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A ∆2-EQUIVALENT CONDITION

Abstract

We give a condition which is shown to be equivalent to the ∆2 con-
dition and use it to prove a well-known result of Musielak and Orlicz.

Let ϕ be a continuous increasing function defined on [0,∞) with ϕ(0) =
0, ϕ(x) > 0 for x > 0. Let f be any function defined on the interval
I = [a, b], and let P = {In} be a partition of I. For any interval [α, β],
let f([α, β]) = f(β)− f(α). The quantity

Vϕ(f) = Vϕ(f ; I) = sup
P

m∑
i=1

ϕ (|f(Ii)|) ,

where the supremum is taken over all partitions P of I, is called the total
ϕ-variation of f on I. If Vϕ(f) is finite, then f is said to be of bounded ϕ-
variation on I. It is easy to see that this is equivalent to the requirement that
the infinite sum

∑∞
n=1 ϕ(|f(In)|) be finite whenever {In}∞n=1 is a collection

of nonoverlapping intervals in [a, b]. The class ΦBV is defined to be the set
of all functions f of bounded ϕ-variation. This class was first considered in
less generality by L.C. Young [Y]. Wiener introduced the notion for ϕ(x) =
xp, p > 1, and this was developed further by L.C. Young and E.R. Love [LY].
An interesting application of ϕ-variation to Fourier series, which generalizes
the earlier results for p-variation, is due to Salem [S].

We begin by proving the equivalence of the definitions of ΦBV given above.
Suppose there exists a sequence {In} of non-overlapping intervals such that∑
ϕ(|f(In)|) diverges. Then {In}Nn=1 and the intervals complementary to⋃N

1 In form a partition Jn such that
∑
ϕ(|f(Jn)|) ≥

∑N
i=1 ϕ(|f(In)|), and

this last sum can be made as large as we please.
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The opposite implication is less obvious. Clearly, each definition implies
that f is bounded; it is almost as clear that f is regulated, i.e., has only simple
discontinuities, but we shall not need this fact.

Using ΦBV in the original sense, we note that if a < b < c and f is in
ΦBV on [a, b] and [b, c], then f is in ΦBV on [a, c]. Suppose {In} is a partition
of [a, c] and b is an endpoint of some {In}. Then∑

ϕ(|f(In)|) ≤ Vϕ(f ; [a, b]) + Vϕ(f ; [b, c]).

Otherwise, if b is in the interior of an interval In,∑
ϕ(|f(In)|) ≤ Vϕ(f ; [a, b]) + Vϕ(f ; [b, c]) + ϕ(2 sup |f(x)|).

If we now use the standard bisection argument, we may show that if
f /∈ ΦBV on I, then there is an x0 ∈ I such that, on one side of x0,
f /∈ ΦBV on any interval terminating at x0. Let {I1

n}
N1

1 be a partition of
such an interval, [α, x0], such that

∑N1
1 ϕ(|f(I1

n)|) > 2 sup |f(x)| + 1. Then∑N1−1
1 ϕ(|f(I1

n)|) > 1. Repeat this process on the interval IN1 . We may find
a partition of IN1 , {I2

n}
N2
1 such that

∑N2−1
1 ϕ(|f(I2

n)|) > 1. Continuing induc-
tively and enumerating the intervals {{Ik

n}
Nk−1
n=1 }∞k=1 from left to right to form

{In}∞1 , we see that
∑
ϕ(|f(In)|) diverges.

The class ΦBV is not, in general, a vector space, and hence one often
considers the vector space ΦBV ∗, which we define to be

ΦBV ∗ = {f |kf ∈ ΦBV for some constant k 6= 0}.

Clearly ΦBV ⊆ ΦBV ∗. The following conditions are usually placed on the
function ϕ:

1. ϕ is convex

2. ϕ(x)/x→ 0 as x→ 0

3. ϕ(x)/x→∞ as x→∞.

The latter two conditions ensure that ΦBV is a generalization of BV while
the first makes computation more amenable.

A function ϕ is said to satisfy the condition ∆2 (often called ∆2 for small

values) if there exists an a > 0 and a δ > 0 such that
ϕ(2x)
ϕ(x)

≤ δ for x ∈ (0, a].

The following result is due to Musielak and Orlicz [MO]:
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Theorem (Musielak and Orlicz). The class ΦBV is linear (i.e. ΦBV =
ΦBV ∗) if and only if ∆2 is satisfied.

Hence it is usual to assume that ϕ satisfies condition ∆2 and it is useful to
have equivalent conditions which may, at times, be more obviously applicable.
One such condition is:

A Known ∆2-Equivalent Condition. For any c > 1, there exist δ > 0 and

a > 0 such that
ϕ(cx)
ϕ(x)

≤ δ for x ∈ (0, a].

