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OSCILLATION AND ω-PRIMITIVES

Abstract

We extend the results of [2], [6] in the case of topological spaces. It
is shown that given an upper semicontinuous (USC) function f : X →
[0,∞) where X is a massive first countable T1-space satisfying some
“neighborhood conditions”, there exists F : X → [0,∞) whose oscilla-
tion equals f everywhere on X (Theorem 2.1). The analogous result
holds for USC functions f : X → [0,∞] if, in addition, X is a normal
space (Theorem 2.4). A special metrizability criterion is established
(Theorem 1.1). This is to show, by exhibiting corresponding examples,
that the neighborhood conditions and massiveness do not imply that
X is Baire or metrizable. Among other related topics, sequences of
ω-primitives are discussed.

1 Preliminaries, Basic Definitions and Auxiliary Results

Let X be a topological space and f : X → [0,∞] an upper semicontinuous
(USC) function. The question we study is this. Does there exist a function
F : X → R whose oscillation ω(F, x) equals f(x) at each x ∈ X? If such
an F exists we call it an ω-primitive for f (cf. [2]). Note that we define an
ω-primitive to be finite. The positive answer to this problem was given in [6]
in the case when X is a metric Baire space, and in [2] in the case of so-called
massive metric spaces. The notion of a massive space appeared in a natural
way in connection with the method of proofs based on Teichmüller-Tukey’s
lemma.

It should be noted that massive metric spaces form a larger class than
dense in itself Baire metric spaces (see Corollaries 1.2 and Examples 1.2, 1.3 ).
We will show that in the case of a massive topological space X satisfying some
conditions (which are not strong enough to imply the metrizability) there
always exists a nonnegative ω-primitive F for each USC function f : X →
[0,∞).
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semicontinuous function, massive space, oscillation, ω-primitive, quasi-uniform convergence.

Mathematical Reviews subject classification: 26A15, 54C30, 54C99
Received by the editors August 15, 2000

687



688 J. Ewert and S. P. Ponomarev

It is also worth mentioning that the problem of existence of a separately
continuous ω-primitive F : X1 ×X2 → R was studied in [9].

We confine our study to spaces dense in themselves. In fact, the ω-primitive
F obviously does not exist if f is positive at an isolated point. So in what
follows we consider a first countable dense in itself topological space X =
(X, τ), whenever the existence of an ω-primitive is concerned.

For each x ∈ X denote by

N (x) = {Un(x) : n ∈ N} (1)

an open countable neighborhood base for the topology τ at x. If N (x) is fixed
for each x ∈ X then we let

N =: {N (x) : x ∈ X}. (2)

We call N a neighborhood system on X. Given any nonempty subset A of X
for all n ∈ N let Un(A) :=

⋃
x∈A Un(x) and inductively

U2
n(A) := Un(Un(A)), . . . , Um+1

n (A) := Un(Umn (A)), . . . .

For a singleton we write simply Umn (x) = Umn ({x}). So we have

U2
n(x) =

⋃
y∈Un(x)

Un(y), . . . , Um+1
n (x) =

⋃
y∈Um

n (x)

Un(y), . . . . (3)

The following properties of neighborhood systems N will be important for us.
We call them “neighborhood conditions”.

(N1). ∀n ∀x ∈ X : Un+1(x) ⊂ Un(x).
(N2). There exists a function s : N→ N, s(n) ≥ n, such that

∀x, y ∈ X ∀n : x ∈ Us(n)(y)⇒ y ∈ Un(x).

(N3). There exists a function t : N→ N, t(n) > n, such that

∀x ∈ X ∀n : U2
t(n)(x) ⊂ Un(x).

Remark. We use function notation for the sequences s, t only for technical
reasons.

Of course, a given neighborhood system may satisfy only some or none of
these properties. Regarding of (N2) we should note that this is a stronger
form of a similar property introduced in [1].

(N2*) ∀y ∈ X ∀n ∃k(n, y) ∈ N ∀x ∈ X : x ∈ Uk(n,y)(y)⇒ y ∈ Un(x).
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Examples 1.1. (a) Let R × [0,∞) be the Niemytzki plane, {U} being its
standard neighborhood system. Define N to be the subfamily of {U} when
taking into account only neighborhoods corresponding to radii 2−n, n ∈ N.
Then it is easy to check that N is a neighborhood system on R × [0,∞)
satisfying (N1) and (N2) but not (N3).

(b) Let Rs be the Sorgenfrey line ([3], p. 39). For each x ∈ R let N (x) =
{[x, x + 2−n) : n ∈ N}. Then N = {N (x) : x ∈ R} is a neighborhood system
on Rs which satisfies (N1) and (N3) but not (N2).

Proposition 1.1. Let X be a first countable T1-space with a neighborhood
system satisfying (N1) and (N2). Then for each nonempty set A ⊂ X its clo-
sure clA can be represented in the form clA =

⋂∞
n=1 Un(A) =

⋂∞
n=1 Un(clA).

Thus X is a perfect space.

