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MARCZEWSKI FIELDS AND IDEALS†

Abstract

For an X 6= ∅ and a given family F ⊂ P(X) \ {∅}, we consider the
Marczewski field S(F) which consists of sets A ⊂ X such that each set
U ∈ F contains a set V ∈ F with V ⊂ A or V ∩ A = ∅. We also
study the respective ideal S0(F). We show general properties of S(F)
and certain representation theorems. For instance we prove that the
interval algebra in [0, 1) is a Marczewski field. We are also interested in
situations where S(F) = S(τ \ {∅}) for a topology τ on X. We propose
a general method which establishes S(F) and S0(F) provided that F
is the family of perfect sets with respect to τ , and τ is a certain ideal
topology on R connected with measure or category.

1 General properties

The notions of (s)-sets and (s0)-sets are due to Marczewski [Sz]. They have
been investigated by many authors. (See [Mi1], [Mi2], [BrCo] and also [Br2],
[Co], [Wa].) The scheme defining (s)-sets and (s0)-sets was used for more gen-
eral settings in several publications (see e.g. [Mo], [Bre], [Pa], [R], [BR]). We
observe that this scheme turns out interesting without any essential restric-
tions on a generating family of sets. Namely, let F be a family of nonempty
subsets of a given set X. We put
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S(F) = {A ⊂ X : (∀ U ∈ F) (∃V ∈ F) (V ⊂ U ∩A ∨ V ⊂ U \A)},
S0(F) = {A ⊂ X : (∀ U ∈ F) (∃V ∈ F) V ⊂ U \A},
H(F) = {A ⊂ X : (∀ B ⊂ A) B ∈ F}.
Note that H(F) is the maximal hereditary family contained in F . In the case
when F consists of all perfect subsets of a given Polish space, S(F) and S0(F)
are exactly the families of classical Marczewski (s)-sets and (s0)-sets.

Our notation is standard. By P(X) we denote the power set ofX. Through-
out the paper X 6= ∅.

Proposition 1.1. Let F ⊂ P(X) \ {∅}. Then we have

(1) S(F) is a field of sets,

(2) S0(F) ⊂ H(S(F)), and S0(F) is an ideal of sets,

(3) F ∩ S0(F) = ∅,

(4) (∀ U ∈ S(F) \ S0(F))(∃V ∈ F)V ⊂ U ,

(5) F ⊂ S(F)⇔ (∀U, V ∈ F)(∃W ∈ F)(W ⊂ U ∩ V ∨ W ⊂ U \ V ),

(6) if {x} ∈ F for all x ∈ X then S(F) = P(X) and S0(F) = {∅}.

Proof. (1) From the definition of S(F) it immediately follows that, if A ∈
S(F) then X \A ∈ S(F). Now, assume that A,B ∈ S(F). Let C ∈ F . If there
is a D ∈ F such that either D ⊂ C∩A or D ⊂ C∩B then D ⊂ C∩ (A∪B). If
such D does not exist, there is a D1 ∈ F such that D1 ⊂ C \A and there is a
D2 ∈ F such that D2 ⊂ D1 \B. Thus D2 ⊂ C \ (A∪B). Hence A∪B ∈ S(F).

Similarly, we show that S0(F) is an ideal (condition (2)). The remaining
statements, except for (4), can be checked directly without troubles.

(4) Suppose that there is a U0 ∈ S(F) \ S0(F) such that V \ U0 6= ∅ for
each V ∈ F . Since U0 /∈ S0(F), there is a V0 ∈ F such that W ∩ U0 6= ∅
for each W ∈ F , W ⊂ V0. Since U0 ∈ S(F), there is a W0 ∈ F such that
W0 ⊂ V0 ∩ U0. But then W0 \ U0 = ∅, a contradiction.

Corollary 1.1. If F ⊂ P(X) is a field of sets, then

F \ {∅} ⊂ S(F \ {∅}) \ S0(F \ {∅}).

Proof. Use Proposition 1.1 (3) and (5).