For c = 2 this reduces to ∆2. Given ∆2, choose n so that c < 2n and apply the
∆2 condition n times, yielding the desired result on the interval [0, a/2n−1].
A suitable δ in this condition is then the nth power of the constant in the
condition ∆2.

Another equivalent formulation which we have found useful is given in the
following result. After proving the equivalence of the two formulations, we
will use the new one to prove the theorem of Musielak and Orlicz.

Theorem. A function ϕ satisfies the condition ∆2 iff

∆Σ : for any k ∈ (0, 1) and xn ↘ 0,
∞∑

n=1

ϕ(kxn)
ϕ(xn)

=∞.

Proof. We first show that ∆2 =⇒ ∆Σ.
Choose k ∈ (0, 1) and an arbitrary sequence {xn} such that xn ↘ 0. The

∆2-equivalent condition above implies that there is a δ > 0 and an α > 0 such

that
ϕ(x/k)
ϕ(x)

≤ δ for x ∈ (0, α] or
ϕ(kx)
ϕ(x)

≥ δ−1 for x ∈ (0, α]. Thus there is

an N > 0 such that
∑∞

n=1

ϕ(kxn)
ϕ(xn)

≥
∑∞

n=N δ−1 =∞, which is condition ∆Σ.

We now show that ∆Σ =⇒ ∆2.
If ϕ does not satisfy ∆2 then, for any δ > 0, we may choose x > 0, arbitrarily

small, such that
ϕ(x/2)
ϕ(x)

< δ.

Choose a sequence {δj}, δj ↘ 0 such that
∑∞

j=1 δj < ∞. We now choose
a sequence {cn} in the following manner: For j = 1 we choose c1 such that
ϕ(c1/2)/ϕ(c1) ≤ δ1. For j = 2 we choose c2 < min{c1, 1/2} and such that
ϕ(c2/2)/ϕ(c2) ≤ δ2. We proceed inductively so that at the nth stage we choose
cn < min{cn−1, 1/2n−1} and such that ϕ(cn/2)/ϕ(cn) ≤ δn. We then have∑∞

j=1

ϕ(cj/2)
ϕ(cj)

≤
∑∞

j=1 δj <∞.
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Thus ϕ does not satisfy ∆Σ, and we have shown the two conditions to be
equivalent.

We now use this equivalent condition to give an alternative proof of the
result of Musielak and Orlicz.

Proof. We shall show first that ∆Σ implies that ΦBV ∗ ⊆ ΦBV. This will
be accomplished if we show that for c ∈ (0, 1) and ϕ(x) = ϕ(cx), we have

ΦBV ⊆ ΦBV. Now ∆Σ implies that
∑ ϕ(xj)

ϕ(xj)
=∞, for xj ↘ 0. If

lim inf
x↘0

ϕ(x)
ϕ(x)

= 0,

then there exists a sequence {xj} ↘ 0 such that
∑ ϕ(xj)

ϕ(xj)
<∞, which contra-

dicts ∆Σ. Thus 1 ≥ lim infx↘0
ϕ(x)
ϕ(x)

= δ > 0, implying that (2/δ)ϕ(x) > ϕ(x)

for small x. Thus, for a bounded f , there is a finite M such that, for any
interval I, Mϕ(|f(I)|) ≥ ϕ(|f(I)|), implying that MVϕ(f) ≥ Vϕ(f) and so
ΦBV ⊆ ΦBV.

We have noted that f ∈ ΦBV if and only if, for every sequence of nonover-
lapping intervals, {In},

∑
ϕ(|f(In)|) converges. We shall use this fact to show

that ΦBV ∗ ⊆ ΦBV implies ∆Σ. We show, in particular, that if, for any C > 1,∑
ϕ(xn) <∞ implies

∑
ϕ(Cxn) <∞ for sequences {xn} ↘ 0, then ∆Σ holds.

Suppose ∆Σ does not hold and let ϕ(x) denote ϕ(Cx). Then there is a C >

1 and a sequence {xn} ↘ 0 such that
ϕ(xn)
ϕ(xn)

↘ 0. By choosing subsequences,

we may determine {xn} so that ϕ(xn) <
1
n2

and
ϕ(xn)
ϕ(xn)

<
1
n
. Choose an

integer kn so that 1
n2 < knϕ(xn) ≤ 2

n2
. We define a sequence {yn} as follows:

the first k1 terms are equal to x1, the next k2 terms are equal to x2, and so
on. Then we have ∑

ϕ(yn) =
∑

knϕ(xn) <
∑ 2

n2
<∞

and ∑
ϕ(yn) =

∑
knϕ(xn) ≥

∑
knnϕ(xn) ≥

∑
n

1
n2

=∞,

which establishes the desired result.

We note that the argument we have just used is patterned after that of
Birnbaum and Orlicz[BO], as was the argument of Musielak and Orlicz.
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