Proof. Let x ∈ clA, and s be from (N2). Since Us(n)(x)∩A 6= ∅ for each n,
we may pick a point an ∈ Us(n)(x) ∩ A. Then by (N2) x ∈ Un(an) ⊂ Un(A).
This being true for each n, we get clA ⊂

⋂∞
n=1 Un(A) ⊂

⋂∞
n=1 Un(clA). Now if

x /∈ clA, then Un0(x)∩clA = ∅ for some n0 ≥ 1. Then an easy argument using
(N2) yields x /∈ Us(n0)(clA). It follows immediately that x /∈

⋂∞
n=1 Un(clA),

which shows that
⋂∞
n=1 Un(clA) ⊂ clA.

Next we will prove a metrizability criterion stated in terms of the above
neighborhood conditions. But first we give some notation.

For any set E ⊂ X and any open covering A of X put

St(E,A) :=
⋃
{A ∈ A : E ∩A 6= ∅}. (4)

To prove our metrizability criterion, we use Moore metrization theorem which
we cite here.

Lemma 1.1. ([3], Theorem 5.4.2). A topological space X is metrizable if
and only if it is a T0-space and there exists a sequence {An : n ∈ N} of open
coverings of X such that ∀x ∈ X ∀W (x) ∃V (x) ∃n : St(V (x),An) ⊂ W (x)
where W (x), V (x) denote open neighborhoods of x.

Theorem 1.1. A first countable T0-space X is metrizable if and only if there
exists a neighborhood system N satisfying (N1), (N2) and (N3).

Proof. If X is metrizable then it is easily checked that the family of all open
balls in X of radii 2−n, n ∈ N, forms a neighborhood system satisfying all
three conditions. Conversely, assume that a neighborhood system N satisfies
(N1), (N2) and (N3) and let s, t : N → N be the functions from (N2), (N3)
respectively. Then it is straightforward, from (3), (N1) and (N3), that

∀x ∈ X ∀n : U3
t(t(n))(x) ⊂ Un(x). (5)
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Define the sequence {An : n ∈ N} of open coverings of X by

An = {Un(x) : x ∈ X}.

Let x ∈ X and Un(x) be fixed. Put j = t(t(n)) and let y ∈ St(Us(j)(x),As(j)).
Then by (4) there is z ∈ X such that Us(j)(z)∩Us(j)(x) 6= ∅ and y ∈ Us(j)(z).
Since s(j) ≥ j we also have by (N1) y ∈ Uj(z). Fix any p ∈ Us(j)(z)∩Us(j)(x).
By (N2) we get z ∈ Uj(p). By (3) this yields that z ∈ U2

j (x). But then from
(5) and y ∈ Uj(z) we obtain that y ∈ U3

j (x) ⊂ Un(x) which implies

St(Us(j)(x),As(j)) ⊂ Un(x).

Thus we have shown that ∀x ∈ X ∀n : St(Us(t(t(n)))(x),As(t(t(n)))) ⊂ Un(x).
So all conditions of Lemma 1.1 are fulfilled. Whence the metrizability of
X.

Our main tool is Teichmüller-Tukey’s lemma. It is equivalent to Zorn’s
lemma, but technically it turned out to be useful and works well enough in
our proofs. For convenience of the reader we recall necessary formulations.
Suppose we are given a set S and a property P pertaining to subsets of S. We
shall say that P is of finite character (on S) if the following holds

E ⊂ S has the property P ⇐⇒ each finite subset A ⊂ E has the property P.

Lemma 1.2. ([3], p.22). Let P be a property of finite character on S. Then
each set A ⊂ S with the property P is contained in a maximal (with respect to
the inclusion relation) set B ⊂ S which also has the property P.

A maximal set will be called P -maximal (to note that a P -maximal set
need not be unique).

In what follows we shall make use of a parameter ∆A characterizing in a
way the “inner span” of a set A. Let X be a first countable T1-space with a
fixed neighborhood system N satisfying (N1). For each nonempty A ⊂ X we
let

N(A) = {n : Un(x) ∩A = {x} for each x ∈ A}.

Then for each nonempty A ⊂ X put

∆A =

{
sup{1/n : n ∈ N(A)} if N(A) 6= ∅;
0 if N(A) = ∅

and by definition let ∆(∅) = ∞. Now for each n ∈ N define property Pn
pertaining to subsets A ⊂ X by saying A has property Pn ⇐⇒ ∆A ≥ 1

n . It
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is easy to check that Pn is indeed a property of finite character on X and that
this property is hereditary. Note that if A has the Pn-property, then of course,
it has the Pm-property for each m ≥ n. Observe that if X is a first countable
T1-space with a fixed neighborhood system N , then f or each n ∈ N there
exists a Pn-maximal subset of X. In fact, for a singleton {x} we obviously
have ∆{x} = 1 ≥ 1/n. Whence by Lemma 1.2 our assertion follows.

