0, a natural number l, and a sequence ~j ∈ σl, B(x, αlc)∩φ~j(W) 6= ∅,
there is an integer i such that 0 ≤ i < k(x, c, 2l) and

~j =
〈
j(x, 2c, 2l, i, 1), j(x, 2c, 2l, i, 2), . . . , j(x, 2c, 2l, i, l)

〉
.

The last condition says that we can list all the~i ∈ σl such thatB(x, epsilon)∩
φ~i(W) 6= ∅; that is, d(x, φ~i(W)) < epsilon, in polynomial time of size (x) +
1/epsilon + l.

Theorem 4.11. A P-self-similar set which satisfies the P-open-set condition
is in PF(R2).

Proof. In the NP problem in the proof of Theorem 4.8, the possible choices
of ~i ∈ σl are listed in polynomial time if we put c as a constant ≥ 4L/α2(1−α).
Therefore, we can check on all the possible choices in polynomial time.

Most of the self-similar sets which have been well analyzed satisfy the P-open-
set condition. Hence they are in P. Then the following question arises.

• Question: Is there a P-self-similar set in NPF(R2) − PF(R2),

when we assume P 6= NP ?

The answer has not been obtained yet; however, in the next section, we
will construct an NP complete set, although it is not self-similar. As the
next lemma shows, Theorem 4.11 is useful enough, because many well known
self-similar sets satisfy the P-open-set condition.

Lemma 4.12. Let (φ1, φ2, . . . , φn) be a P-self-similar system consisting of
similar maps of common magnification α, satisfying the open set condition.
Then, it satisfies the P-open-set condition.

Proof. First we note that α ∈ PR, because α is the common magnification
of φi’s, which are in PR2,R2 . Let X be the self-similar set defined by (φi)i, and
W the open set which appears in the statement of open set condition. Let d
be a positive rational number which is greater than or equal to the diameter of
W̄ ; that is, d ≥ sup

{
|y − x|

∣∣ x, y ∈ X }. Let a be a positive rational number
which is less than or equal to the area of W . Let x0 be a rational point in W .
This point x0 plays the role of x0 in the proof of Lemma 4.4. Fix a rational
number epsilon such that αlc/2 ≤ epsilon ≤ αlc, where αlc is as in Definition

786 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

4.10. Note that size (epsilon) ≤ O((l + size (c))h) for some h, because α is a
constant.

We construct functions j and k which list the possible choices of i. Let K
be an integer such that K ≥ n and K ≥ π(4c+7d)2/a. The function k(x, c,m)
is a function whose value is K, which depends only on c and is independent
of x and m. It is obvious that k ∈ PQ3×N,N.

Let fi be a function in PQ3,Q2 such that |φi(x)−fi(x, δ)| < δ for each ratio-
nal point x and positive rational number δ. There is an integer h such that for
each i, the value fi(x, δ) is computable in the time O

(
(size (x) + size (δ))h

)
,

and size (fi(x, δ)) ≤ O
(
(size (x) + size (δ))h

)
, because each φi is polynomial

time computable. Now, we show the procedure for calculating j. The pro-
cedure consists of several steps. In Step s for 1 ≤ s ≤ l, we will recursively
calculate an approximation of αs, written αs, and a mapping js(m, t) which
maps (m, t) ∈ {1, 2, . . . , s} × {1, 2, . . . , ks} into js(m, t) ∈ {1, 2, . . . , n}. We
will write ~js,t as

~js,t = 〈js(1, t), js(2, t), . . . , js(s, t)〉 ∈ {1, 2, . . . , n}s

Step 1. First we calculate α, which is an approximation of α with error
< α/2l, and α < 1. The calculation time is O((size (l)h)) for some h, because
α is constant and α ∈ PR.

Next, for each i such that 1 ≤ i ≤ n, we calculate fi(x0, epsilon/l). Each
fi is an approximation for φi(x0). Thus we write φi(x0) for fi(x0, epsilon/l).
We put k1 = n and j1(1, t) = t for 1 ≤ t ≤ k1.

