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MARCZEWSKI FIELDS AND IDEALS'

Abstract

For an X # () and a given family F C P(X) \ {0}, we consider the
Marczewski field S(F) which consists of sets A C X such that each set
U € F contains aset V € F with V C Aor VNA = 0. We also
study the respective ideal S°(F). We show general properties of S(F)
and certain representation theorems. For instance we prove that the
interval algebra in [0, 1) is a Marczewski field. We are also interested in
situations where S(F) = S(r\ {0#}) for a topology T on X. We propose
a general method which establishes S(F) and S°(F) provided that F
is the family of perfect sets with respect to 7, and 7 is a certain ideal
topology on R connected with measure or category.

1 General properties

The notions of (s)-sets and (s”)-sets are due to Marczewski [Sz]. They have
been investigated by many authors. (See [Mil], [Mi2], [BrCo| and also [Br2],
[Co], [Wa].) The scheme defining (s)-sets and (s")-sets was used for more gen-
eral settings in several publications (see e.g. [Mo], [Bre], [Pal, [R], [BR]). We
observe that this scheme turns out interesting without any essential restric-
tions on a generating family of sets. Namely, let F be a family of nonempty
subsets of a given set X. We put
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SF)={ACX - VUeF)(FIVeF)VCcUNAV VCU\A},
SYF)={AcCcX:(VUeF)3IVeF)VCU\A}
HF)={ACcX:(VBCA)BEeF}
Note that H(F) is the maximal hereditary family contained in F. In the case
when F consists of all perfect subsets of a given Polish space, S(F) and S°(F)
are exactly the families of classical Marczewski (s)-sets and (s°)-sets.

Our notation is standard. By P(X) we denote the power set of X. Through-
out the paper X # (0.

Proposition 1.1. Let F C P(X)\ {0}. Then we have

(1) S(F) is a field of sets,

(2) S°%F) C H(S(F)), and S°(F) is an ideal of sets,

38) FNSYUF)=0,

(4) (VU € S(F)\ SU(F)@3AV e F)V C U,

(5) FCS(F)e VUVEF) W e FH)YWCUNV VWCU\V),
(6) if {z} € F for all x € X then S(F) = P(X) and S°(F) = {0}.

PROOF. (1) From the definition of S(F) it immediately follows that, if A €
S(F) then X\ A € S(F). Now, assume that A, B € S(F). Let C € F. If there
isa D € F such that either D C CNAor D C CNBthen D C CN(AUB). If
such D does not exist, there is a Dy € F such that D; C C'\ A and there is a
Dy € F such that Dy C D1\ B. Thus Dy C C'\ (AUB). Hence AUB € S(F).

Similarly, we show that S°(F) is an ideal (condition (2)). The remaining
statements, except for (4), can be checked directly without troubles.

(4) Suppose that there is a Uy € S(F) \ S°(F) such that V \ Uy # 0 for
each V € F. Since Uy ¢ S°(F), there is a Vo € F such that W N Uy # 0
for each W € F, W C V;. Since Uy € S(F), there is a Wy € F such that
Wy C Vo NUp. But then Wy \ Uy = 0, a contradiction. O

Corollary 1.1. If F C P(X) is a field of sets, then
FAA0} € S(F\A{0})\ S°(F\ {0}).
PRrOOF. Use Proposition 1.1 (3) and (5). O

Note that the classical (s)-sets and (s%)-sets form a o-field and a o-ideal, re-
spectively (the proof of o-additivity for (s°)-sets is based on the fusion lemma;
see [Sz]). Additionally, in that case H(S(F)) = S°(F) [Sz, 3.1]. On the other
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hand, there are families F for which H((S(F)) # S°(F) [R, Cor. 1.10]. Ob-
serve that there are cases when S(F) forms a o-field but S°(F) is not a o-ideal.
That happens if X is an infinite set and F stands for the family of all infinite
subsets of X; then S(F) = P(X) and S°(F) consists of all finite subsets of
X. In [Pa, Lemma 2] it was proved that if Z C S(F) and S°(F) is o-additive
then S(F) is a o-field.