A topological space X (or, what amounts to the same, its topology τ) is
said to be (cf. [2]):

• σ-discrete at x ∈ X, if there is an open neighborhood W of x which is
σ-discrete i.e. W =

⋃∞
n=1An where An is a discrete subset of X (The

empty set is considered as discrete.);

• massive, if it is not σ-discrete at each x ∈ X.

Given a topological space X, define

Σ(X) := {x ∈ X : X is σ−discrete at x}. (6)

For E ⊂ X we denote by Ed and IntE respectively the derived set and
the interior of E.

The following properties are straightforward.
(a) Σ(X) is an open subset of X.
(b) Each massive space is dense in itself; the converse, of course, generally
being not true.
(c) If X is a massive space, then cardX > ℵ0.

Proposition 1.2. A topological space X is massive if and only if each σ-
discrete set in X is a boundary set.

Proof. Suppose that there is a non-boundary σ-discrete A ⊂ X. Then
IntA 6= ∅ is contained in Σ(X) which is impossible. Conversely, assume
Σ(X) 6= ∅. Then each x ∈ Σ(X) has a σ-discrete open neighborhood which
obviously cannot be a boundary set.

Next assertion describes some important properties which will be referred
to in the sequel.

Theorem 1.2. Let Z be a first countable T1-space with a neighborhood system
N satisfying (N1), (N2). Then the following holds.

(i) If A ⊂ Z and ∆A > 0, then Ad = ∅ (so that A is closed and discrete). If,
in addition, Z = Zd, then A is nowhere dense.
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(ii) There exists a sequence {En : n ∈ N} of pairwise disjoint subsets of Z such
that E1 is P1-maximal in Z and En is Pn-maximal in Z \ (E1 ∪ . . . ∪ En−1)
for each n > 1.

(iii) The set E :=
⋃∞
n=1En (where En are defined in (ii)) is σ-discrete, Fσ

and dense in Z. If, in addition, Z is massive, then E is a boundary set.

(iv) Each σ-discrete set A ⊂ Z can be written in the form

A =
∞⋃
n=1

An (7)

where An are pairwise disjoint and ∆An > 0.

Proof. (i) We eliminate the trivial case A = ∅. So let A 6= ∅ and ∆A ≥ 1/n;
i.e., A has the Pn-property. Suppose that Ad 6= ∅. Then there exists a
convergent sequence {zj : j ∈ N}, zj ∈ A, zj′ 6= zj′′ , j

′ 6= j′′. Put a ∈ lim zj .
Fix a zj0 ∈ Us(n)(a). Then by (N2) a ∈ Un(zj0). Whence zj ∈ Un(zj0) for
almost all j. But this contradicts the Pn-property of A. Thus Ad = ∅.

Now suppose that Z = Zd. If A were not nowhere dense, there would
exist an open neighborhood Un(z0) ∈ N (z0), Un(z0) ⊂ A. But since Z = Zd,
the neighborhood Un(z0) should contain infinitely many points of A, which
contradicts the Pn-property of A. So A is nowhere dense.
(ii) It is obvious that the required sequence {En : n ∈ N} is easily constructed
inductively. Clearly En are pairwise disjoint and ∆En ≥ 1/n.
(iii) Set E :=

⋃∞
n=1En. By (i) we have that E is σ-discrete and Fσ. We claim

that E is dense in Z. Suppose the contrary. Then there exists a neighborhood
Um(p) ∈ N disjoint from E. It follows by (N2) that p /∈ Us(m)(z) for each
z ∈ Es(m) (for otherwise we would get Um(p) ∩Es(m) 6= ∅ which is impossible
since Um(p) ∩E = ∅). This means that the set Es(m) ∪ {p} ⊂ Z \

⋃s(m)−1
i=1 Ei

has the Ps(m)-property contrary to the fact that its proper subset Es(m) is
Ps(m)-maximal. Thus E is dense in Z. Now if, in addition, Z is massive, then
by Proposition 1.2 E is a boundary set.
(iv) Let A ⊂ X be σ-discrete. To prove our claim, it suffices to consider the
case when A is discrete. By (ii), there exists a sequence {An : n ∈ N}, An ⊂ A,
such that A1 is P1-maximal in A and An is Pn-maximal in A\(A1∪ . . .∪An−1)
for n > 1. So we have that An are pairwise disjoint and ∆An ≥ 1/n. Now if
we suppose that (7) does not hold, then there is a z ∈ A\

⋃∞
n=1An. Since each

An is Pn-maximal, there exists zn ∈ An∩Un(z), zn 6= z, and zn 6= zm, n 6= m.
Hence we have zn → z ∈ A which contradicts the discreteness of A, thereby
proving (7).
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Corollary 1.1. If X is a separable normal space and the neighborhood system
N satisfies conditions (N1) and (N2), then each σ-discrete subset of X is
countable.

Remark. It is easy to see that claims (ii) and (iv) of Theorem 1.2 remain
valid without condition (N2).

Proposition 1.3. Let X be a first countable dense in itself T1-space. Then
the following holds.

