M. Balcerzak, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, I-2, 90-924 Łódź, Poland and Faculty of Mathematics, Łódź University, ul. Banacha 22, 90-238 Łódź, Poland. e-mail: mbalce@krysia.uni.lodz.pl

A. Bartoszewicz, J. Rzepecka and S. Wroński, Institute of Mathematics, Lódź Technical University, al. Politechniki 11, I-2, 90-924 Łódź, Poland. e-mail: arturbar@ck-sg.p.lodz.pl and wronskis@ck-sg.p.lodz.pl

MARCZEWSKI FIELDS AND IDEALS[†]

Abstract

For an $X \neq \emptyset$ and a given family $\mathcal{F} \subset \mathcal{P}(X) \setminus \{\emptyset\}$, we consider the Marczewski field $S(\mathcal{F})$ which consists of sets $A \subset X$ such that each set $U \in \mathcal{F}$ contains a set $V \in \mathcal{F}$ with $V \subset A$ or $V \cap A = \emptyset$. We also study the respective ideal $S^0(\mathcal{F})$. We show general properties of $S(\mathcal{F})$ and certain representation theorems. For instance we prove that the interval algebra in [0, 1) is a Marczewski field. We are also interested in situations where $S(\mathcal{F}) = S(\tau \setminus \{\emptyset\})$ for a topology τ on X. We propose a general method which establishes $S(\mathcal{F})$ and $S^0(\mathcal{F})$ provided that \mathcal{F} is the family of perfect sets with respect to τ , and τ is a certain ideal topology on \mathbb{R} connected with measure or category.

1 General properties

The notions of (s)-sets and (s^0) -sets are due to Marczewski [Sz]. They have been investigated by many authors. (See [Mi1], [Mi2], [BrCo] and also [Br2], [Co], [Wa].) The scheme defining (s)-sets and (s^0) -sets was used for more general settings in several publications (see e.g. [Mo], [Bre], [Pa], [R], [BR]). We observe that this scheme turns out interesting without any essential restrictions on a generating family of sets. Namely, let \mathcal{F} be a family of nonempty subsets of a given set X. We put

Key Words: Marczewski sets, field of sets, Baire category, Lebesgue measure, density topology.

Mathematical Reviews subject classification: 28A05, 03E75, 06E25, 54A10, 54E52 Received by the editors August 20, 2000

 $^{^*{\}rm The}$ first author was partially supported by NSF Cooperative Research Grant INT-9600548 and its Polish part financed by KBN.

 $^{^\}dagger {\rm The}$ main results of the paper were presented during the 13th Spring Miniconference in Real Analysis in Auburn (March 5-6, 1999).

$$\begin{split} S(\mathcal{F}) &= \{ A \subset X : (\forall \ U \in \mathcal{F}) \ (\exists V \in \mathcal{F}) \ (V \subset U \cap A \lor V \subset U \setminus A) \}, \\ S^0(\mathcal{F}) &= \{ A \subset X : (\forall \ U \in \mathcal{F}) \ (\exists V \in \mathcal{F}) \ V \subset U \setminus A \}, \\ H(\mathcal{F}) &= \{ A \subset X : (\forall \ B \subset A) \ B \in \mathcal{F} \}. \end{split}$$

Note that $H(\mathcal{F})$ is the maximal hereditary family contained in \mathcal{F} . In the case when \mathcal{F} consists of all perfect subsets of a given Polish space, $S(\mathcal{F})$ and $S^0(\mathcal{F})$ are exactly the families of classical Marczewski (s)-sets and (s⁰)-sets.

Our notation is standard. By $\mathcal{P}(X)$ we denote the power set of X. Throughout the paper $X \neq \emptyset$.

Proposition 1.1. Let $\mathcal{F} \subset \mathcal{P}(X) \setminus \{\emptyset\}$. Then we have

- (1) $S(\mathcal{F})$ is a field of sets,
- (2) $S^0(\mathcal{F}) \subset H(S(\mathcal{F}))$, and $S^0(\mathcal{F})$ is an ideal of sets,
- (3) $\mathcal{F} \cap S^0(\mathcal{F}) = \emptyset$,
- (4) $(\forall U \in S(\mathcal{F}) \setminus S^0(\mathcal{F})) (\exists V \in \mathcal{F}) V \subset U,$
- (5) $\mathcal{F} \subset S(\mathcal{F}) \Leftrightarrow (\forall U, V \in \mathcal{F})(\exists W \in \mathcal{F})(W \subset U \cap V \lor W \subset U \setminus V),$
- (6) if $\{x\} \in \mathcal{F}$ for all $x \in X$ then $S(\mathcal{F}) = \mathcal{P}(X)$ and $S^0(\mathcal{F}) = \{\emptyset\}$.

PROOF. (1) From the definition of $S(\mathcal{F})$ it immediately follows that, if $A \in S(\mathcal{F})$ then $X \setminus A \in S(\mathcal{F})$. Now, assume that $A, B \in S(\mathcal{F})$. Let $C \in \mathcal{F}$. If there is a $D \in \mathcal{F}$ such that either $D \subset C \cap A$ or $D \subset C \cap B$ then $D \subset C \cap (A \cup B)$. If such D does not exist, there is a $D_1 \in \mathcal{F}$ such that $D_1 \subset C \setminus A$ and there is a $D_2 \in \mathcal{F}$ such that $D_2 \subset D_1 \setminus B$. Thus $D_2 \subset C \setminus (A \cup B)$. Hence $A \cup B \in S(\mathcal{F})$.

Similarly, we show that $S^0(\mathcal{F})$ is an ideal (condition (2)). The remaining statements, except for (4), can be checked directly without troubles.