The operation S can be iterated. For a family F C P(X) we define
So(F) = F and So(F) = S(Uy<aS(F)\{0}) for any ordinal a > 0. Of course
we may consider only a < 22" where & is the cardinality of X. The families
Sa(F), a > 0, are fields and from Corollary 1.1 it follows that S, (F) C Sq(F)
for any ordinals v, a with 0 < v < a. In our future studies, we plan to estab-
lish the maximal number of different fields that can be obtained in a sequence
of type (So(F): a > 0). In the former version of the paper we claimed incor-
rectly that this number is 2. The referee has observed that it is at least 3.
(See Remark 2.2.)!

We say that two families Fy, Fo C P(X) \ {0} are mutually coinitial if

NVUeF)BVeR)VCU

and (VU e F) AVeF)VCU.
Proposition 1.2. Let Fi, Fy C P(X)\ {0}.
(i) If F1, Fo are mutually coinitial then S(Fy) = S(Fz) and SO(FI) = SO(}E)'

(ii) Assume that Fy C S(F1) and Fo C S(Fz). If S(F1) = S(F2) and
SO(Fy) = S°(F) then Fi, Fo are mutually coinitial.

PROOF. (i) is evident.

(ii) Let U € Fy. Then U ¢ S°(F;) by Proposition 1.1(3). Hence U € S(Fy) \
SY(F1) = S(Fa) \ S°(F2) and by Proposition 1.1(4) there is a V € F» such
that V' C U. Analogously, for each U € F; there is a V' € F; such that
VcU. O

Note that an idea similar to that contained in Proposition 1.2 was used in
[Mo, Th. 1, p. 23]. The referee has asked whether the converse of (i) is true.
The answer is “no” which follows from Remark 2.1 in the next section.

Now, consider a field ¥ (respectively, an ideal Z) of subsets of X. We say
that:

1S. Wronski has recently proved that this number is exactly 3.
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e 3 (respectively, Z) is a topological field (respectively, a topological ideal)
if there is a topology 7 on X such that ¥ consists of all sets with 7-
nowhere dense boundary (respectively, Z consists of T-nowhere dense
sets). (Cf. [Ku, §8.V].) We thus write ¥ = 3(7) and Z = NWD(r1).

e X (respectively, T) is a Marczewski field (respectively, a Marczewski
ideal) if there is a family F € P(X) \ {0} such that ¥ = S(F) (respec-
tively, Z = SO(F)).

Note that papers [BET] and [BBC] use different terminology for Mar-
czewski fields: the authors of [BET] say that “F is a basis for a Marczewski-
Burstin-like characterization of ¥”, and in [BBC], ¥ is called “Marczewski-
Burstin representable”.

An easy connection between the above notions is contained in the following

Proposition 1.3. (Cf. [BR].) If T is a topology on X then S(7\{0}) = X(7)
and S°(7\ {0}) = NWD(r). Consequently, every topological field (ideal) is a
Marczewski field (ideal).

From Proposition 1.2(i) we derive

Proposition 1.4. If a family F C P(X) \ {0} is mutually coinitial with a
topological base on X then the field S(F) is topological.

In Section 2 we shall show that the interval algebra is a Marczewski field.
This will imply that there are Marczewski fields that are not topological fields.
A Boolean-theoretical characterization of topological fields was given in [Wrl].
Article [CJ] was devoted to extensive studies of topological ideals; the authors
considered also an additional requirement stating that an ideal consists of mea-
ger sets in some topology. In Section 2 we discuss some connections between
Marczewski fields, topological fields and category bases (introduced by John
Morgan II, see [Mo]).

The class of Marczewski fields seems to be rich. From [Bu] it follows that
the Lebesgue measurable sets in R form a Marczewski field. (Note that paper
[Bu] is much earlier than [Sz].) Also the sets with the Baire property in R
constitute a Marczewski field [Brl], [BET]. When we started to prepare our
paper, it was not even known whether there exists a non-Marczewski field
of subsets of R. Now, our knowledge is wider. Namely, the forthcoming
paper [BBC] contains a construction of a non-Marczewski field on R provided
2¢ = wy and 2“1 = wy. Another result of [BBC]| states that 2¢ = w; and
2“1 = wy imply that the Borel subsets of R form a Marczewski field.

For any filter F of the algebra A = P(X) we denote —F = {X\E : E € F}
and A = FU—F.
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Proposition 1.5. For any filter F of A we have S(F) = Ar and S°(F) =
-F.