(i) Each discrete set E ⊂ X is nowhere dense.

(ii) Σ(X) is of first category.

Proof. (i) Let E ⊂ X be discrete. Take any x ∈ E. Then there is an open
neighborhood V of x such that V ∩E = {x}. Since X is T1 and dense in itself,
the set V \ {x} is open and nonempty. Because x is an arbitrary point of E,
this obviously implies, that E is nowhere dense.

(ii) Let x ∈ Σ(X). There is an open neighborhood W (x) of x which is
σ-discrete; i.e., W (x) =

⋃∞
n=1En where each En is discrete. It follows by (i)

that W (x) is first category. Since Σ(X) =
⋃
x∈Σ(X)W (x) we conclude by the

Banach category theorem ([7], p. 82) that Σ(X) is first category.

Corollary 1.2. Let X = (X,N ) be a first countable T1-space. Then the
following holds.

(a) If X is a dense in itself, Baire space, then X is massive.

(b) If X is dense in itself and locally σ-discrete, then X is first category.

Proposition 1.4. Each nontrivial T1 topological vector space X is massive.

Proof. Let V be any balanced open neighborhood of 0 ∈ X. Fix any x ∈
V, x 6= 0. Then the mapping [0, 1] 3 t 7→ tx ∈ V is a continuous injection.
Thus each balanced neighborhood V of the zero vector contains a subset {tx :
t ∈ [0, 1]} homeomorphic with the interval [0,1]. It follows that if V were
σ-discrete, then [0, 1] would also be σ-discrete; hence first category, which is
impossible.

Corollary 1.3. Each nontrivial normed space is massive.

The following examples show that a massive space need not be Baire.

Examples 1.2. Let 1 ≤ r < p. Consider the space lp with the usual norm
‖ · ‖p. It was shown in [11] that lr is an Fσ first category dense subset of lp.
The density of lr implies that it is first category and dense in itself. Whence
(lr, ‖ · ‖p) is not a Baire space. Finally, the space (lr, ‖ · ‖p) is massive in view
of Corollary 1.3.
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Examples 1.3. Let X be a Banach space. Denote by τ , τw respectively the
norm topology and the weak topology on X. Since the space (X, τ) is massive
and τw ⊂ τ we have that (X, τw) is also massive. The sets Bn = {x ∈ X :
‖x‖ ≤ n} being τw-nowhere dense (see [5]), we conclude that the space (X, τw)
is τw-first category and therefore is not a Baire space.

2 Main Results

We adopt the usual convention when dealing with ±∞ ∈ R:

−∞+∞ =∞−∞ = 0, ∞− (−∞) =∞, | ±∞| =∞.

Let X be a topological space and (Y, d) a metric space. Given F : X → Y , its
oscillation at x ∈ X is defined as (cf. [3], [7])

ω(F, x) = inf
U

sup
x′,x′′∈U

d(F (x′), F (x′′))

where the infimum is taken for all neighborhoods U from a neighborhood
base at x. It is well known that the oscillation ω(F, ·) : X → R is an upper
semicontinuous (simply USC) nonnegative function.

In the case of real-valued functions F : X → R we will also use the equiva-
lent definition of the oscillation expressed via upper and lower Baire functions
M(F, ·), m(F, ·) [8]:

ω(F, x) := M(F, x)−m(F, x) (8)

where
M(F, x) := inf

U
sup
z∈U

F (z) and m(F, x) := sup
U

inf
z∈U

F (z), (9)

the infimum and supremum being taken over all neighborhoods U from a neigh-
borhood base at x. It is also well known that M(F, ·), m(F, ·) are respectively
upper and lower semicontinuous functions on X.

Now if X is a first countable space with a neighborhood system N =
{N (x) : x ∈ X} (cf. (1), (2)) and F : X → R, then we may write as well

M(F, x) = inf
n

sup
z∈Un(x)

F (z) = lim
n→∞

sup
z∈Un(x)

F (z);

m(F, x) = sup
n

inf
z∈Un(x)

F (z)= lim
n→∞

inf
z∈Un(x)

F (z).

Observe that these relations do not depend on the choice of a neighborhood
system N .
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Theorem 2.1. Let X be a massive first countable T1-space with a neighbor-
hood system N satisfying (N1) and (N2), and let f : X → [0,∞) be a USC
function. Then there exists an ω-primitive F for f on X. More specifically,
there is a function F : X → [0,∞) such that

(a) M(F, x) = f(x) and m(F, x) = 0 for all x ∈ X, so that we have indeed
ω(F, ·) = f.

(b) F = fϕ, where ϕ is the characteristic function of a dense boundary set
D ⊂ X.