(4) Suppose that there is a $U_0 \in S(\mathcal{F}) \setminus S^0(\mathcal{F})$ such that $V \setminus U_0 \neq \emptyset$ for each $V \in \mathcal{F}$. Since $U_0 \notin S^0(\mathcal{F})$, there is a $V_0 \in \mathcal{F}$ such that $W \cap U_0 \neq \emptyset$ for each $W \in \mathcal{F}$, $W \subset V_0$. Since $U_0 \in S(\mathcal{F})$, there is a $W_0 \in \mathcal{F}$ such that $W_0 \subset V_0 \cap U_0$. But then $W_0 \setminus U_0 = \emptyset$, a contradiction.

Corollary 1.1. If $\mathcal{F} \subset \mathcal{P}(X)$ is a field of sets, then

$$\mathcal{F} \setminus \{\emptyset\} \subset S(\mathcal{F} \setminus \{\emptyset\}) \setminus S^0(\mathcal{F} \setminus \{\emptyset\}).$$

PROOF. Use Proposition 1.1 (3) and (5).

Note that the classical (s)-sets and (s⁰)-sets form a σ -field and a σ -ideal, respectively (the proof of σ -additivity for (s⁰)-sets is based on the fusion lemma; see [Sz]). Additionally, in that case $H(S(\mathcal{F})) = S^0(\mathcal{F})$ [Sz, 3.1]. On the other

hand, there are families \mathcal{F} for which $H((S(\mathcal{F})) \neq S^0(\mathcal{F})$ [R, Cor. 1.10]. Observe that there are cases when $S(\mathcal{F})$ forms a σ -field but $S^0(\mathcal{F})$ is not a σ -ideal. That happens if X is an infinite set and \mathcal{F} stands for the family of all infinite subsets of X; then $S(\mathcal{F}) = \mathcal{P}(X)$ and $S^0(\mathcal{F})$ consists of all finite subsets of X. In [Pa, Lemma 2] it was proved that if $\mathcal{F} \subset S(\mathcal{F})$ and $S^0(\mathcal{F})$ is σ -additive then $S(\mathcal{F})$ is a σ -field.

The operation S can be iterated. For a family $\mathcal{F} \subset \mathcal{P}(X)$ we define $S_0(\mathcal{F}) = \mathcal{F}$ and $S_\alpha(\mathcal{F}) = S(\bigcup_{\gamma < \alpha} S_\gamma(\mathcal{F}) \setminus \{\emptyset\})$ for any ordinal $\alpha > 0$. Of course we may consider only $\alpha \leq 2^{2^{\kappa}}$ where κ is the cardinality of X. The families $S_\alpha(\mathcal{F}), \alpha > 0$, are fields and from Corollary 1.1 it follows that $S_\gamma(\mathcal{F}) \subset S_\alpha(\mathcal{F})$ for any ordinals γ, α with $0 < \gamma < \alpha$. In our future studies, we plan to establish the maximal number of different fields that can be obtained in a sequence of type $\langle S_\alpha(\mathcal{F}) : \alpha > 0 \rangle$. In the former version of the paper we claimed incorrectly that this number is 2. The referee has observed that it is at least 3. (See Remark 2.2.)¹

We say that two families $\mathcal{F}_1, \mathcal{F}_2 \subset \mathcal{P}(X) \setminus \{\emptyset\}$ are *mutually coinitial* if

$$(\forall U \in \mathcal{F}_1) \ (\exists V \in \mathcal{F}_2) \ V \subset U$$

and $(\forall U \in \mathcal{F}_2) \ (\exists V \in \mathcal{F}_1) \ V \subset U.$

Proposition 1.2. Let $\mathcal{F}_1, \mathcal{F}_2 \subset \mathcal{P}(X) \setminus \{\emptyset\}$.

- (i) If $\mathcal{F}_1, \mathcal{F}_2$ are mutually coinitial then $S(\mathcal{F}_1) = S(\mathcal{F}_2)$ and $S^0(\mathcal{F}_1) = S^0(\mathcal{F}_2)$.
- (ii) Assume that $\mathcal{F}_1 \subset S(\mathcal{F}_1)$ and $\mathcal{F}_2 \subset S(\mathcal{F}_2)$. If $S(\mathcal{F}_1) = S(\mathcal{F}_2)$ and $S^0(\mathcal{F}_1) = S^0(\mathcal{F}_2)$ then $\mathcal{F}_1, \mathcal{F}_2$ are mutually coinitial.

PROOF. (i) is evident.

(ii) Let $U \in \mathcal{F}_1$. Then $U \notin S^0(\mathcal{F}_1)$ by Proposition 1.1(3). Hence $U \in S(\mathcal{F}_1) \setminus S^0(\mathcal{F}_1) = S(\mathcal{F}_2) \setminus S^0(\mathcal{F}_2)$ and by Proposition 1.1(4) there is a $V \in \mathcal{F}_2$ such that $V \subset U$. Analogously, for each $U \in \mathcal{F}_2$ there is a $V \in \mathcal{F}_1$ such that $V \subset U$.

Note that an idea similar to that contained in Proposition 1.2 was used in [Mo, Th. 1, p. 23]. The referee has asked whether the converse of (i) is true. The answer is "no" which follows from Remark 2.1 in the next section.

Now, consider a field Σ (respectively, an ideal $\mathcal I)$ of subsets of X. We say that:

¹S. Wroński has recently proved that this number is exactly 3.

- Σ (respectively, \mathcal{I}) is a topological field (respectively, a topological ideal) if there is a topology τ on X such that Σ consists of all sets with τ nowhere dense boundary (respectively, \mathcal{I} consists of τ -nowhere dense sets). (Cf. [Ku, §8.V].) We thus write $\Sigma = \Sigma(\tau)$ and $\mathcal{I} = NWD(\tau)$.
- Σ (respectively, \mathcal{I}) is a *Marczewski field* (respectively, a *Marczewski ideal*) if there is a family $\mathcal{F} \subset \mathcal{P}(X) \setminus \{\emptyset\}$ such that $\Sigma = S(\mathcal{F})$ (respectively, $\mathcal{I} = S^0(\mathcal{F})$).