Step s. (2 ≤ s ≤ l). Assume we have calculated αs−1, js−1(m, t) and
φ~js−1,t

(x0) for 1 ≤ m ≤ s− 1, 1 ≤ t ≤ ks−1. We write ~js−1,t as

~js−1,t = 〈js−1(1, t), js−1(2, t), . . . , js−1(s− 1, t)〉,

As induction hypothesis, they satisfy
∣∣∣φ~js−1,t

(x0)− φ~js−1,t
(x0)

∣∣∣ < (s−1)epsilon/l,

and, for each ~i = 〈i1, i2, . . . , il〉 ∈ σl, there exists t such that ~js−1,t = 〈il−s+2,
il−s+3, . . . , il〉 if |x− φ~i(x0)| < epsilon.

Now, we calculate αs, from α × αs−1. Note that |αs − αs| < sepsilon/l,
because |α − α| < epsilon/l. Next we calculate fi

(
φ~js−1,t

(x0), epsilon/l
)

for

each i and t, where 1 ≤ i ≤ n and 1 ≤ t ≤ ks−1. We write φ〈i,~js−1,t〉(x0) for

fi

(
φ~js−1,t

(x0)
)

. Then
∣∣∣φ〈i,~js−1,t〉(x0)− φ〈i,~js−1,t〉(x0)

∣∣∣ < sepsilon/l. Hence,
there is an integer ks ≤ K such that there are ks pairs of (t, i) such that∣∣∣φ〈i,~js−1,t〉(x0)− x

∣∣∣ < 3epsilon + αsd. Since
∣∣∣φ〈i,~js−1,t〉(x0)− x

∣∣∣ < 3epsilon +

Computational Complexity of Fractal Sets 787

4αsd, we have∣∣∣φ〈i,~js−1,t〉(x0)− x
∣∣∣ < sepsilon

l
+3epsilon+4αsd < 4epsilon+6αsd < αs(4c+6d).

(1)
On the other hand, we have x0 ∈W . Thus φ〈i,~js−1,t〉(W) ⊂ B(x, αs(4c+ 7d)).
The number of pairs (i, t) satisfying (1) is ≤ π(4c+7d)2/a ≤ K. We enumerate
such i’s and t’s as i1, i2, . . . , iks

and t1, t2, . . . , tks
. Thus, we enumerate such

(t, i)’s as (t1, i1), (t2, i2), . . . , (tks
, iks

). For 1 ≤ m ≤ s, 1 ≤ u ≤ kse we define
js(u,m) by

js(u, 1) = iu, js(u,m) = js−1(tu,m+ 1) (m ≤ s− 1).

Put ~js,u = 〈iu,~jtu,s−1〉 = 〈js(u, 1), js(u, 2), . . . , js(u, s− 1)〉. Note that for
each ~i = 〈i′1, i′2, . . . , i′l〉 ∈ σl, if φ~i(W)∩B(x, αlc) 6= ∅, then there exists u such
that ~js,tu = 〈i′l−s+1, i

′
l−s+2, . . . , i

′
l〉. This is because if φ~i(W) ∩ B(x, αlc) 6= ∅,

then φ~i(W) ⊂ B(x, αlc+ αld), and φ~i(X) ⊂ B(x, αlc+ αld). Therefore

φ〈i′l−s+1,i
′
l−s+2,...,i

′
l〉(W) ⊂ B(x, αlc+ αld+ αsd).

We also have

φ〈i′l−s+1,i
′
l−s+2,...,i

′
l〉(x0) ∈ φ〈i′l−s+1,i

′
l−s+2,...,i

′
l〉(W),

and ∣∣∣φ〈i′l−s+1,i
′
l−s+2,...,i

′
l〉(x0)− φ〈i′l−s+1,i

′
l−s+2,...,i

′
l〉(x0)

∣∣∣ < sepsilon/l.

Therefore∣∣∣φ〈i′l−s+1,i
′
l−s+2,...,i

′
l〉(x0)− x

∣∣∣ < sepsilon/l + αlc+ αld+ αsd

< 3epsilon+ 2αsd < 3epsilon+ 4αsd.

Last step. In this step, we put j(x, 2c, 2l, s, t) = jl(s, t) for 1 ≤ t ≤ kl, and
j(x, 2c, 2l, s, t) = 1 otherwise.

We have calculated φ~js,t
(x0) for 1 ≤ t ≤ ks ≤ K. The size of the value

of each φ~js,t
(x0) is as large as O

(
(size (x0) + size (epsilon))h

)
, because the

precision of it is near epsilon; that is, it has the error as large as O(epsilon).
Therefore, j is a polynomial time computable function.