PrOOF. We easily check that 7 C S(F) and —F C SY(F). Since A is the
smallest field containing F, we have Ax C S(F). To show the reverse inclusion
consider a U € S(F). Since X € F, we can find a V € F such that either
VcUorV cC X\U. Hence either U € F or X \ U € F which means that
U € Ar. Thus S(F) C Ar. It can be similarly shown that S°(F) c —F. O

Proposition 1.6. For a set X of cardinality | X| = k there are 22" noniso-
morphic Marczewski fields on X containing all singletons.

PROOF. We follow the argument given in [F]. Let ® consist of all filters in
A = P(X) which are intersections of two free ultrafilters. Then |®| = 22"
and Az, # Az, for any distinct Fy, F, € ®. Additionally, {z} € Az for
any # € X and F € ®. Thus, by Proposition 1.5, there are 22° Marczewski
fields on X containing all singletons. Any isomorphism between subalgebras of
P(X) containing all singletons is induced by a bijection from X to X. Hence
each isomorphism class of such subalgebras has at most 2 elements. Finally,
observe that if h is a bijection of X onto X and F € ® then

{(h[U]: U e S(F)}=S{h[V]: VeF}) and {h]V]: V € F} € .

Thus there are 22" different classes of isomorphic Marczewski fields on X
containing all singletons. O

2 DMarczewski fields, topological fields and category bases

Let X = [0,1). The family of all finite unions of half-open intervals [a,b)
(where 0 < a < b < 1) form a field of subsets of X. It is called the interval
algebra of X [K, 1.11].

Theorem 2.1. The interval algebra A of X =10,1) is a Marczewski field.

PrOOF. Let Q stand for the set of all rationals and let ¢ denote the cardinality
of R. Consider the equivalence relation z ~ y <= x—y € Q. Let F': [0,1] —
R/ ~ be a one-to-one function such that x ¢ F(z) for « € [0,1]. (Note that F'
can be easily constructed by transfinite induction. Indeed, arrange all points of
[0,1] into a one-to-one sequence x.,, v < ¢, and consider an a < ¢. If the values
F(z,) for 7 < a have been defined, we pick z € [0, 1]\ U, ., [F'(z4)] \ [za] and
put F(x,) = [x] where [z] denotes the respective equivalence class.)
For z € [0,1] let
Fr(x) ={([z,z+¢e)\ F(z))NX : e > 0},
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Filz) ={((z —e,z) \ F(z))N X : & > 0},
F(z) = Fi(x) U Fr(z).
Note that F,.(1) = F;(0) = 0, otherwise F,.(z) and F;(x) are nonempty. Fi-
nally, let F = | F(z).
z€[0,1]
From the definitions of F and S(F) it easily follows that [a,b) € S(F) for
any a,b with 0 < a < b < 1. Since S(F) is a field of sets, we have A C S(F).

Claim 1. Let « € [0,1] and k € {r,l}. If U € Fi(x) then for each y € [0, 1]
and for each V € F(y) such that V' C U, we have y = x, and moreover
Ve F; (13)

Indeed, suppose that y # x. Let U = I\ F(z) and V = J\ F(y) where
I and J are the respective intervals. From V' C U and the density of F(x)
it follows that @ # J N F(x) C J N F(y) which contradicts the disjointness of
F(z) and F(y). Thus y = x and so, V' € F,,,(z) for some m € {r,{}. However,
m = k since otherwise U NV = 0.

We have already observed that A C S(F). To prove that S(F) C A fix an
Ae S(F)\{0}.

Claim 2. For each 2 € A there exists an € > 0 such that [z,2 +¢) C A. For
each x € X \ A there exists an € > 0 such that [z,z +¢) N A = 0.

The latter assertion follows from the former applied to X \ A. To show
the former assertion, suppose z € A and [z,z +¢)\ A # 0 for each € > 0.
Consider a U € F,.(z). Since A € S(F), there is a V € F such that either
VcUnAorV cU\A. By Claim 1 we have V € F,.(z). Since x € ANV,
we infer that V. C UNA. Let V = ([x,z +¢) \ F(z)) N X where e > 0. We
may assume that z + & < 1. By our supposition, pick a y € (z,z + ¢) \ A.
Let V = [y,z 4+ )\ F(y). Then V € F,.(y) and since A € S(F), there is a
W € F such that either W € VNAor W C V\A Again, by Claim 1, we have
W e F.(y), so we may assume that W = [y, y+e1) \ F(y) where y+e1 < z+e.
Since y ¢ A, we have WNA = (). The set [y,y+e1)\ (F(2)UF(y)) is nonempty
(uncountable) contained in [z, 4+ ¢) \ F(z) =V C A and simultaneously in
ly,y+e1)\ F(y) =W C X \ A. Contradiction.