Note that papers [BET] and [BBC] use different terminology for Marczewski fields: the authors of [BET] say that " \mathcal{F} is a basis for a Marczewski-Burstin-like characterization of Σ ", and in [BBC], Σ is called "Marczewski-Burstin representable".

An easy connection between the above notions is contained in the following

Proposition 1.3. (Cf. [BR].) If τ is a topology on X then $S(\tau \setminus \{\emptyset\}) = \Sigma(\tau)$ and $S^0(\tau \setminus \{\emptyset\}) = NWD(\tau)$. Consequently, every topological field (ideal) is a Marczewski field (ideal).

From Proposition 1.2(i) we derive

Proposition 1.4. If a family $\mathcal{F} \subset \mathcal{P}(X) \setminus \{\emptyset\}$ is mutually coinitial with a topological base on X then the field $S(\mathcal{F})$ is topological.

In Section 2 we shall show that the interval algebra is a Marczewski field. This will imply that there are Marczewski fields that are not topological fields. A Boolean-theoretical characterization of topological fields was given in [Wr1]. Article [CJ] was devoted to extensive studies of topological ideals; the authors considered also an additional requirement stating that an ideal consists of meager sets in some topology. In Section 2 we discuss some connections between Marczewski fields, topological fields and category bases (introduced by John Morgan II, see [Mo]).

The class of Marczewski fields seems to be rich. From [Bu] it follows that the Lebesgue measurable sets in \mathbb{R} form a Marczewski field. (Note that paper [Bu] is much earlier than [Sz].) Also the sets with the Baire property in \mathbb{R} constitute a Marczewski field [Br1], [BET]. When we started to prepare our paper, it was not even known whether there exists a non-Marczewski field of subsets of \mathbb{R} . Now, our knowledge is wider. Namely, the forthcoming paper [BBC] contains a construction of a non-Marczewski field on \mathbb{R} provided $2^{\omega} = \omega_1$ and $2^{\omega_1} = \omega_2$. Another result of [BBC] states that $2^{\omega} = \omega_1$ and $2^{\omega_1} = \omega_2$ imply that the Borel subsets of \mathbb{R} form a Marczewski field.

For any filter \mathcal{F} of the algebra $\mathcal{A} = \mathcal{P}(X)$ we denote $-\mathcal{F} = \{X \setminus E : E \in \mathcal{F}\}$ and $\mathcal{A}_{\mathcal{F}} = \mathcal{F} \cup -\mathcal{F}$. **Proposition 1.5.** For any filter \mathcal{F} of \mathcal{A} we have $S(\mathcal{F}) = \mathcal{A}_{\mathcal{F}}$ and $S^0(\mathcal{F}) = -\mathcal{F}$.

PROOF. We easily check that $\mathcal{F} \subset S(\mathcal{F})$ and $-\mathcal{F} \subset S^0(\mathcal{F})$. Since $\mathcal{A}_{\mathcal{F}}$ is the smallest field containing \mathcal{F} , we have $\mathcal{A}_{\mathcal{F}} \subset S(\mathcal{F})$. To show the reverse inclusion consider a $U \in S(\mathcal{F})$. Since $X \in \mathcal{F}$, we can find a $V \in \mathcal{F}$ such that either $V \subset U$ or $V \subset X \setminus U$. Hence either $U \in \mathcal{F}$ or $X \setminus U \in \mathcal{F}$ which means that $U \in \mathcal{A}_{\mathcal{F}}$. Thus $S(\mathcal{F}) \subset \mathcal{A}_{\mathcal{F}}$. It can be similarly shown that $S^0(\mathcal{F}) \subset -\mathcal{F}$. \Box

Proposition 1.6. For a set X of cardinality $|X| = \kappa$ there are $2^{2^{\kappa}}$ nonisomorphic Marczewski fields on X containing all singletons.

PROOF. We follow the argument given in [F]. Let Φ consist of all filters in $\mathcal{A} = \mathcal{P}(X)$ which are intersections of two free ultrafilters. Then $|\Phi| = 2^{2^{\kappa}}$ and $\mathcal{A}_{\mathcal{F}_1} \neq \mathcal{A}_{\mathcal{F}_2}$ for any distinct $\mathcal{F}_1, \mathcal{F}_2 \in \Phi$. Additionally, $\{x\} \in \mathcal{A}_{\mathcal{F}}$ for any $x \in X$ and $\mathcal{F} \in \Phi$. Thus, by Proposition 1.5, there are $2^{2^{\kappa}}$ Marczewski fields on X containing all singletons. Any isomorphism between subalgebras of $\mathcal{P}(X)$ containing all singletons is induced by a bijection from X to X. Hence each isomorphism class of such subalgebras has at most 2^{κ} elements. Finally, observe that if h is a bijection of X onto X and $\mathcal{F} \in \Phi$ then

$$\{h[U]: U \in S(\mathcal{F})\} = S(\{h[V]: V \in \mathcal{F}\}) \text{ and } \{h[V]: V \in \mathcal{F}\} \in \Phi.$$

Thus there are $2^{2^{\kappa}}$ different classes of isomorphic Marczewski fields on X containing all singletons.

2 Marczewski fields, topological fields and category bases

Let X = [0, 1). The family of all finite unions of half-open intervals [a, b) (where $0 \le a < b \le 1$) form a field of subsets of X. It is called the *interval algebra* of X [K, 1.11].

Theorem 2.1. The interval algebra \mathcal{A} of X = [0, 1) is a Marczewski field.