Note that the classical (s)-sets and (s0)-sets form a σ-field and a σ-ideal, re-
spectively (the proof of σ-additivity for (s0)-sets is based on the fusion lemma;
see [Sz]). Additionally, in that case H(S(F)) = S0(F) [Sz, 3.1]. On the other
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hand, there are families F for which H((S(F)) 6= S0(F) [R, Cor. 1.10]. Ob-
serve that there are cases when S(F) forms a σ-field but S0(F) is not a σ-ideal.
That happens if X is an infinite set and F stands for the family of all infinite
subsets of X; then S(F) = P(X) and S0(F) consists of all finite subsets of
X. In [Pa, Lemma 2] it was proved that if F ⊂ S(F) and S0(F) is σ-additive
then S(F) is a σ-field.

The operation S can be iterated. For a family F ⊂ P(X) we define
S0(F) = F and Sα(F) = S(∪γ<αSγ(F)\{∅}) for any ordinal α > 0. Of course
we may consider only α ≤ 22κ where κ is the cardinality of X. The families
Sα(F), α > 0, are fields and from Corollary 1.1 it follows that Sγ(F) ⊂ Sα(F)
for any ordinals γ, α with 0 < γ < α. In our future studies, we plan to estab-
lish the maximal number of different fields that can be obtained in a sequence
of type 〈Sα(F) : α > 0〉. In the former version of the paper we claimed incor-
rectly that this number is 2. The referee has observed that it is at least 3.
(See Remark 2.2.)1

We say that two families F1,F2 ⊂ P(X) \ {∅} are mutually coinitial if

(∀ U ∈ F1) (∃ V ∈ F2) V ⊂ U

and (∀ U ∈ F2) (∃ V ∈ F1) V ⊂ U.

Proposition 1.2. Let F1,F2 ⊂ P(X) \ {∅}.

(i) If F1,F2 are mutually coinitial then S(F1) = S(F2) and S0(F1) = S0(F2).

(ii) Assume that F1 ⊂ S(F1) and F2 ⊂ S(F2). If S(F1) = S(F2) and
S0(F1) = S0(F2) then F1,F2 are mutually coinitial.

Proof. (i) is evident.
(ii) Let U ∈ F1. Then U 6∈ S0(F1) by Proposition 1.1(3). Hence U ∈ S(F1) \
S0(F1) = S(F2) \ S0(F2) and by Proposition 1.1(4) there is a V ∈ F2 such
that V ⊂ U . Analogously, for each U ∈ F2 there is a V ∈ F1 such that
V ⊂ U .

Note that an idea similar to that contained in Proposition 1.2 was used in
[Mo, Th. 1, p. 23]. The referee has asked whether the converse of (i) is true.
The answer is “no”which follows from Remark 2.1 in the next section.

Now, consider a field Σ (respectively, an ideal I) of subsets of X. We say
that:

1S. Wroński has recently proved that this number is exactly 3.



706 M. Balcerzak, A. Bartoszewicz, J. Rzepecka and S. Wroński

• Σ (respectively, I) is a topological field (respectively, a topological ideal)
if there is a topology τ on X such that Σ consists of all sets with τ -
nowhere dense boundary (respectively, I consists of τ -nowhere dense
sets). (Cf. [Ku, §8.V].) We thus write Σ = Σ(τ) and I = NWD(τ).

• Σ (respectively, I) is a Marczewski field (respectively, a Marczewski
ideal) if there is a family F ⊂ P(X) \ {∅} such that Σ = S(F) (respec-
tively, I = S0(F)).

Note that papers [BET] and [BBC] use different terminology for Mar-
czewski fields: the authors of [BET] say that “F is a basis for a Marczewski-
Burstin-like characterization of Σ”, and in [BBC], Σ is called “Marczewski-
Burstin representable”.

An easy connection between the above notions is contained in the following

Proposition 1.3. (Cf. [BR].) If τ is a topology on X then S(τ \{∅}) = Σ(τ)
and S0(τ \ {∅}) = NWD(τ). Consequently, every topological field (ideal) is a
Marczewski field (ideal).

From Proposition 1.2(i) we derive

Proposition 1.4. If a family F ⊂ P(X) \ {∅} is mutually coinitial with a
topological base on X then the field S(F) is topological.