Claim 3. For each x € (0, 1] there exists an € > 0 such that either (z—¢,z) C
Aor (z—g,z)NA=0.

To show the claim, suppose that there exists an « € (0,1] such that (z —
g,x)\A# 0 and (z —e,2) N A # ) for each € > 0. Let U € F(z). Since
A € S(F), there is a V € F such that either V.C UNAorV Cc U\ A. By
Claim 1 we have V € Fi(z) and we may assume that V = (z — ¢,2) \ F(x)
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where z—e > 0. If V C A, by our supposition we can pick y € (z—¢,z)\A. By
Claim 2 there is an 1 > 0 such that [y, y+e1)NA = 0 and we may assume that
y+e1 < z. On the other hand, § # [y, y+¢e1)\F(z) C (z—e,2)\F(x) CV C A,
a contradiction. If VN A = (), by our supposition we can pick y € (z—¢,z)NA.
By Claim 2 there is an €1 > 0 such that [y,y +¢1) C A and we may assume
that y+¢1 < 2. On the other hand, 0 # [y,y+¢e1)\ F(z) C (z—¢,2)\ F(z) =
V C X\ A, a contradiction.

From Claim 2 it follows that each connected component I of A is a non-
degenerate interval with b = sup ¢ I. Denote a = inf I and observe that
a € I. Indeed, suppose that a ¢ I. We know that [a,b) € S(F). Thus
ANJa,b) = (a,b) € S(F) and consequently [a,b) \ (a,b) = {a} € S(F) which
contradicts Claim 2.

From the above we infer that A is a union of at most countable family of
pairwise disjoint intervals of type [a, b). This family however cannot be infinite.
Indeed, suppose that A = |Jo—,[an,b,) with [a,,b,) C X, n > 1, pairwise
disjoint. Pick a strictly monotonic subsequence (ag,,) of (ay). If ag, \, z, we
apply Claim 2 to x and we obtain a contradiction. If ax, /" x, we apply Claim
3 to z and we obtain a contradiction.

Thus we have proved that A € A. Consequently, S(F) C A. O

Remark 2.1. Observe that in the above construction, we can choose, for
i = 1,2, one-to-one functions F": [0,1] — R/ ~ with disjoint ranges, and
such that x ¢ FW(x) for each x € [0,1]. Then A = S(FM) = S(F?)
where FO) (i = 1,2) is associated with F) as in the proof of Theorem 2.1.
Since H(A) = {0}, we have S°(FW)) = SO(F@) = {0} by Proposition 1.1(2).
However, the argument for Claim 1 shows that F) and F@ are not mutually
coinitial. Thus the converse of (i) in Proposition 1.2 is false.

Remark 2.2. Since A\ {0} and the family of nonempty open sets in [0,1) are
mutually coinitial, the field ¥ = S(A\ {0}) consists of all sets in [0,1) with
nowhere dense boundary, and S(X\{0}) = P([0,1)) by Proposition 1.1(6). So
we have 3 different fields obtained by the iteration of S(-).

Corollary 2.1. There exists an Marczewski field which is not a topological
field.

Proor. This follows from Theorem 2.1 since every topological field has an
atom [Wrl] and the algebra A has no atoms. O

Although the class of topological subfields of P(X) is smaller than the class
of Marczewski fields, the former can be used to get the following representation
result:
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Theorem 2.2. Every field ¥ of subsets of X is equal to the intersection of all
topological fields containing 2.

Proor. If ¥ = P(X), the assertion is obvious. Assume that ¥ # P(X). It
suffices to show that for each A ¢ ¥ there is a topological field ¥4 D ¥ with
A¢ X4 So, let A¢ 3. By [Wr2, Lemma 2] we find an ultrafilter F4 of the
field X such that no subset of A is in F4 and no subset of X\ A isin F4. Thus
A ¢ S(Fa). Put 4 = S(Fa). Observe that X4 is a topological field since
Fa forms a topological base, and thus Proposition 1.4 can be used. Because
Fa4 is an ultrafilter of 3, we have ¥ C S(Fa). O

Recall [Mo] that a pair (X, C) is said to be a category base if C stands for a
family of subsets of a nonempty set X, and nonempty sets in C, called regions,
satisfy the following axioms:

1Y Uyc=x,

20 Let A be a region and D — a nonempty family of disjoint regions with
|D| < |C|]. Then

e if AN (|UD) contains a region then there is a region D € D such
that AN D contains a region;

e if AN(|JD) contains no region then there is a region B ¢ A\ JD.
A set E C X is called singular if E € S°(C\ {0}).