PROOF. Let \mathbb{Q} stand for the set of all rationals and let \mathfrak{c} denote the cardinality of \mathbb{R} . Consider the equivalence relation $x \sim y \iff x - y \in \mathbb{Q}$. Let $F: [0, 1] \rightarrow \mathbb{R}/\sim$ be a one-to-one function such that $x \notin F(x)$ for $x \in [0, 1]$. (Note that F can be easily constructed by transfinite induction. Indeed, arrange all points of [0, 1] into a one-to-one sequence $x_{\gamma}, \gamma < \mathfrak{c}$, and consider an $\alpha < \mathfrak{c}$. If the values $F(x_{\gamma})$ for $\gamma < \alpha$ have been defined, we pick $x \in [0, 1] \setminus \bigcup_{\gamma < \alpha} [F(x_{\gamma})] \setminus [x_{\alpha}]$ and put $F(x_{\alpha}) = [x]$ where [x] denotes the respective equivalence class.) For $x \in [0, 1]$ let

$$\mathcal{F}_r(x) = \{ ([x, x + \varepsilon) \setminus F(x)) \cap X : \varepsilon > 0 \},\$$

708 M. BALCERZAK, A. BARTOSZEWICZ, J. RZEPECKA AND S. WROŃSKI

$$\begin{split} \mathcal{F}_l(x) &= \{ ((x - \varepsilon, x) \setminus F(x)) \cap X : \varepsilon > 0 \}, \\ \mathcal{F}(x) &= \mathcal{F}_l(x) \cup \mathcal{F}_r(x). \\ \text{Note that } \mathcal{F}_r(1) &= \mathcal{F}_l(0) = \emptyset, \text{ otherwise } \mathcal{F}_r(x) \text{ and } \mathcal{F}_l(x) \text{ are nonempty. Finally, let } \mathcal{F} = \bigcup_{x \in [0,1]} \mathcal{F}(x). \end{split}$$

From the definitions of \mathcal{F} and $S(\mathcal{F})$ it easily follows that $[a, b) \in S(\mathcal{F})$ for any a, b with $0 \leq a < b \leq 1$. Since $S(\mathcal{F})$ is a field of sets, we have $\mathcal{A} \subset S(\mathcal{F})$.

Claim 1. Let $x \in [0,1]$ and $k \in \{r,l\}$. If $U \in \mathcal{F}_k(x)$ then for each $y \in [0,1]$ and for each $V \in \mathcal{F}(y)$ such that $V \subset U$, we have y = x, and moreover $V \in \mathcal{F}_k(x)$.

Indeed, suppose that $y \neq x$. Let $U = I \setminus F(x)$ and $V = J \setminus F(y)$ where I and J are the respective intervals. From $V \subset U$ and the density of F(x) it follows that $\emptyset \neq J \cap F(x) \subset J \cap F(y)$ which contradicts the disjointness of F(x) and F(y). Thus y = x and so, $V \in \mathcal{F}_m(x)$ for some $m \in \{r, l\}$. However, m = k since otherwise $U \cap V = \emptyset$.

We have already observed that $\mathcal{A} \subset S(\mathcal{F})$. To prove that $S(\mathcal{F}) \subset \mathcal{A}$ fix an $A \in S(\mathcal{F}) \setminus \{\emptyset\}$.

Claim 2. For each $x \in A$ there exists an $\varepsilon > 0$ such that $[x, x + \varepsilon) \subset A$. For each $x \in X \setminus A$ there exists an $\varepsilon > 0$ such that $[x, x + \varepsilon) \cap A = \emptyset$.

The latter assertion follows from the former applied to $X \setminus A$. To show the former assertion, suppose $x \in A$ and $[x, x + \varepsilon) \setminus A \neq \emptyset$ for each $\varepsilon > 0$. Consider a $U \in \mathcal{F}_r(x)$. Since $A \in S(\mathcal{F})$, there is a $V \in \mathcal{F}$ such that either $V \subset U \cap A$ or $V \subset U \setminus A$. By Claim 1 we have $V \in \mathcal{F}_r(x)$. Since $x \in A \cap V$, we infer that $V \subset U \cap A$. Let $V = ([x, x + \varepsilon) \setminus F(x)) \cap X$ where $\varepsilon > 0$. We may assume that $x + \varepsilon \leq 1$. By our supposition, pick a $y \in (x, x + \varepsilon) \setminus A$. Let $\tilde{V} = [y, x + \varepsilon) \setminus F(y)$. Then $\tilde{V} \in \mathcal{F}_r(y)$ and since $A \in S(\mathcal{F})$, there is a $W \in \mathcal{F}$ such that either $W \subset \tilde{V} \cap A$ or $W \subset \tilde{V} \setminus A$. Again, by Claim 1, we have $W \in \mathcal{F}_r(y)$, so we may assume that $W = [y, y + \varepsilon_1) \setminus F(y)$ where $y + \varepsilon_1 \leq x + \varepsilon$. Since $y \notin A$, we have $W \cap A = \emptyset$. The set $[y, y + \varepsilon_1) \setminus (F(x) \cup F(y))$ is nonempty (uncountable) contained in $[x, x + \varepsilon) \setminus F(x) = V \subset A$ and simultaneously in $[y, y + \varepsilon_1) \setminus F(y) = W \subset X \setminus A$. Contradiction.

Claim 3. For each $x \in (0, 1]$ there exists an $\varepsilon > 0$ such that either $(x - \varepsilon, x) \subset A$ or $(x - \varepsilon, x) \cap A = \emptyset$.

To show the claim, suppose that there exists an $x \in (0, 1]$ such that $(x - \varepsilon, x) \setminus A \neq \emptyset$ and $(x - \varepsilon, x) \cap A \neq \emptyset$ for each $\varepsilon > 0$. Let $U \in \mathcal{F}_l(x)$. Since $A \in S(\mathcal{F})$, there is a $V \in \mathcal{F}$ such that either $V \subset U \cap A$ or $V \subset U \setminus A$. By Claim 1 we have $V \in \mathcal{F}_l(x)$ and we may assume that $V = (x - \varepsilon, x) \setminus F(x)$

where $x - \varepsilon \ge 0$. If $V \subset A$, by our supposition we can pick $y \in (x - \varepsilon, x) \setminus A$. By Claim 2 there is an $\varepsilon_1 > 0$ such that $[y, y + \varepsilon_1) \cap A = \emptyset$ and we may assume that $y + \varepsilon_1 \le x$. On the other hand, $\emptyset \ne [y, y + \varepsilon_1) \setminus F(x) \subset (x - \varepsilon, x) \setminus F(x) \subset V \subset A$, a contradiction. If $V \cap A = \emptyset$, by our supposition we can pick $y \in (x - \varepsilon, x) \cap A$. By Claim 2 there is an $\varepsilon_1 > 0$ such that $[y, y + \varepsilon_1) \subset A$ and we may assume that $y + \varepsilon_1 \le x$. On the other hand, $\emptyset \ne [y, y + \varepsilon_1) \setminus F(x) \subset (x - \varepsilon, x) \setminus F(x) =$ $V \subset X \setminus A$, a contradiction.