In Section 2 we shall show that the interval algebra is a Marczewski field.
This will imply that there are Marczewski fields that are not topological fields.
A Boolean-theoretical characterization of topological fields was given in [Wr1].
Article [CJ] was devoted to extensive studies of topological ideals; the authors
considered also an additional requirement stating that an ideal consists of mea-
ger sets in some topology. In Section 2 we discuss some connections between
Marczewski fields, topological fields and category bases (introduced by John
Morgan II, see [Mo]).

The class of Marczewski fields seems to be rich. From [Bu] it follows that
the Lebesgue measurable sets in R form a Marczewski field. (Note that paper
[Bu] is much earlier than [Sz].) Also the sets with the Baire property in R
constitute a Marczewski field [Br1], [BET]. When we started to prepare our
paper, it was not even known whether there exists a non-Marczewski field
of subsets of R. Now, our knowledge is wider. Namely, the forthcoming
paper [BBC] contains a construction of a non-Marczewski field on R provided
2ω = ω1 and 2ω1 = ω2. Another result of [BBC] states that 2ω = ω1 and
2ω1 = ω2 imply that the Borel subsets of R form a Marczewski field.

For any filter F of the algebraA = P(X) we denote−F = {X\E : E ∈ F}
and AF = F ∪ −F .
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Proposition 1.5. For any filter F of A we have S(F) = AF and S0(F) =
−F .

Proof. We easily check that F ⊂ S(F) and −F ⊂ S0(F). Since AF is the
smallest field containing F , we haveAF ⊂ S(F). To show the reverse inclusion
consider a U ∈ S(F). Since X ∈ F , we can find a V ∈ F such that either
V ⊂ U or V ⊂ X \ U . Hence either U ∈ F or X \ U ∈ F which means that
U ∈ AF . Thus S(F) ⊂ AF . It can be similarly shown that S0(F) ⊂ −F .

Proposition 1.6. For a set X of cardinality |X| = κ there are 22κ noniso-
morphic Marczewski fields on X containing all singletons.

Proof. We follow the argument given in [F]. Let Φ consist of all filters in
A = P(X) which are intersections of two free ultrafilters. Then |Φ| = 22κ

and AF1 6= AF2 for any distinct F1,F2 ∈ Φ. Additionally, {x} ∈ AF for
any x ∈ X and F ∈ Φ. Thus, by Proposition 1.5, there are 22κ Marczewski
fields on X containing all singletons. Any isomorphism between subalgebras of
P(X) containing all singletons is induced by a bijection from X to X. Hence
each isomorphism class of such subalgebras has at most 2κ elements. Finally,
observe that if h is a bijection of X onto X and F ∈ Φ then

{h[U ] : U ∈ S(F)} = S({h[V ] : V ∈ F}) and {h[V ] : V ∈ F} ∈ Φ.

Thus there are 22κ different classes of isomorphic Marczewski fields on X
containing all singletons.

2 Marczewski fields, topological fields and category bases

Let X = [0, 1). The family of all finite unions of half-open intervals [a, b)
(where 0 ≤ a < b ≤ 1) form a field of subsets of X. It is called the interval
algebra of X [K, 1.11].

Theorem 2.1. The interval algebra A of X = [0, 1) is a Marczewski field.

Proof. Let Q stand for the set of all rationals and let c denote the cardinality
of R. Consider the equivalence relation x ∼ y ⇐⇒ x−y ∈ Q. Let F : [0, 1]→
R/ ∼ be a one-to-one function such that x /∈ F (x) for x ∈ [0, 1]. (Note that F
can be easily constructed by transfinite induction. Indeed, arrange all points of
[0, 1] into a one-to-one sequence xγ , γ < c, and consider an α < c. If the values
F (xγ) for γ < α have been defined, we pick x ∈ [0, 1] \

⋃
γ<α[F (xγ)] \ [xα] and

put F (xα) = [x] where [x] denotes the respective equivalence class.)
For x ∈ [0, 1] let

Fr(x) = {([x, x+ ε) \ F (x)) ∩X : ε > 0},
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Fl(x) = {((x− ε, x) \ F (x)) ∩X : ε > 0},
F(x) = Fl(x) ∪ Fr(x).
Note that Fr(1) = Fl(0) = ∅, otherwise Fr(x) and Fl(x) are nonempty. Fi-
nally, let F =

⋃
x∈[0,1]

F(x).