Example 4.13. The Koch curve satisfies our P-open-set condition.

788 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

5 The Image of a Function Satisfying a Hölder Condition

In this section, we construct an NP complete set which is defined as the image
of a function satisfying a Hölder condition.

Definition 5.1. Let V and W be metric spaces. A function f from V to
W satisfies a Hölder condition of index α iff there is a k such that for any
x, y ∈ V , dW (f(x), f(y)) < k(dV (x, y))α.

Functions satisfying a Hölder condition are continuous. A Hölder condition
of index 1 is equivalent to Lipschitz continuity.

Proposition 5.2. Let f be a function from V to W satisfying a Hölder condi-
tion of index α, and the Hausdorff dimension of V is D. Then the Hausdorff
dimension of f(V) is ≤ D/α.

The proof is clear.
Hereafter, we write I for the unit interval [0, 1].

Definition 5.3. The set PI,R is the set of functions from I to R such that f
is in PI,R iff there is g ∈ PR,R with ∀x ∈ I, f(x) = g(x).

The set PI,R2 is the set of functions from I to R2 such that f is in PI,R2

iff there is f1, f2 ∈ PI,R and f(x) = (f1(x), f2(x)).

Lemma 5.4. Let f be a function in PI,R2 If f satisfies a Hölder condition of
some index, then f(I) is in NPF(R2).

Proof. If ~i = 〈i1, i2, . . . , il〉 ∈ {0, 1}l is the bit sequence, then we write 0.~i
for the binary fraction 0.i1i2 . . . il.

Now we construct an NP problem such that:

Let x = (x2/x1, y2/y1) and epsilon = e2/e1 > 0 be given. The
question is whether there exists some choice ~i ∈ σl which satisfies
|y − x| < 3epsilon/4 where y is an approximation of f(0.~i) within
an error < epsilon/4, and k/2αl < epsilon/4.

If such an i exists, then |y − x| < 3epsilon/4. And d(y, f(I)) < epsilon/4.
Therefore d(x, f(I)) < epsilon. If not, then |y − x| ≥ 3epsilon/4. Therefore
d(x, f(I)) > epsilon/2. Thus this problem determines f(I).

There exists the image of a function satisfying a Hölder condition in NP and
not in P. Indeed, it is in the complexity of NP complete. We construct such
an orbit in the remaining part of this paper. Of course we assume P 6= NP.

We take an NP complete problem Q which consists of the following data.

Computational Complexity of Fractal Sets 789

For a given instance ~v ∈ {0, 1}l for some l, the question is whether
there exists some guess ~w ∈ {0, 1}l which satisfies q(~v, ~w) = 0,
where q is polynomial time computable function of ({0, 1}∗)2 into
{0, 1}.

In this problem Q, the lengths of an instance v and the certificate w for the
instance v are equal.

Next we construct a function of I into R2 satisfying a Hölder condition
such that the problem Q is reduced to f(I). The function f consists of two
functions f1 and f2 of I into R such that f(t) = (f1(t), f2(t)).

After we define f , we will reduce the NP problem Q into a problem P which
determines f(I). For this purpose, we define an encoding c(~v, ~w) which maps
binary sequences ~v ∈ 〈v1, v2, . . . , vl〉 ∈ {0, 1}l and ~w ∈ 〈w1, w2, . . . , wm〉 ∈
{0, 1}m to a quinary sequence c(~v, ~w) = 〈c1, c2, . . . , cl+m+1〉∈{0, 1, . . . , 4}l+m+1.
The encoding c(~v, ~w) is defined in the following manner.

1. ci = vi + 2 for 1 ≤ i ≤ l.

2. cl+1 = 1.

3. ci = wi−l−1 + 2 for l + 2 ≤ i ≤ l +m+ 1.

For example, c(〈0〉, 〈1〉) = 〈213〉, and c(〈10〉, 〈110〉) = 〈321332〉. Note that
c(~v, ~w) = 〈c1,cl+m+1〉 consists of only 1, 2, and 3. It does not have 0 or
4. We use the notations 0.~v and (0.~c)5 as follows. If ~v is a binary sequence,
then 0.~v denotes a binary fraction 0.v1v2 . . . vl = 2−1v1 + 2−2v2 + · + 2−lvl.
Similarly, if ~c = 〈c1, c2, . . . , cn〉 is a quinary sequence, then (0.~c)5 denotes a
quinary fraction (0.c1c2 . . . cn)5 = 5−1c1 + 5−2c2 + ·+ 5−ncn.