From Claim 2 it follows that each connected component I of A is a nondegenerate interval with $b = \sup I \notin I$. Denote $a = \inf I$ and observe that $a \in I$. Indeed, suppose that $a \notin I$. We know that $[a,b) \in S(\mathcal{F})$. Thus $A \cap [a,b) = (a,b) \in S(\mathcal{F})$ and consequently $[a,b) \setminus (a,b) = \{a\} \in S(\mathcal{F})$ which contradicts Claim 2.

From the above we infer that A is a union of at most countable family of pairwise disjoint intervals of type [a, b). This family however cannot be infinite. Indeed, suppose that $A = \bigcup_{n=1}^{\infty} [a_n, b_n)$ with $[a_n, b_n) \subset X$, $n \ge 1$, pairwise disjoint. Pick a strictly monotonic subsequence (a_{k_n}) of (a_n) . If $a_{k_n} \searrow x$, we apply Claim 2 to x and we obtain a contradiction. If $a_{k_n} \nearrow x$, we apply Claim 3 to x and we obtain a contradiction.

Thus we have proved that $A \in \mathcal{A}$. Consequently, $S(\mathcal{F}) \subset \mathcal{A}$.

Remark 2.1. Observe that in the above construction, we can choose, for i = 1, 2, one-to-one functions $F^{(i)}: [0,1] \to \mathbb{R}/\sim$ with disjoint ranges, and such that $x \notin F^{(i)}(x)$ for each $x \in [0,1]$. Then $\mathcal{A} = S(\mathcal{F}^{(1)}) = S(\mathcal{F}^{(2)})$ where $\mathcal{F}^{(i)}$ (i = 1,2) is associated with $F^{(i)}$ as in the proof of Theorem 2.1. Since $H(\mathcal{A}) = \{\emptyset\}$, we have $S^0(\mathcal{F}^{(1)}) = S^0(\mathcal{F}^{(2)}) = \{\emptyset\}$ by Proposition 1.1(2). However, the argument for Claim 1 shows that $\mathcal{F}^{(1)}$ and $\mathcal{F}^{(2)}$ are not mutually coinitial. Thus the converse of (i) in Proposition 1.2 is false.

Remark 2.2. Since $\mathcal{A} \setminus \{\emptyset\}$ and the family of nonempty open sets in [0, 1) are mutually coinitial, the field $\Sigma = S(\mathcal{A} \setminus \{\emptyset\})$ consists of all sets in [0, 1) with nowhere dense boundary, and $S(\Sigma \setminus \{\emptyset\}) = \mathcal{P}([0, 1))$ by Proposition 1.1(6). So we have 3 different fields obtained by the iteration of $S(\cdot)$.

Corollary 2.1. There exists an Marczewski field which is not a topological field.

PROOF. This follows from Theorem 2.1 since every topological field has an atom [Wr1] and the algebra \mathcal{A} has no atoms.

Although the class of topological subfields of $\mathcal{P}(X)$ is smaller than the class of Marczewski fields, the former can be used to get the following representation result:

Theorem 2.2. Every field Σ of subsets of X is equal to the intersection of all topological fields containing Σ .

PROOF. If $\Sigma = \mathcal{P}(X)$, the assertion is obvious. Assume that $\Sigma \neq \mathcal{P}(X)$. It suffices to show that for each $A \notin \Sigma$ there is a topological field $\Sigma_A \supset \Sigma$ with $A \notin \Sigma_A$. So, let $A \notin \Sigma$. By [Wr2, Lemma 2] we find an ultrafilter \mathcal{F}_A of the field Σ such that no subset of A is in \mathcal{F}_A and no subset of $X \setminus A$ is in \mathcal{F}_A . Thus $A \notin S(\mathcal{F}_A)$. Put $\Sigma_A = S(\mathcal{F}_A)$. Observe that Σ_A is a topological field since \mathcal{F}_A forms a topological base, and thus Proposition 1.4 can be used. Because \mathcal{F}_A is an ultrafilter of Σ , we have $\Sigma \subset S(\mathcal{F}_A)$.

Recall [Mo] that a pair (X, \mathcal{C}) is said to be a *category base* if \mathcal{C} stands for a family of subsets of a nonempty set X, and nonempty sets in \mathcal{C} , called *regions*, satisfy the following axioms:

- $1^0 \bigcup \mathcal{C} = X,$
- 2⁰ Let A be a region and \mathcal{D} a nonempty family of disjoint regions with $|\mathcal{D}| < |\mathcal{C}|$. Then
 - if $A \cap (\bigcup \mathcal{D})$ contains a region then there is a region $D \in \mathcal{D}$ such that $A \cap D$ contains a region;
 - if $A \cap (\bigcup \mathcal{D})$ contains no region then there is a region $B \subset A \setminus \bigcup \mathcal{D}$.

A set $E \subset X$ is called *singular* if $E \in S^0(\mathcal{C} \setminus \{\emptyset\})$.

Theorem 2.3. Assume that for a family $\mathcal{F} \subset \mathcal{P}(X) \setminus \{\emptyset\}$ we have $X \in \mathcal{F} \subset S(\mathcal{F})$ and $\bigcup (S^0(\mathcal{F}) \cap \{U \cap V : V \in \mathcal{F}\}) \in S^0(\mathcal{F})$ for each $U \in \mathcal{F}$. Then (X, \mathcal{F}) is a category base whose ideal of singular sets equals $S^0(\mathcal{F})$.