From the definitions of F and S(F) it easily follows that [a, b) ∈ S(F) for
any a, b with 0 ≤ a < b ≤ 1. Since S(F) is a field of sets, we have A ⊂ S(F).

Claim 1. Let x ∈ [0, 1] and k ∈ {r, l}. If U ∈ Fk(x) then for each y ∈ [0, 1]
and for each V ∈ F(y) such that V ⊂ U , we have y = x, and moreover
V ∈ Fk(x).

Indeed, suppose that y 6= x. Let U = I \ F (x) and V = J \ F (y) where
I and J are the respective intervals. From V ⊂ U and the density of F (x)
it follows that ∅ 6= J ∩ F (x) ⊂ J ∩ F (y) which contradicts the disjointness of
F (x) and F (y). Thus y = x and so, V ∈ Fm(x) for some m ∈ {r, l}. However,
m = k since otherwise U ∩ V = ∅.

We have already observed that A ⊂ S(F). To prove that S(F) ⊂ A fix an
A ∈ S(F) \ {∅}.

Claim 2. For each x ∈ A there exists an ε > 0 such that [x, x+ ε) ⊂ A. For
each x ∈ X \A there exists an ε > 0 such that [x, x+ ε) ∩A = ∅.

The latter assertion follows from the former applied to X \ A. To show
the former assertion, suppose x ∈ A and [x, x + ε) \ A 6= ∅ for each ε > 0.
Consider a U ∈ Fr(x). Since A ∈ S(F), there is a V ∈ F such that either
V ⊂ U ∩ A or V ⊂ U \ A. By Claim 1 we have V ∈ Fr(x). Since x ∈ A ∩ V ,
we infer that V ⊂ U ∩ A. Let V = ([x, x + ε) \ F (x)) ∩X where ε > 0. We
may assume that x + ε ≤ 1. By our supposition, pick a y ∈ (x, x + ε) \ A.
Let Ṽ = [y, x + ε) \ F (y). Then Ṽ ∈ Fr(y) and since A ∈ S(F), there is a
W ∈ F such that either W ⊂ Ṽ ∩A or W ⊂ Ṽ \A. Again, by Claim 1, we have
W ∈ Fr(y), so we may assume that W = [y, y+ε1)\F (y) where y+ε1 ≤ x+ε.
Since y /∈ A, we have W ∩A = ∅. The set [y, y+ε1)\(F (x)∪F (y)) is nonempty
(uncountable) contained in [x, x + ε) \ F (x) = V ⊂ A and simultaneously in
[y, y + ε1) \ F (y) = W ⊂ X \A. Contradiction.

Claim 3. For each x ∈ (0, 1] there exists an ε > 0 such that either (x−ε, x) ⊂
A or (x− ε, x) ∩A = ∅.

To show the claim, suppose that there exists an x ∈ (0, 1] such that (x −
ε, x) \ A 6= ∅ and (x − ε, x) ∩ A 6= ∅ for each ε > 0. Let U ∈ Fl(x). Since
A ∈ S(F), there is a V ∈ F such that either V ⊂ U ∩ A or V ⊂ U \ A. By
Claim 1 we have V ∈ Fl(x) and we may assume that V = (x − ε, x) \ F (x)
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where x−ε ≥ 0. If V ⊂ A, by our supposition we can pick y ∈ (x−ε, x)\A. By
Claim 2 there is an ε1 > 0 such that [y, y+ε1)∩A = ∅ and we may assume that
y+ε1 ≤ x. On the other hand, ∅ 6= [y, y+ε1)\F (x) ⊂ (x−ε, x)\F (x) ⊂ V ⊂ A,
a contradiction. If V ∩A = ∅, by our supposition we can pick y ∈ (x−ε, x)∩A.
By Claim 2 there is an ε1 > 0 such that [y, y + ε1) ⊂ A and we may assume
that y+ε1 ≤ x. On the other hand, ∅ 6= [y, y+ε1)\F (x) ⊂ (x−ε, x)\F (x) =
V ⊂ X \A, a contradiction.

From Claim 2 it follows that each connected component I of A is a non-
degenerate interval with b = sup I /∈ I. Denote a = inf I and observe that
a ∈ I. Indeed, suppose that a /∈ I. We know that [a, b) ∈ S(F). Thus
A ∩ [a, b) = (a, b) ∈ S(F) and consequently [a, b) \ (a, b) = {a} ∈ S(F) which
contradicts Claim 2.