Theorem 2.3. Assume that for a family F C P(X) \ {0} we have X € F C
S(F) and JS(F)n{UNV : V € F}) € SUF) for each U € F. Then
(X, F) is a category base whose ideal of singular sets equals S°(F).

PROOF. It is enough to check condition 2° defining a category base. Let
F,F, € F for t € T (where T is an arbitrary set of indices). Assume that

Fn | F; contains a set from F. Then there exists a to € T such that F'N Fy,
teT
contains a set from F. Indeed, suppose that it is not the case. Since F C S(F),
we have F'N F; € S(F) for each t € T. Hence by Proposition 1.1(4) we get
FnNF, € S%F). Thus, by assumption, we have |J (F N F;) € SY(F) which
teT
yields a contradiction (cf. Proposition 1.1(3)). Assume now that FF N |J F;
teT
contains no set from F. Then every set F'N Fy, t € T, contains no set from F.
As before we infer that F'NF, € S(F) for t € T and moreover FNF; € S°(F).

By assumption we have |J (F N F;) € S°(F) and consequently,
teT

F\JWFnF)eSF)\SF),

teT
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since F € S(F)\ S°(F). Hence, by Proposition 1.1(4), there is a set from F

contained in F'\ | F;. O
teT

3 Marczewski fields and perfect sets

Let (X,7) be a topological space. By a T-perfect set we mean a nonempty
T-closed set without isolated points. Let Perf(r) stand for the family of all
T-perfect subsets of X. As it was mentioned in Section 1, if X is a Polish
space with topology 7 then S(Perf(7)) and S°(Perf(7)) are exactly the classical
families of Marczewski (s)-sets and (s°)-sets. In [R], studies of S(Perf(7)) and
S9(Perf(r)) for other topological spaces were initiated. (See also [BR].) In
this section we propose a general method which enables us to reprove some
results of [R] and [BR], and to show new applications.

If 7 is a given topology on X and we want to characterize S(Perf(7)), we
shall use the following scheme:

19 we conjecture that S(Perf()) = ¥ where ¥ is a known field of sets,
20 we know that ¥ = S(F) for some family F C P(X) \ {0};

3% in aim to confirm our conjecture 1°, it is enough (by Proposition 1.2(i)) to
check that Perf(7) and F are mutually coinitial.

A similar method works for S°(Perf(r)). The above scheme will be illus-
trated by examples dealing with some “ideal topologies” on R.

Let 7 be a topology on X, and let Z C P(X) be a o-ideal containing all
singletons. The family

By ={U\A: Uet& AcT}

forms a base for a topology 75, on X, stronger than 7, which will be called
the Hashimoto topology associated with 7 and Z. If 7 is second countable (or
even hereditary Lindeldf) then 75 = B%. (See [H], [JH], [LMZ].) The following
property is well known.

Lemma 3.1. (Cf. [BR]). Let T be a o-ideal of subsets of a separable metric
space X and let T contain all singletons. A set F' C X is 77-perfect if and
only if F is T-perfect and UNF ¢ T for each U € 7 with U N F # {).

By M and N we denote, respectively, the o-ideals all meager (i.e. of the
first category) sets and of all Lebesgue null sets in R. We shall consider the
Hashimoto topologies Ty, and 13- where T' stands for the natural topology
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on R. Let Dy denote the density topology on R. (See e.g. [O] or [CLO].)
Wilezyniski in [W1] introduced the category analogue of the density topology
which will be denoted by the Da4. Since topology Dy is less known, let us give
necessary definitions. A number x € R is called a category density point of a
set A C R with the Baire property if each increasing sequence {n} of positive
integers has a subsequence {n,, } such that the sequence of characteristic
functions

X[~ 1,1)0 i, (A—z) (t)

(where np, (A —x) = {nm, (a —x) : a € A}) tends to x[—1,11(t) for all points
t € R except for those belonging to a meager set. If [—1,1] is replaced by
[—1,0] or [0,1], we get the respective notions of one-sided category density
points. Topology D consists of all sets A C R with the Baire property,
such that each point of A is a category density point of A. There are many
analogies between Dpq and Dys; for details, see [PWW], [W2] and [CLO].