PROOF. It is enough to check condition 2^0 defining a category base. Let $F, F_t \in \mathcal{F}$ for $t \in T$ (where T is an arbitrary set of indices). Assume that $F \cap \bigcup_{t \in T} F_t$ contains a set from \mathcal{F} . Then there exists a $t_0 \in T$ such that $F \cap F_{t_0}$

contains a set from \mathcal{F} . Indeed, suppose that it is not the case. Since $\mathcal{F} \subset S(\mathcal{F})$, we have $F \cap F_t \in S(\mathcal{F})$ for each $t \in T$. Hence by Proposition 1.1(4) we get $F \cap F_t \in S^0(\mathcal{F})$. Thus, by assumption, we have $\bigcup (F \cap F_t) \in S^0(\mathcal{F})$ which

yields a contradiction (cf. Proposition 1.1(3)). Assume now that $F \cap \bigcup_{t \in T} F_t$ contains no set from \mathcal{F} . Then every set $F \cap F_t$, $t \in T$, contains no set from \mathcal{F} . As before we infer that $F \cap F_t \in S(\mathcal{F})$ for $t \in T$ and moreover $F \cap F_t \in S^0(\mathcal{F})$. By assumption we have $\bigcup (F \cap F_t) \in S^0(\mathcal{F})$ and consequently,

$$F \setminus \bigcup_{t \in T} (F \cap F_t) \in S(\mathcal{F}) \setminus S^0(\mathcal{F}),$$

since $F \in S(\mathcal{F}) \setminus S^0(\mathcal{F})$. Hence, by Proposition 1.1(4), there is a set from \mathcal{F} contained in $F \setminus \bigcup_{t \in \mathcal{T}} F_t$. \Box

3 Marczewski fields and perfect sets

Let (X, τ) be a topological space. By a τ -perfect set we mean a nonempty τ -closed set without isolated points. Let $\operatorname{Perf}(\tau)$ stand for the family of all τ -perfect subsets of X. As it was mentioned in Section 1, if X is a Polish space with topology τ then $S(\operatorname{Perf}(\tau))$ and $S^0(\operatorname{Perf}(\tau))$ are exactly the classical families of Marczewski (s)-sets and (s⁰)-sets. In [R], studies of $S(\operatorname{Perf}(\tau))$ and $S^0(\operatorname{Perf}(\tau))$ for other topological spaces were initiated. (See also [BR].) In this section we propose a general method which enables us to reprove some results of [R] and [BR], and to show new applications.

If τ is a given topology on X and we want to characterize $S(\operatorname{Perf}(\tau))$, we shall use the following scheme:

- 1⁰ we conjecture that $S(\operatorname{Perf}(\tau)) = \Sigma$ where Σ is a known field of sets,
- 2^0 we know that $\Sigma = S(\mathcal{F})$ for some family $\mathcal{F} \subset \mathcal{P}(X) \setminus \{\emptyset\}$;
- 3^0 in aim to confirm our conjecture 1^0 , it is enough (by Proposition 1.2(i)) to check that $Perf(\tau)$ and \mathcal{F} are mutually coinitial.

A similar method works for $S^0(\operatorname{Perf}(\tau))$. The above scheme will be illustrated by examples dealing with some "ideal topologies" on \mathbb{R} .

Let τ be a topology on X, and let $\mathcal{I} \subset \mathcal{P}(X)$ be a σ -ideal containing all singletons. The family

$$\mathcal{B}_{\mathcal{T}}^{\star} = \{ U \setminus A : U \in \tau \& A \in \mathcal{I} \}$$

forms a base for a topology $\tau_{\mathcal{I}}^{\star}$, on X, stronger than τ , which will be called the *Hashimoto topology* associated with τ and \mathcal{I} . If τ is second countable (or even hereditary Lindelöf) then $\tau_{\mathcal{I}}^{\star} = \mathcal{B}_{\mathcal{I}}^{\star}$. (See [H], [JH], [LMZ].) The following property is well known.

Lemma 3.1. (Cf. [BR]). Let \mathcal{I} be a σ -ideal of subsets of a separable metric space X and let \mathcal{I} contain all singletons. A set $F \subset X$ is $\tau_{\mathcal{I}}^*$ -perfect if and only if F is τ -perfect and $U \cap F \notin \mathcal{I}$ for each $U \in \tau$ with $U \cap F \neq \emptyset$.

By \mathcal{M} and \mathcal{N} we denote, respectively, the σ -ideals all meager (i.e. of the first category) sets and of all Lebesgue null sets in \mathbb{R} . We shall consider the Hashimoto topologies $T^*_{\mathcal{M}}$ and $T^*_{\mathcal{N}}$ where T stands for the natural topology

on \mathbb{R} . Let $\mathcal{D}_{\mathcal{N}}$ denote the density topology on \mathbb{R} . (See e.g. [O] or [CLO].) Wilczyński in [W1] introduced the category analogue of the density topology which will be denoted by the $\mathcal{D}_{\mathcal{M}}$. Since topology \mathcal{D}_{M} is less known, let us give necessary definitions. A number $x \in \mathbb{R}$ is called a *category density point* of a set $A \subset \mathbb{R}$ with the Baire property if each increasing sequence $\{n_k\}$ of positive integers has a subsequence $\{n_{m_k}\}$ such that the sequence of characteristic functions

$$\chi_{[-1,1]\cap n_{m_k}(A-x)}(t)$$

(where $n_{m_k}(A - x) = \{n_{m_k}(a - x) : a \in A\}$) tends to $\chi_{[-1,1]}(t)$ for all points $t \in \mathbb{R}$ except for those belonging to a meager set. If [-1,1] is replaced by [-1,0] or [0,1], we get the respective notions of one-sided category density points. Topology $\mathcal{D}_{\mathcal{M}}$ consists of all sets $A \subset \mathbb{R}$ with the Baire property, such that each point of A is a category density point of A. There are many analogies between $\mathcal{D}_{\mathcal{M}}$ and $\mathcal{D}_{\mathcal{N}}$; for details, see [PWW], [W2] and [CLO].