From the above we infer that A is a union of at most countable family of
pairwise disjoint intervals of type [a, b). This family however cannot be infinite.
Indeed, suppose that A =

⋃∞
n=1[an, bn) with [an, bn) ⊂ X, n ≥ 1, pairwise

disjoint. Pick a strictly monotonic subsequence (akn) of (an). If akn ↘ x, we
apply Claim 2 to x and we obtain a contradiction. If akn ↗ x, we apply Claim
3 to x and we obtain a contradiction.

Thus we have proved that A ∈ A. Consequently, S(F) ⊂ A.

Remark 2.1. Observe that in the above construction, we can choose, for
i = 1, 2, one-to-one functions F (i) : [0, 1] → R/ ∼ with disjoint ranges, and
such that x /∈ F (i)(x) for each x ∈ [0, 1]. Then A = S(F (1)) = S(F (2))
where F (i) (i = 1, 2) is associated with F (i) as in the proof of Theorem 2.1.
Since H(A) = {∅}, we have S0(F (1)) = S0(F (2)) = {∅} by Proposition 1.1(2).
However, the argument for Claim 1 shows that F (1) and F (2) are not mutually
coinitial. Thus the converse of (i) in Proposition 1.2 is false.

Remark 2.2. Since A\{∅} and the family of nonempty open sets in [0, 1) are
mutually coinitial, the field Σ = S(A \ {∅}) consists of all sets in [0, 1) with
nowhere dense boundary, and S(Σ\{∅}) = P([0, 1)) by Proposition 1.1(6). So
we have 3 different fields obtained by the iteration of S(·).

Corollary 2.1. There exists an Marczewski field which is not a topological
field.

Proof. This follows from Theorem 2.1 since every topological field has an
atom [Wr1] and the algebra A has no atoms.

Although the class of topological subfields of P(X) is smaller than the class
of Marczewski fields, the former can be used to get the following representation
result:
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Theorem 2.2. Every field Σ of subsets of X is equal to the intersection of all
topological fields containing Σ.

Proof. If Σ = P(X), the assertion is obvious. Assume that Σ 6= P(X). It
suffices to show that for each A /∈ Σ there is a topological field ΣA ⊃ Σ with
A /∈ ΣA. So, let A /∈ Σ. By [Wr2, Lemma 2] we find an ultrafilter FA of the
field Σ such that no subset of A is in FA and no subset of X \A is in FA. Thus
A /∈ S(FA). Put ΣA = S(FA). Observe that ΣA is a topological field since
FA forms a topological base, and thus Proposition 1.4 can be used. Because
FA is an ultrafilter of Σ, we have Σ ⊂ S(FA).

Recall [Mo] that a pair (X, C) is said to be a category base if C stands for a
family of subsets of a nonempty set X, and nonempty sets in C, called regions,
satisfy the following axioms:

10
⋃
C = X,

20 Let A be a region and D – a nonempty family of disjoint regions with
|D| < |C|. Then

• if A ∩ (
⋃
D) contains a region then there is a region D ∈ D such

that A ∩D contains a region;
• if A∩ (

⋃
D) contains no region then there is a region B ⊂ A \

⋃
D.

A set E ⊂ X is called singular if E ∈ S0(C \ {∅}).
Theorem 2.3. Assume that for a family F ⊂ P(X) \ {∅} we have X ∈ F ⊂
S(F) and

⋃
(S0(F) ∩ {U ∩ V : V ∈ F}) ∈ S0(F) for each U ∈ F . Then

(X,F) is a category base whose ideal of singular sets equals S0(F).