Proof. Keeping the previous notations unchanged (cf. (1), (2)) we let G(f)
be the graph of f equipped with the topology τg induced by the product
topology in X × R. It is immediate that for each z = (x, f(x)) ∈ G(f) the
family

Ng(z) = {Wn(z) := (Un(x)× (f(x)− 1/n, f(x) + 1/n)) ∩G(f), n ∈ N}

forms an open countable neighborhood system for τg at z = (x, f(x)), which
gives rise to the neighborhood system Ng := {Ng(z) : z ∈ G(f)} on G(f).
Moreover, it is easy to check that since the neighborhood system N on X
satisfies conditions (N1), (N2), then Ng satisfies these conditions too, the
function s being the same as in (N2) for N . By (ii),(iii) of Theorem 1.2 there
exists a sequence {Yn : n ∈ N}, Yn ⊂ G(f), such that

Y1 is P1-maximal in G(f);
Yn is Pn-maximal in G(f) \

⋃n−1
i=1 Yi for n > 1;

Y =
⋃∞
n=1 Yn is dense in G(f).

Let π : X × R→ X be the natural projection. We claim that each π(Yn) is a
discrete subset of X. For if not, there is x0 ∈ (π(Yn))d ∩ π(Yn). Then there is
a sequence {xk : k ∈ N}, xk ∈ π(Yn), such that xk 6= xm for k 6= m, and x0 ∈
limxk. Let zk = (xk, f(xk)). Since zk ∈ Yn, we have zi /∈ Wn(zj), i 6= j. Let s
be the function from (N2). Since xk → x0, there is k0 such that xk ∈ Us(n)(x0)
for k ≥ k0. Whence we may write by (N2) that x0 ∈ Un(xk) for k ≥ k0. It
then readily follows that we may pick a subsequence {xki

: i ∈ N} such that
xkj ∈ Un(xki) whenever j ≥ i (e.g., we may construct inductively {xki : i ∈ N}
so that xki+1 ∈ Un(xk1)∩· · ·∩Un(xki)). Since zki /∈Wn(zkj ), i 6= j, we conclude
that |f(xki

)− f(xkj
)| ≥ 1/n whenever i 6= j. This means that f is not locally

bounded at x0, contrary to the assumption that f is USC and nonnegative.
This contradiction shows that π(Yn) is discrete. This implies, in view of the
density of Y in G(f), that the set π(Y ) =

⋃∞
n=1 π(Yn) is σ-discrete and dense

in X. Consequently, since X is massive, we may conclude that π(Y ) is a
boundary Fσ-subset of X (by Theorem 1.2) and that X \ π(Y ) is a massive
subspace of X. Therefore again by (ii) and(iii) of Theorem 1.2 there exists a
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sequence {Cn : n ∈ N}, Cn ⊂ X \ π(Y ), such that
C1 is P1-maximal in X \ π(Y );
Cn is Pn-maximal in X \ (π(Y ) ∪

⋃n−1
i=1 Ci) for n > 1,

C :=
⋃∞
n=1 Cn ⊂ X \ π(Y ) is a σ-discrete dense boundary subset of X.

Fix any set A ⊂ X \(π(Y )∪C). Let D = A∪π(Y ) and ϕ be the characteristic
function of D. Put F = fϕ. Since C ∩D = ∅, we have that X \D is dense in
X. Whence m(F, x) = 0 for each x ∈ X.

Now take any z = (x, f(x)) ∈ G(f). Since Y is dense in G(f), there is a
sequence {zn : n ∈ N}, zn = (xn, f(xn)) ∈ Y, lim zn = z (note that the case
zn = z for all n is not excluded). Then we get

f(x) = lim f(xn) = limF (xn) ≤M(F, x) ≤M(f, x) = f(x);

i.e., M(F, x) = f(x) for all x ∈ X. It follows immediately by (8), and the
equality m(F, ·) = 0, that ω(F, ·) = f ; i.e., F is an ω-primitive for f having
the required properties.

Corollary 2.1. Under assumptions of Theorem 2.1 an ω- primitive F = fϕ
can always be found in at most Baire class 2.

Proof. Indeed, letting A = ∅ or A = X \ (π(Y ) ∪ C), the set D = A ∪ π(Y )
will be Fσ or Gδ respectively. Therefore the function ϕ is at most in Baire
class 2, what was to be shown.

Theorem 2.2. Let X be a massive first countable T1-space with a neigh-
borhood system N satisfying (N1) and (N2), and let f1, f2 : X → [0,∞) be
two USC functions such that the set D = {x ∈ X : f1(x) 6= f2(x)} is σ-
discrete. Then there exist ω-primitives F1, F2 for f1, f2 respectively such that
{x ∈ X : F1(x) 6= F2(x)} = D.