First we define f1. Because f is continuous, so is f1. Therefore, it is
sufficient to define the value of f1(t) only for quinary fractions t. Let t ∈ I
with t = (0.t1t2 . . . tn)5, where tn 6= 0. Let i be a smallest number such that
ti ∈ {0, 4}; that is, tj ∈ {1, 2, 3} for all j < i. Then we make the case selection
by using this i.

• Case 1: If t = 1; that is, there does not exist a sequence ~t such that
t = (0.~t)5, then f1(1) = 0.

• Case 2: If such a digit ti does not exist; that is, all of tj ’s are 1, 2 or 3,
then:

– Case 2.1: If there exist binary sequences ~v and ~w such that
q(~v, ~w) = 0 and 〈t1, . . . , tn〉 = c(~v, ~w), then f1(t) = 1/5n. Note
that n ≥ 1 in this case.

790 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

– Case 2.2: Otherwise, f1(t) = 0. This case includes t = 0.

• Case 3: If such a digit ti exists; that is, i is a smallest number such
that ti is 0 or 4, then:

– Case 3.1: If ti = 0, then f1(t) = (1− u)f1((0.t1 . . . ti−1)5), where
u = (0.ti+1 . . . tn)5.

– Case 3.2: If ti = 4, then f1(t) = u · f1((0.t1 . . . ti−2(ti−1 + 1))5),
where u = (0.ti+1 . . . tn)5, for i ≥ 2. If i = 1,then f(t) = 0.

It is easy to see that f1 satisfies a Lipschitz condition, since |f1(t′)− f1(t)| ≤
|t′ − t|. If the pair of ~v and ~w is a valid pair of an instance and a guess;
that is, q(~v, ~w) = 0 holds, then f1(t) behaves as the following graph near
t0 = (0.c(~v, ~w))5.

-

6

�
�
�
�
�
�@
@
@
@
@
@ t

f1(t)

t0 − 1/5n t0 t0 + 1/5n

1/5n

Next we define f2, which is similar to f1.

• Case 1: If t = 1; that is, there does not exist a sequence ~t such that
t = (0.~t)5, then f2(1) = 0.

• Case 2: If such a digit ti does not exist; that is, all of tj ’s are 1, 2 or 3,
then:

– Case 2.1: If there exist binary sequences ~v and ~w such that
q(~v, ~w) = 0 and 〈t1, . . . , tn〉 = c(~v, ~w), then f2(t) = (0.~v)/5n. Note
that n ≥ 1 in this case.

– Case 2.2: Otherwise, f2(t) = 0. This case includes t = 0.

• Case 3: If such a digit ti exists; that is, i is a smallest number such
that ti is 0 or 4, then:

– Case 3.1: If ti = 0, then f2(t) = (1− u)f2((0.t1 . . . ti−1)5), where
u = (0.ti+1 . . . tn)5.

Computational Complexity of Fractal Sets 791

– Case 3.2: If ti = 4, then f2(t) = uf2((0.t1 . . . ti−2(ti−1 + 1))5),
where u = (0.ti+1 . . . tn)5, for i ≥ 2. If i = 1,then f(t) = 0.

Let t0 be (0.c(~v, ~w))5, and l be the length of ~v. Here the length of c(~v, ~w) is
2l + 1. If the pair of ~v and ~w is a valid pair of an instance and a guess; that
is, q(~v, ~w) = 0, then the part of the orbit f([t0 − 1/52l+2, t0 + 1/52l+2]) draws
the following segment.

-

6

"
"
"
"
"
"
"
"
"
"

O f1(t)

f2(t)

1/52l+2

(0.~v)/52l+2 (1/52l+2, (0.~v)/52l+2)

It is clear that f(I) is the union of such segments for all ~v’s which have
their own certificates.

Theorem 5.5. There is a Lipschitz function f in PI,R2 such that f(I) is in
NPcompF(R2).

Proof. We show the function f defined as above satisfies the statement of
this theorem. It is obvious that f ∈ PI,R2 . By Lemma 5.4, f(I) ∈ NPF(R2).
Next we will show that f(I) ∈ NPhardF(R2). In order to show that, we need
to find a function g of {0, 1}∗ into R which satisfies the condition in Lemma
3.12. We identify{0, 1}∗ with N by the standard isomorphism {0, 1}∗ ∼= N.