It is known that the only possible inclusions between the above-mentioned topologies are the following $T \subsetneq T^*_{\mathcal{M}} \subsetneq \mathcal{D}_{\mathcal{M}}$ and $T \subsetneq T^*_{\mathcal{N}} \subsetneq \mathcal{D}_{\mathcal{N}}$. (See [LJW].)

The following proposition is due to W. Wilczyński (oral communication).

Proposition 3.1. Every $\mathcal{D}_{\mathcal{M}}$ -perfect set has nonempty T-interior.

PROOF. Let F be a $\mathcal{D}_{\mathcal{M}}$ -perfect set. Then F is nonmeager. Indeed, if $F \in \mathcal{M}$ and $x \in F$ then $U = (\mathbb{R} \setminus F) \cup \{x\} \in \mathcal{D}_{\mathcal{M}}$ and $F \cap U = \{x\}$ which contradicts the fact that F is a $\mathcal{D}_{\mathcal{M}}$ -perfect set. Since F is a nonmeager set with the Baire property, there is an open interval V such that $F \cap V$ is comeager in V. We claim that $V \subset F$. Let $x \in V$ and let W be a $\mathcal{D}_{\mathcal{M}}$ -neighborhood of x. Thus x is a category density point of the both sets V and W. Consequently, $V \cap W \notin \mathcal{M}$. Since $F \cap V$ is comeager in V, we thus have $F \cap W \neq \emptyset$. Hence x belongs to the the $\mathcal{D}_{\mathcal{M}}$ -closure of F (equal to F).

Let $\Sigma_{\mathcal{M}}$ and $\Sigma_{\mathcal{N}}$ denote, respectively, the σ -fields of all sets with the Baire property and of all Lebesgue measurable sets in \mathbb{R} . As in Section 1, $\Sigma(T)$ stands for the field of all subsets of \mathbb{R} with nowhere dense boundary, and NWD(T) - the ideal of nowhere dense subsets of \mathbb{R} .

Theorem 3.1. (a) $S(Perf(\mathcal{D}_{\mathcal{N}})) = \Sigma_{\mathcal{N}}, S^0(Perf(\mathcal{D}_{\mathcal{N}})) = \mathcal{N}.$ (See [R].)

(b)
$$S(Perf(T_{\mathcal{N}}^{\star})) = \Sigma_{\mathcal{N}}, S^{0}(Perf(T_{\mathcal{N}}^{\star})) = \mathcal{N}.$$
 (See [BR].)

(c)
$$S(Perf(T^{\star}_{\mathcal{M}})) = \Sigma(T), S^{0}(Perf(T^{\star}_{\mathcal{M}})) = NWD(T).$$
 (See [BR].)

(d) $S(Perf(\mathcal{D}_{\mathcal{M}})) = \Sigma(T), S^{0}(Perf(\mathcal{D}_{\mathcal{M}})) = NWD(T).$

PROOF. (a) Let \mathcal{F} denote the family of all T-perfect sets of positive measure. Burstin [Bu] proved that $\Sigma_{\mathcal{N}} = S(\mathcal{F})$. It is not hard to prove that \mathcal{F} and Perf $(\mathcal{D}_{\mathcal{N}})$ are mutually coinitial (cf. [R, Lemma 3.2]). Thus by our scheme we have $S(\operatorname{Perf}(\mathcal{D}_{\mathcal{N}})) = \Sigma_{\mathcal{N}}$. Moreover $S^0(\mathcal{F}) \subset H(S(\mathcal{F})) = H(\Sigma_{\mathcal{N}}) = \mathcal{N}$ and $\mathcal{N} \subset \Sigma_{\mathcal{N}} = S(\mathcal{F})$. But $\mathcal{N} \subset S(\mathcal{F})$ easily implies that $\mathcal{N} \subset S^0(\mathcal{F})$. Hence $\mathcal{N} = S^0(\mathcal{F}) = S^0(\operatorname{Perf}(\mathcal{D}_{\mathcal{N}}))$.

(b) If \mathcal{F} is as in (a), Lemma 3.1 easily implies that \mathcal{F} and $\operatorname{Perf}(T_{\mathcal{N}}^{\star})$ are mutually coinitial (cf. [BR]). The rest is the same as in (a).

(c) From Lemma 3.1 it follows that $T^{\star}_{\mathcal{M}}$ -perfect sets have nonempty *T*-interior. Also, a nonempty *T*-open set contains a $T^{\star}_{\mathcal{M}}$ -perfect set (a closed nondegenerate interval). Hence $\operatorname{Perf}(T^{\star}_{\mathcal{M}})$ and $T \setminus \{\emptyset\}$ are mutually coinitial. Thus the assertion follows from Proposition 1.3.

(d) As in (c) it suffices to prove that $\operatorname{Perf}(\mathcal{D}_{\mathcal{M}})$ and $T \setminus \{\emptyset\}$ are mutually coinitial. Firstly, by Proposition 3.1, every $\mathcal{D}_{\mathcal{M}}$ -perfect set has nonempty T-interior. Secondly, let us show that a nondegenerate interval [a, b] is a $\mathcal{D}_{\mathcal{M}}$ -perfect set. Indeed, [a, b] is obviously $\mathcal{D}_{\mathcal{M}}$ -closed. Let $x \in [a, b]$ and $x \in U \in \mathcal{D}_{\mathcal{M}}$. Then x is a category density point of U and x is at least a one-sided category density point of [a, b]. Hence $U \cap [a, b] \notin \mathcal{M}$ and so, x is a $\mathcal{D}_{\mathcal{M}}$ -accumulation point of [a, b].