Proof. Let G(fi) be the graph of fi; let zi = (x, fi(x)), i = 1, 2. Proceeding
much as in Theorem 2.1, we define the neighborhood system Ni in the space
G(fi) as the collection of all sets of the form

Wi,n(zi) = (Un(x)× (fi(x)− 1/n, fi(x) + 1/n)) ∩G(fi),

i=1,2. If ∆A > 0 for A ⊂ X,A 6= ∅, then obviously ∆A ≥ 1/n with some n.
Put A(i) = {zi ∈ G(fi) : x ∈ A}, i=1,2. Then for each zi ∈ A(i) we have
Wi,n(zi) ∩ A(i) = {zi}. Whence ∆A(i) ≥ 1/n. By (iv) of Theorem 1.2 we
may write D = ∪∞n=1An, where An are pairwise disjoint, ∆An > 0,. Whence
(recalling the properties of A(i)) we conclude that the sets Di := {zi : x ∈ D}
are σ-discrete in G(fi), i = 1, 2. By (ii), (iii) of Theorem 1.2 there exist
sequences {Yi,n : n ∈ N}, Yi,n ⊂ G(fi), i = 1, 2, such that
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Yi,1 is P1-maximal in G(fi) \Di;
Yi,n is Pn-maximal in G(fi) \ (Di ∪

⋃n−1
j=1 Yi,j) for n > 1;

π(Yi,n) is discrete in X, , n ≥ 1.
The set Yi =

⋃∞
n=1 Yi,n is σ-discrete and dense in G(fi), i = 1, 2. Hence

π(Y1), π(Y2) are σ-discrete and dense in X. Since X is massive, the set
D ∪ π(Y1) ∪ π(Y2), is dense and boundary in X. Let ϕ be the characteristic
function of that set. Set Fi = fiϕ, i = 1, 2. Clearly {x ∈ X : F1(x) 6= F2(x)}
= D, and the same argument that was used in the proof of Theorem 2.1, shows
that ω(Fi, ·) = fi, i = 1, 2.

Theorem 2.3. Let X be a massive first countable T1-space with a neighbor-
hood system N satisfying (N1), (N2). Assume that a sequence {fn : n ∈ N}
of USC functions fn : X → [0,∞) converges pointwise to a USC function
f : X → [0,∞). Then there exist functions F, Fn : X → [0,∞), n ∈ N, such
that ω(F, ·) = f, ω(Fn, ·) = fn, n ∈ N, and Fn → F pointwise.

Proof. Using the same technique as in the proof of Theorem 2.1, we con-
struct the sets E ⊂ G(f), En ⊂ G(fn) σ-discrete and dense (in G(f), G(fn)
respectively) such that π(E), π(En) are σ-discrete, dense and boundary in X.
Let ϕ, ϕn be the characteristic functions of the sets C = π(E) ∪

⋃∞
i=1 π(Ei)

and Cn = π(E)∪
⋃n
i=1 π(Ei) respectively, n ∈ N. The sets C, Cn are obviously

dense and σ-discrete in X. Since X is massive, X \ C and X \ Cn are dense
in X. Let F = fϕ, Fn = fnϕn. As in the proof of Theorem 2.1, we obtain
ω(F, ·) = f, ω(Fn, ·) = fn. Finally, it is straightforward from our construction
that Fn → F pointwise.

Corollary 2.2. . Let X be a massive metric space and f : X → [0,∞) a
USC function. Then there exist functions F, Fn : X → [0,∞), n ∈ N, such
that ω(F, ·) = f, Fn → F, ω(Fn, ·)→ f and each ω(Fn, ·) is continuous.

Proof. X being metric, f is the limit of a decreasing sequence {fn : n ∈ N}
of continuous functions fn : X → [0,∞) (cf. e.g. [3], Problem 1.7.15 (c)). It
remains to apply Theorem 2.3 and we are done.

In the two theorems which follow, a USC function f may take on the value
∞.

Theorem 2.4. Let X be a massive first countable normal space with a neigh-
borhood system N satisfying conditions (N1) and (N2) and let f : X → [0,∞]
be USC. Then there exists an ω-primitive F : X → [0,∞) for f. In particular,
one can always choose F from at most Baire class 2.

Proof. Let H = {x ∈ X : f(x) = ∞}. Without loss of generality we may
assume X\H 6= ∅ 6= IntH. Since the open subspace X\H and f |(X\H) satisfy
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assumptions of Theorem 2.1, there exists an ω-primitive F1 : X \H → [0,∞)
for f |(X \H) which is at most in Baire class 2 (see Corollary 2.1).

The open subspace IntH being massive, according to (ii), (iii) of Theorem
1.2, there exists a sequence {En : n ∈ N} of pairwise disjoint subsets of
IntH such that the set E :=

⋃∞
n=1En is Fσ, dense and boundary in IntH.

Let F2 : IntH → [0,∞) letting F2(x) = n if x ∈ En and F2(x) = 0 if
x ∈ IntH \ E. It is immediate that ω(F2, x) = ∞ at each x ∈ IntH; i.e.,
F2 is an ω-primitive for f | IntH. It is clear that F2 is in Baire class 2. It
follows from our assumptions and Proposition 1.1 that X is a perfect normal
space, therefore there exists a continuous function g : X → [0, 1] such that
H \ IntH = g−1(0). Put

F (x) =


F1(x) + (g(x))−1 if x ∈ X \H
F2(x) if x ∈ IntH
0 if x ∈ H \ IntH.