Proof. It is enough to check condition 20 defining a category base. Let
F, Ft ∈ F for t ∈ T (where T is an arbitrary set of indices). Assume that
F ∩

⋃
t∈T

Ft contains a set from F . Then there exists a t0 ∈ T such that F ∩Ft0
contains a set from F . Indeed, suppose that it is not the case. Since F ⊂ S(F),
we have F ∩ Ft ∈ S(F) for each t ∈ T . Hence by Proposition 1.1(4) we get
F ∩ Ft ∈ S0(F). Thus, by assumption, we have

⋃
t∈T

(F ∩ Ft) ∈ S0(F) which

yields a contradiction (cf. Proposition 1.1(3)). Assume now that F ∩
⋃
t∈T

Ft

contains no set from F . Then every set F ∩Ft, t ∈ T , contains no set from F .
As before we infer that F ∩Ft ∈ S(F) for t ∈ T and moreover F ∩Ft ∈ S0(F).
By assumption we have

⋃
t∈T

(F ∩ Ft) ∈ S0(F) and consequently,

F \
⋃
t∈T

(F ∩ Ft) ∈ S(F) \ S0(F),
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since F ∈ S(F) \ S0(F). Hence, by Proposition 1.1(4), there is a set from F
contained in F \

⋃
t∈T

Ft.

3 Marczewski fields and perfect sets

Let (X, τ) be a topological space. By a τ -perfect set we mean a nonempty
τ -closed set without isolated points. Let Perf(τ) stand for the family of all
τ -perfect subsets of X. As it was mentioned in Section 1, if X is a Polish
space with topology τ then S(Perf(τ)) and S0(Perf(τ)) are exactly the classical
families of Marczewski (s)-sets and (s0)-sets. In [R], studies of S(Perf(τ)) and
S0(Perf(τ)) for other topological spaces were initiated. (See also [BR].) In
this section we propose a general method which enables us to reprove some
results of [R] and [BR], and to show new applications.

If τ is a given topology on X and we want to characterize S(Perf(τ)), we
shall use the following scheme:

10 we conjecture that S(Perf(τ)) = Σ where Σ is a known field of sets,

20 we know that Σ = S(F) for some family F ⊂ P(X) \ {∅};

30 in aim to confirm our conjecture 10, it is enough (by Proposition 1.2(i)) to
check that Perf(τ) and F are mutually coinitial.

A similar method works for S0(Perf(τ)). The above scheme will be illus-
trated by examples dealing with some “ideal topologies” on R.

Let τ be a topology on X, and let I ⊂ P(X) be a σ-ideal containing all
singletons. The family

B?I = {U \A : U ∈ τ & A ∈ I}

forms a base for a topology τ?I , on X, stronger than τ , which will be called
the Hashimoto topology associated with τ and I. If τ is second countable (or
even hereditary Lindelöf) then τ?I = B?I . (See [H], [JH], [LMZ].) The following
property is well known.

Lemma 3.1. (Cf. [BR]). Let I be a σ-ideal of subsets of a separable metric
space X and let I contain all singletons. A set F ⊂ X is τ?I -perfect if and
only if F is τ -perfect and U ∩ F /∈ I for each U ∈ τ with U ∩ F 6= ∅.

By M and N we denote, respectively, the σ-ideals all meager (i.e. of the
first category) sets and of all Lebesgue null sets in R. We shall consider the
Hashimoto topologies T ?M and T ?N where T stands for the natural topology
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on R. Let DN denote the density topology on R. (See e.g. [O] or [CLO].)
Wilczyński in [W1] introduced the category analogue of the density topology
which will be denoted by the DM. Since topology DM is less known, let us give
necessary definitions. A number x ∈ R is called a category density point of a
set A ⊂ R with the Baire property if each increasing sequence {nk} of positive
integers has a subsequence {nmk} such that the sequence of characteristic
functions

χ[−1,1]∩nmk (A−x)(t)

(where nmk(A − x) = {nmk(a − x) : a ∈ A}) tends to χ[−1,1](t) for all points
t ∈ R except for those belonging to a meager set. If [−1, 1] is replaced by
[−1, 0] or [0, 1], we get the respective notions of one-sided category density
points. Topology DM consists of all sets A ⊂ R with the Baire property,
such that each point of A is a category density point of A. There are many
analogies between DM and DN ; for details, see [PWW], [W2] and [CLO].

It is known that the only possible inclusions between the above-mentioned
topologies are the following T ( T ?M ( DM and T ( T ?N ( DN . (See [LJW].)

The following proposition is due to W. Wilczyński (oral communication).

Proposition 3.1. Every DM-perfect set has nonempty T -interior.