Remember that the problem Q is defined as follows. For an instance ~v ∈
{0, 1}∗, ~v ∈ Q iff there is some ~w ∈ {0, 1}∗ of the same length as ~v such that
q(~v,~,w) = 0. We define g as g(~v) = d〈1/52l+2, (0, ~v)/52l+2, 1/53l+3〉e, where l
is the length of ~v. It is certain that g is in P. Note that g is an one-to-one map.
If f(~v) ∈ f(Q); that is, ~v ∈ Q, then there is some ~w such that q(~v, ~w) = 0.
Let a point p be where l is a length of ~v. Then f(I) passes through the point
(1/52l+2, (0.~v)/52l+2). Hence d((1/52l+2, (0.~v)/52l+2), f(I)) = 0.

On the other hand, if f(~v) ∈ f(N−Q), that is ~v ∈ Q, then there is no ~w such
that q(~v, ~w) = 0. Then f(I) does not have a segment whose inclination is 0.~v.
Therefore, f(I) does not pass through the point (1/52l+2, (0.~v)/52l+2). The
segment closest to this point is the one through (1/52l+2, (0.~v − 1/5l)/52l+2)
and (1/52l+2, (0.~v + 1/5l)/52l+2). Other segments have different inclinations,

792 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

or are too short. Therefore d((1/52l+2, (0.~v − 1/5l)/52l+2), f(I)) > 1/53l+3.
Thus, by Lemma 3.12, f(I) is in NPhardF(R2).

6 Conclusion

We have shown three major results. First is Theorem 1, which states that the
complexity of each self-similar set defined by a P-self-similar system is non-
deterministic polynomial time computable; that is, the figure is in NPF(R2).
The second is Theorem 2, which states that the complexity of each self-similar
set defined by a P-self-similar system with the P-open-set condition is polyno-
mial time computable; that is, the figure is in PF(R2). The third is Theorem
3, which provides an example of the image of a polynomial time computable
Hölder function such that its Hausdorff dimension is 1 and its computational
complexity is NP-complete.

Thus we conclude that the classification by means of computable com-
plexity does not coincide with the classification by means of the Hausdorff
dimension.

Acknowledgement

The authors would like to thank Prof. Yamaguchi Masaya, Prof. Yasugi Mariko,
and Prof. Klaus Weihrauch for their comments.

We especially express our gratitude to Prof. Karen Brucks for her extensive
help in preparing this paper.

References

[1] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University
Press, 1985.

[2] M. Hata, On the structure of self-similar sets, Japan J. appl. Math., 2
(1985) 381–414

[3] J. E. Hutchinson, Fractals and self-similarity , Indiana Univ. Math. J.,
30(5) (1981), 713–747.

[4] Hiroyasu Kamo and Kiko Kawamura, Computability of self-similar sets,
Mathematical Logic Quarterly, 45(1)(1999), 23–30.

[5] Kiko Kawamura and Hiroyasu Kamo, Computability of self-affine sets,
Annual Reports of Graduate School of Human Culture, Nara Women’s
University, 12(1997), 135–150.

Computational Complexity of Fractal Sets 793

[6] Ker-I Ko, On the computability of fractal dimensions and hausdorff mea-
sure, Annals of Pure and Applied Logic, 93, 1998.

[7] D. R. Morse, J. H. Lawton, M. M. Dodson, and M. H. Williamson, Fractal
dimension of vegetation and the distribution of arthropod body lengths,
Nature, 314, 1985.

[8] M. B. Pour-El and J. I. Rechards, Computability in Analysis and Physics.
Springer-Verlag, Berlin, Heidelberg, 1989.

[9] T. G. Smith Jr., W. B. Marks, G. D. Lange, W. H. Sheriff Jr., and E. A.
Neale, A fractal analysis of cell images, J. Neurosci Met, 27, 1989.

[10] Klaus Weihrauch, Computability , Springer-Verlag, Berlin, Heidelberg,
1987.

[11] Klaus Weihrauch, A simple introduction to computable analysis, Techni-
cal report, Fern Universität, Hagen, 1995.

[12] Klaus Weihrauch, A foundation of computable analysis, Proceedings of
DMTCS ’96, 1996.

794 Kamo Hiroyasu, Kawamura Kiko and Takeuti Izumi