It follows at once from this definition that F is indeed an ω-primitive for f and
is at most in Baire class 2. Note that the continuous function x 7→ (g(x))−1

is added to compensate possible boundedness of F1 near the set H \ IntH,
thereby ensuring infinite oscillation of F at points of this set (cf. Theorem 2
in [2]).

We recall that by our definition an ω-primitive is a finite function. The
next theorem shows that if we give up on this restriction, then the assumption
of normality in Theorem 2.4 becomes redundant.

Theorem 2.5. Let X be a massive T1-space with a neighborhood system N
satisfying (N1), (N2) and let f : X → [0,∞] be USC. Then there exists a
function F : X → [0,∞] such that ω(F, ·) = f and the set {x ∈ X : F (x) =∞}
is nowhere dense.

Proof. We repeat the proof of Theorem 2.4 (using the same notations) up to
the point where the function g appears. This time there is no clear evidence
that under our assumptions such a function exists. But since the value ∞ is
now admissible for F , we may let

F (x) =


F1(x) if x ∈ X \H
F2(x) if x ∈ IntH
∞ if x ∈ H \ IntH.

Obviously it suffices to check the equality ω(F, x) =∞ at points x ∈ H \IntH.
But this is immediate since F |(H \ IntH) = ∞ whereas m(F1, ·) = 0, and
m(F2, ·) = 0.
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In the next theorem stated for Baire spaces, massiveness and conditions
(N1), (N2) may be dropped. But in that case we know nothing about possible
Baire class of an ω-primitive.

Lemma 2.1 ([4], p. 331). Given a first countable dense in itself T0-space X,
there exists a dense boundary set A ⊂ X.

Theorem 2.6. Let X be a first countable T1 dense in itself Baire space and
a USC function f : X → [0,∞). Then there exists an ω-primitive F for f .

Proof. Our proof is similar to the proof of Theorem 5 in [6]. Denote C(f) =
{x ∈ X : f is continuous at x}. Since the T1-space X is Baire and X = Xd,
we have that the Gδ-set C(f) is a T1-subspace dense in X. By Lemma 2.1 there
exists a set A ⊂ C(f) dense and boundary in C(f) and hence in X. Define
F = fϕ where ϕ is the characteristic function of X \ A. We claim that F is
an ω-primitive for f. Since X \A is dense in X, we have m(F, ·) = 0 on X. So
it remains to show (cf. (8)) that M(F, ·) = f on X.

First let x ∈ A. The set C(f) \A being dense in C(f), there is a sequence
{xn : n ∈ N}, xn ∈ X \ A, xn → x. Since f agrees with F off A and is
continuous at x, we have

f(x) = lim f(xn) = limF (xn) ≤M(F, x) ≤M(f, x) = f(x).

Now let x ∈ X \ A. Since f is USC and F (x) = f(x), we may write at once
f(x) ≤ M(F, x) ≤ M(f, x) = f(x) We have thus shown that m(F, ·) = 0 and
M(F, ·) = f . Whence ω(F, ·) = f , what was to be proved.

Remark. As we already know from (b) in Examples 1.1, the Sorgenfrey line
Rs does not have any neighborhood system satisfying (N2). Therefore Theo-
rem 2.1 cannot be applied to Rs. On the other hand all assumptions of Theo-
rem 2.6 are satisfied for X = Rs. Whence each USC function f : Rs → [0,∞)
has an ω-primitive. This shows by the way that condition (N2) is but sufficient
for an ω-primitive to exist.

We shall complete Section 2 by giving some observations concerning the
existence of ω-primitives in the case when comparable topologies are involved.
Let τ1, τ2 be two topologies on the same set X. Given F : X → R, denote by
Mi(F, ·), mi(F, ·) the Baire functions (9) computed in the space (X, τi), and
let ωi(F, ·) = Mi(F, ·)−mi(F, ·), i = 1, 2.
It is easy to see that

τ1 ⊂ τ2 ⇒M2(F, ·) ≤M1(F, ·), m1(F, ·) ≤ m2(F, ·), (10)

so that for each F : X → R we have τ1 ⊂ τ2 ⇒ ω2(F, ·) ≤ ω1(F, ·).
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Theorem 2.7. Let (X, τ1) be dense in itself and let f : X → [0,∞) a τ1-USC
function (i.e. f is USC for the topology τ1). Assume that there is a topology
τ2 ⊃ τ1 on X such that (X, τ2) is a first countable dense in itself massive T1-
space having a neighborhood system N satisfying conditions (N1) and (N2).
Then there exists an ω1-primitive F : X → [0,∞) for f on (X, τ1).

Proof. According to Theorem 2.1 there exists an ω2-primitive F for f on
(X, τ2) such that 0 ≤ F ≤ f, M2(F, x) = f(x), m2(F, x) = 0 for each x ∈ X.
By (10) this yields that for each x ∈ X we have

0 ≤ m1(F, x) ≤ m2(F, x) = 0, f(x) = M2(F, x) ≤M1(F, x) ≤M1(f, x) = f(x)

Thus F is an ω1-primitive for f as well.