Note that statements (a) and (b),(c) of Theorem 3.1 can be extended to cases dealing with spaces more general than \mathbb{R} , as it was mentioned in [R] and [BR]. Topology $\mathcal{D}_{\mathcal{M}}$ can be considered in certain linear topological spaces and statement (d) of Theorem 3.1 then holds.

Assertions (a),(d) and (b),(c) of Theorem 3.1 show a kind of asymmetry between measure and category. Knowing (a),(b) we rather expected to obtain $\Sigma_{\mathcal{M}}$ and \mathcal{M} as the respective Marczewski families in (c),(d). So the following problem appears:

Problem 3.1. Find a topology τ on \mathbb{R} such that $\Sigma_{\mathcal{M}}$ (the σ -field of all subsets of \mathbb{R} with the Baire property) is of the form $S(\operatorname{Perf}(\tau))$.

Note that Brown [Br1] (see also [BET]) showed the equalities $\Sigma_{\mathcal{M}} = S(\mathcal{G})$ and $\mathcal{M} = S^0(\mathcal{G})$ provided that \mathcal{G} consists of sets of the form $U \setminus F$ where Uis open and F is an F_{σ} meager set. This easily implies that $\Sigma_{\mathcal{M}} = S(T^*_{\mathcal{M}})$ and $\mathcal{M} = S^0(T^*_{\mathcal{M}})$ since \mathcal{G} and $T^*_{\mathcal{M}}$ are mutually coinitial. Thus $\Sigma_{\mathcal{M}}$ is a topological field.

Acknowledgements. We would like to thank the referee for several valuable remarks.

References

- [BBC] M. Balcerzak, A. Bartoszewicz, K. Ciesielski, On Marczewski-Burstin representations of certain algebras of sets, Real Anal. Exchange, 26 (2000-2001).
- [BR] M. Balcerzak, J. Rzepecka, Marczewski sets in the Hashimoto topologies for measure and category, Acta Univ. Carolin. Math. Phys., 39 (1998), 93–97.
- [Bre] J. Brendle, Strolling through paradise, Fund. Math. 148 (1995), 1–25.
- [Br1] J. B. Brown, The Ramsey sets and related sigma algebras and ideals, the lecture during Special Session on Measure Theory and Descriptive Set Theory, Atlanta Meeting of the AMS, January 1988.
- [Br2] J. B. Brown, The Ramsey sets and related sigma algebras and ideals, Fund. Math. 136 (1990), 179–185.
- [BrCo] J. B. Brown, G. V. Cox, Classical theory of totally imperfect spaces, Real Anal. Exchange 7 (1982), 1–39.
- [BET] J. B. Brown, H. Elalaoui-Talibi, Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions, Colloq. Math., 82 (1999), 277–286.
- [Bu] C. Burstin, Eigenschaften messbaren und nichtmessbaren Mengen, Wien Ber. 123 (1914), 1525–1551.
- [CJ] K. Ciesielski, J. Jasinski, Topologies making a given ideal nowhere dense or meager, Topology Appl. 63 (1995), 277–298.
- [CLO] K. Ciesielski, L. Larson, K. Ostaszewski, *I-density continuous func*tions, Mem. Amer. Math. Soc. 107 (515) (1994).
- [Co] P. Corazza, Ramsey sets, the Ramsey ideal, and other classes over R, J. Symb. Logic 57 (1992), 1441–1468.
- [F] F. J. Freniche, The number of nonisomorphic Boolean subalgebras of a power set, Proc. Amer. Math. Soc. 91 (1984), 199–201.
- [H] H. Hashimoto, On the *topology and its application, Fund. Math. 91 (1976), 5–10.
- [JH] D. Jankovič and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97, No 4, April 1990, 295–310.

- [K] S. Kopelberg, Handbook of Boolean Algebras, vol.1, North Holland, 1989.
- [Ku] K. Kuratowski, *Topology*, vol.1, Academic Press, New York, 1966.
- [LMZ] J. Lukeš, J. Malý and L. Zajiček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math. 1189, Springer, New York, 1986.
- [LJW] E. Lazarow, R. A. Johnson, W. Wilczyński, Topologies related to sets having the Baire property, Demonstr. Math. 22 (1989), 179–191.
- [Mi1] A. W. Miller, Special subsets of the real line, in Handbook of Set-Theoretic Topology, North-Holland, Amsterdam-New York, 1984, 201–233.
- [Mi2] A. W. Miller, Special sets of reals, Israel Math. Conf. Proc., 6 (1993), 415–431.
- [Mo] J. C. Morgan II, *Point Set Theory*, Marcel Dekker, New York, 1990.
- [O] J. C. Oxtoby, Measure and Category, Springer Verlag, New York 1971.
- [Pa] J. Pawlikowski, Parametrized Ellentuck theorem, Topology Appl. 37 (1990), 65–73.
- [PWW] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.
- [R] P. Reardon, Ramsey, Lebesgue and Marczewski sets and the Baire property, Fund. Math. 149 (1996), 191–203.
- [Sz] E. Szpilrajn (Marczewski), Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17–34.
- [Wa] J. T. Walsh, Marczewski sets, measure and the Baire property, Fund. Math. 129 (1988), 83–89.
- [W1] W. Wilczyński, A generalization of the density topology, Real Anal. Exchange 8 (1982-83), 16–20.
- [W2] W. Wilczyński, A category analogue of the density topology, approximate continuity and the approximate derivative, Real Anal. Exchange 10 (1984-85), 241-265.
- [Wr1] S. Wroński, On fields of sets with a nowhere dense boundary, Demonstr. Math. 12 (1979), 373–377.
- [Wr2] S. Wroński, On proper subuniverses of a Boolean algebra, Acta Univ. Lodziensis, Folia Mathematica 9 (1997), 69–76.

716 M. Balcerzak, A. Bartoszewicz, J. Rzepecka and S. Wroński