It is known that the only possible inclusions between the above-mentioned
topologies are the following 7' C Ty, C Dy and T C TR, € Dar. (See [LIW].)

The following proposition is due to W. Wilezytiski (oral communication).

Proposition 3.1. Fvery Daq-perfect set has nonempty T-interior.

PROOF. Let F be a D4-perfect set. Then F' is nonmeager. Indeed, if FF € M
and € F then U = (R\ F)U {2} € Day and FNU = {z} which contradicts
the fact that F' is a Dag-perfect set. Since F' is a nonmeager set with the
Baire property, there is an open interval V' such that F NV is comeager in V.
We claim that V' C F. Let x € V and let W be a Dy -neighborhood of z.
Thus x is a category density point of the both sets V and W. Consequently,
VNW ¢ M. Since F NV is comeager in V, we thus have FN'W # (). Hence
x belongs to the the Day-closure of F' (equal to F). O

Let ¥ o( and X denote, respectively, the o-fields of all sets with the Baire
property and of all Lebesgue measurable sets in R. As in Section 1, ¥(T")
stands for the field of all subsets of R with nowhere dense boundary, and
NW D(T) - the ideal of nowhere dense subsets of R.

Theorem 3.1. (a) S(Perf(Dy)) =Xn, S°(Perf(Dy)) =N. (See [R].)
(b) S(Perf(T})) =S, S°(Perf(T3)) =N. (See [BR].)
(c) S(Perf(Tx,)) =%(T), S°(Perf(Tx,)) = NWD(T). (See [BR].)

(d) S(Perf(Dm)) =X(T), S°(Perf(Dm)) = NWD(T).
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PROOF. (a) Let F denote the family of all T-perfect sets of positive measure.
Burstin [Bu] proved that Xy = S(F). It is not hard to prove that F and
Perf(Dys) are mutually coinitial (cf. [R, Lemma 3.2]). Thus by our scheme
we have S(Perf(Dyr)) = L. Moreover SO(F) € H(S(F)) = HEnN) = N
and N C Xy = S(F). But N C S(F) easily implies that N' C S°(F). Hence
N = SOF) = SO(Perf(Dy)).

(b) If F is as in (a), Lemma 3.1 easily implies that F and Perf(T},) are
mutually coinitial (cf. [BR]). The rest is the same as in (a).

(c) From Lemma 3.1 it follows that T'y,-perfect sets have nonempty T-
interior. Also, a nonempty T-open set contains a T'y,-perfect set (a closed
nondegenerate interval). Hence Perf(T},) and 7'\ {0} are mutually coinitial.
Thus the assertion follows from Proposition 1.3.

(d) As in (c) it suffices to prove that Perf(Dyq) and T \ {0} are mutually
coinitial. Firstly, by Proposition 3.1, every D -perfect set has nonempty
T-interior. Secondly, let us show that a nondegenerate interval [a,b] is a
D-perfect set. Indeed, [a,b] is obviously Day-closed. Let x € [a,b] and
x € U € Dpq. Then zx is a category density point of U and x is at least a
one-sided category density point of [a,b]. Hence U N [a,b] ¢ M and so, z is a
D p-accumulation point of [a, b]. O

Note that statements (a) and (b),(c) of Theorem 3.1 can be extended to
cases dealing with spaces more general than R, as it was mentioned in [R] and
[BR]. Topology D4 can be considered in certain linear topological spaces and
statement (d) of Theorem 3.1 then holds.

Assertions (a),(d) and (b),(c) of Theorem 3.1 show a kind of asymmetry
between measure and category. Knowing (a),(b) we rather expected to obtain
Y m and M as the respective Marczewski families in (c),(d). So the following
problem appears:

Problem 3.1. Find a topology 7 on R such that ¥, (the o-field of all subsets
of R with the Baire property) is of the form S(Perf(r)).

Note that Brown [Brl] (see also [BET]) showed the equalities ¥ s = S(G)
and M = S°(G) provided that G consists of sets of the form U \ F where U
is open and F is an F, meager set. This easily implies that Y = S(T},)
and M = S°(T%,) since G and T, are mutually coinitial. Thus X is a
topological field.

Acknowledgements. We would like to thank the referee for several valuable
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