Remark. It is worth noting that in Theorem 2.7 we make no assumptions on
the space (X, τ1) except that it is dense in itself.

Corollary 2.3. Let X = R × [0,∞) and let τN be the Niemytzki topology
on X. Let τ ⊂ τN be any topology on X such that (X, τ) be dense in itself.
Then given any τ -USC function f : X → [0,∞) there exists an ωτ -primitive
F : X → [0,∞) for f, F ≤ f , such that we have ωτ (F, x) = ωτN

(F, x) = f(x)
for x ∈ X.

Corollary 2.4. Let X be a Banach space. Denote by τ, τw respectively the
norm topology and the weak topology on X (cf. Example 1.3). Then each τw-
USC function f : X → [0,∞) has an ωτw -primitive F : X → [0,∞), F ≤ f ,
so that we have ωτw

(F, x) = ωτ (F, x) = f(x) for x ∈ X.

Corollary 2.5. Let τ, τL, τR be respectively: usual, left and right topologies
on X = R. Then given any τL-USC (τR-USC) function f : X → [0,∞), there
exists an ωτL

-primitive (an ωτR
-primitive) F : X → [0,∞) for f , so that we

have ωτL
(F, x) = ωτ (F, x) = f(x) (respectively ωτR

(F, x) = ωτ (F, x) = f(x))
for all x ∈ X.

3 Oscillation and Quasi-Uniform Convergence

Let X be a topological space and (Y, d) a metric space. By F(X,Y ) we denote
the set of all mappings fromX to Y. A net {gj : j ∈ J} of mappings gj : X → Y
is said to be quasi-uniformly convergent to g : X → Y if (cf. [10])

∀x ∈ X ∀ε > 0 ∃j0 ∈ J ∀j ≥ j0 ∃U(x) ∀x′ ∈ U(x) : d(f(x′), fj(x′)) < ε (11)

where, as before, U(x) stands for an open neighborhood of x. This type of
convergence preserves continuity. It is known that there exists a uniformizable
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topology τqu on F(X,Y ) compatible with quasi-uniform convergence. Thus a
net {gj : j ∈ J} is τqu-convergent to g if and only if g is the quasi-uniform
limit of {gj : j ∈ J} [10]. Moreover, on the class C(X,Y ) of all continuous
mappings from X to Y the topology of the pointwise convergence coincides
with τqu.

Theorem 3.1. Let X be a topological space and (Y, d) a metric space. If
a net {gj : j ∈ J} of mappings gj : X → Y is quasi-uniformly convergent
to a mapping g : X → Y , then the net of oscillations {ω(gj , ·) : j ∈ J} is
quasi-uniformly convergent to ω(g, ·).

Proof. Let x0 ∈ X and ε > 0 be fixed; then by (11) there exists a corre-
sponding j0. Fix a j ≥ j0 and a neighborhood Uj = Uj(x0) such that

d(g(x), gj(x)) < ε/4 for all x ∈ Uj . (12)

Let x ∈ Uj and ω(g, x) < ∞. Then we can choose a neighborhood U(x) of
x, U(x) ⊂ Uj , such that d(g(x′), g(x′′)) < ω(g, x) + ε/4 for all x′, x′′ ∈ U(x).
This implies d(gj(x′), gj(x′′)) < ω(g, x)+3ε/4 for all x′, x′′ ∈ U(x), so we have
ω(gj , x) < ω(g, x)+ε. Whence ω(gj , x) <∞. Then in a similar way, using (12),
we obtain ω(g, x) < ω(gj , x)+ε. Thus we have shown that |ω(g, x)−ω(gj , x)| <
ε for each x ∈ Uj whenever ω(g, x) < ∞.

Now let x ∈ Uj and ω(g, x) =∞. Then

sup
x′,x′′∈W (x)

d(g(x′), g(x′′)) > n+ ε

for each n ∈ N and each neighborhood W (x) of x. Hence for each W (x) ⊂ Uj
and for each n we have

sup
x′,x′′∈W (x)

d(gj(x′), gj(x′′)) > n

which yields ω(gj , x) = ∞. We have thus shown that |ω(g, x) − ω(gj , x)| < ε
for each x ∈ Uj .

As an immediate consequence we get

Corollary 3.1. Let X be a topological space and (Y,d) a metric space. Then
the classes

Cω := {g ∈ F(X,Y ) : ω(g, ·) is continuous}

and

[f ] := {g ∈ F(X,Y ) : ω(g, ·) = f},
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where f : X → [0,∞) is any USC-function, are closed subsets in the space
(F(X,Y ), τqu).

Corollary 3.2. Let X be a topological space. Then

Fω := {f ∈ F(X, [0,∞)) : ω(f, ·) = f}

is a closed subset of (F(X, [0,∞)), τqu).
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[11] T. Šalat, A remark on lp-spaces, Acta Fac. Rer. Nat. Univ. Comenianae
Math., 36 (1980), 69–73.