Proof. Let F be a DM-perfect set. Then F is nonmeager. Indeed, if F ∈M
and x ∈ F then U = (R \ F )∪ {x} ∈ DM and F ∩U = {x} which contradicts
the fact that F is a DM-perfect set. Since F is a nonmeager set with the
Baire property, there is an open interval V such that F ∩ V is comeager in V .
We claim that V ⊂ F . Let x ∈ V and let W be a DM-neighborhood of x.
Thus x is a category density point of the both sets V and W . Consequently,
V ∩W /∈M. Since F ∩ V is comeager in V , we thus have F ∩W 6= ∅. Hence
x belongs to the the DM-closure of F (equal to F ).

Let ΣM and ΣN denote, respectively, the σ-fields of all sets with the Baire
property and of all Lebesgue measurable sets in R. As in Section 1, Σ(T )
stands for the field of all subsets of R with nowhere dense boundary, and
NWD(T ) - the ideal of nowhere dense subsets of R.

Theorem 3.1. (a) S(Perf(DN )) = ΣN , S0(Perf(DN )) = N . (See [R].)

(b) S(Perf(T ?N )) = ΣN , S0(Perf(T ?N )) = N . (See [BR].)

(c) S(Perf(T ?M)) = Σ(T ), S0(Perf(T ?M)) = NWD(T ). (See [BR].)

(d) S(Perf(DM)) = Σ(T ), S0(Perf(DM)) = NWD(T ).
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Proof. (a) Let F denote the family of all T -perfect sets of positive measure.
Burstin [Bu] proved that ΣN = S(F). It is not hard to prove that F and
Perf(DN ) are mutually coinitial (cf. [R, Lemma 3.2]). Thus by our scheme
we have S(Perf(DN )) = ΣN . Moreover S0(F) ⊂ H(S(F)) = H(ΣN ) = N
and N ⊂ ΣN = S(F). But N ⊂ S(F) easily implies that N ⊂ S0(F). Hence
N = S0(F) = S0(Perf(DN )).

(b) If F is as in (a), Lemma 3.1 easily implies that F and Perf(T ?N ) are
mutually coinitial (cf. [BR]). The rest is the same as in (a).

(c) From Lemma 3.1 it follows that T ?M-perfect sets have nonempty T -
interior. Also, a nonempty T -open set contains a T ?M-perfect set (a closed
nondegenerate interval). Hence Perf(T ?M) and T \ {∅} are mutually coinitial.
Thus the assertion follows from Proposition 1.3.

(d) As in (c) it suffices to prove that Perf(DM) and T \ {∅} are mutually
coinitial. Firstly, by Proposition 3.1, every DM-perfect set has nonempty
T -interior. Secondly, let us show that a nondegenerate interval [a, b] is a
DM-perfect set. Indeed, [a, b] is obviously DM-closed. Let x ∈ [a, b] and
x ∈ U ∈ DM. Then x is a category density point of U and x is at least a
one-sided category density point of [a, b]. Hence U ∩ [a, b] /∈ M and so, x is a
DM-accumulation point of [a, b].

Note that statements (a) and (b),(c) of Theorem 3.1 can be extended to
cases dealing with spaces more general than R, as it was mentioned in [R] and
[BR]. Topology DM can be considered in certain linear topological spaces and
statement (d) of Theorem 3.1 then holds.

Assertions (a),(d) and (b),(c) of Theorem 3.1 show a kind of asymmetry
between measure and category. Knowing (a),(b) we rather expected to obtain
ΣM and M as the respective Marczewski families in (c),(d). So the following
problem appears:

Problem 3.1. Find a topology τ on R such that ΣM (the σ-field of all subsets
of R with the Baire property) is of the form S(Perf(τ)).

Note that Brown [Br1] (see also [BET]) showed the equalities ΣM = S(G)
and M = S0(G) provided that G consists of sets of the form U \ F where U
is open and F is an Fσ meager set. This easily implies that ΣM = S(T ?M)
and M = S0(T ?M) since G and T ?M are mutually coinitial. Thus ΣM is a
topological field.
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et la classe correspondante d’ensembles, Fund. Math. 24 (1935), 17–34.

[Wa] J. T. Walsh, Marczewski sets, measure and the Baire property, Fund.
Math. 129 (1988), 83–89.
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