Pamela B. Pierce, Department of Mathematical Sciences, The College of Wooster, Wooster, OH 44691, USA. e-mail: ppierce@acs. wooster.edu Daniel Waterman, Department of Mathematics, Florida Atlantic University, Home Address: 7739 Majestic Palm Dr., Boynton Beach, FL 33437, USA.
e-mail: fourier@earthlink.net

A Δ_{2}-EQUIVALENT CONDITION

Abstract

We give a condition which is shown to be equivalent to the Δ_{2} condition and use it to prove a well-known result of Musielak and Orlicz.

Let φ be a continuous increasing function defined on $[0, \infty)$ with $\varphi(0)=$ $0, \varphi(x)>0$ for $x>0$. Let f be any function defined on the interval $I=[a, b]$, and let $P=\left\{I_{n}\right\}$ be a partition of I. For any interval $[\alpha, \beta]$, let $f([\alpha, \beta])=f(\beta)-f(\alpha)$. The quantity

$$
V_{\varphi}(f)=V_{\varphi}(f ; I)=\sup _{P} \sum_{i=1}^{m} \varphi\left(\left|f\left(I_{i}\right)\right|\right)
$$

where the supremum is taken over all partitions P of I, is called the total φ-variation of f on I. If $V_{\varphi}(f)$ is finite, then f is said to be of bounded φ variation on I. It is easy to see that this is equivalent to the requirement that the infinite sum $\sum_{n=1}^{\infty} \varphi\left(\left|f\left(I_{n}\right)\right|\right)$ be finite whenever $\left\{I_{n}\right\}_{n=1}^{\infty}$ is a collection of nonoverlapping intervals in $[a, b]$. The class $\Phi B V$ is defined to be the set of all functions f of bounded φ-variation. This class was first considered in less generality by L.C. Young [Y]. Wiener introduced the notion for $\varphi(x)=$ $x^{p}, p>1$, and this was developed further by L.C. Young and E.R. Love [LY]. An interesting application of φ-variation to Fourier series, which generalizes the earlier results for p -variation, is due to Salem $[\mathrm{S}]$.

We begin by proving the equivalence of the definitions of $\Phi B V$ given above. Suppose there exists a sequence $\left\{I_{n}\right\}$ of non-overlapping intervals such that $\sum \varphi\left(\left|f\left(I_{n}\right)\right|\right)$ diverges. Then $\left\{I_{n}\right\}_{n=1}^{N}$ and the intervals complementary to $\bigcup_{1}^{N} I_{n}$ form a partition J_{n} such that $\sum \varphi\left(\left|f\left(J_{n}\right)\right|\right) \geq \sum_{i=1}^{N} \varphi\left(\left|f\left(I_{n}\right)\right|\right)$, and this last sum can be made as large as we please.

[^0]The opposite implication is less obvious. Clearly, each definition implies that f is bounded; it is almost as clear that f is regulated, i.e., has only simple discontinuities, but we shall not need this fact.

Using $\Phi B V$ in the original sense, we note that if $a<b<c$ and f is in $\Phi B V$ on $[a, b]$ and $[b, c]$, then f is in $\Phi B V$ on $[a, c]$. Suppose $\left\{I_{n}\right\}$ is a partition of $[a, c]$ and b is an endpoint of some $\left\{I_{n}\right\}$. Then

$$
\sum \varphi\left(\left|f\left(I_{n}\right)\right|\right) \leq V_{\varphi}(f ;[a, b])+V_{\varphi}(f ;[b, c])
$$

Otherwise, if b is in the interior of an interval I_{n},

$$
\sum \varphi\left(\left|f\left(I_{n}\right)\right|\right) \leq V_{\varphi}(f ;[a, b])+V_{\varphi}(f ;[b, c])+\varphi(2 \sup |f(x)|)
$$

If we now use the standard bisection argument, we may show that if $f \notin \Phi B V$ on I, then there is an $x_{0} \in I$ such that, on one side of x_{0}, $f \notin \Phi B V$ on any interval terminating at x_{0}. Let $\left\{I_{n}^{1}\right\}_{1}^{N_{1}}$ be a partition of such an interval, $\left[\alpha, x_{0}\right]$, such that $\sum_{1}^{N_{1}} \varphi\left(\left|f\left(I_{n}^{1}\right)\right|\right)>2 \sup |f(x)|+1$. Then $\sum_{1}^{N_{1}-1} \varphi\left(\left|f\left(I_{n}^{1}\right)\right|\right)>1$. Repeat this process on the interval $I_{N_{1}}$. We may find a partition of $I_{N_{1}},\left\{I_{n}^{2}\right\}_{1}^{N_{2}}$ such that $\sum_{1}^{N_{2}-1} \varphi\left(\left|f\left(I_{n}^{2}\right)\right|\right)>1$. Continuing inductively and enumerating the intervals $\left\{\left\{I_{n}^{k}\right\}_{n=1}^{N_{k}-1}\right\}_{k=1}^{\infty}$ from left to right to form $\left\{I_{n}\right\}_{1}^{\infty}$, we see that $\sum \varphi\left(\left|f\left(I_{n}\right)\right|\right)$ diverges.

The class $\Phi B V$ is not, in general, a vector space, and hence one often considers the vector space $\Phi B V^{*}$, which we define to be

$$
\Phi B V^{*}=\{f \mid k f \in \Phi B V \text { for some constant } k \neq 0\}
$$

Clearly $\Phi B V \subseteq \Phi B V^{*}$. The following conditions are usually placed on the function φ :

1. φ is convex
2. $\varphi(x) / x \rightarrow 0$ as $x \rightarrow 0$
3. $\varphi(x) / x \rightarrow \infty$ as $x \rightarrow \infty$.

The latter two conditions ensure that $\Phi B V$ is a generalization of $B V$ while the first makes computation more amenable.

A function φ is said to satisfy the condition Δ_{2} (often called Δ_{2} for small values) if there exists an $a>0$ and a $\delta>0$ such that $\frac{\varphi(2 x)}{\varphi(x)} \leq \delta \quad$ for $x \in(0, a]$. The following result is due to Musielak and Orlicz [MO]:

Theorem (Musielak and Orlicz). The class $\Phi B V$ is linear (i.e. $\Phi B V=$ $\left.\Phi B V^{*}\right)$ if and only if Δ_{2} is satisfied.

Hence it is usual to assume that φ satisfies condition Δ_{2} and it is useful to have equivalent conditions which may, at times, be more obviously applicable. One such condition is:

A Known Δ_{2}-Equivalent Condition. For any $c>1$, there exist $\delta>0$ and $a>0$ such that $\frac{\varphi(c x)}{\varphi(x)} \leq \delta$ for $x \in(0, a]$.

For $c=2$ this reduces to Δ_{2}. Given Δ_{2}, choose n so that $c<2^{n}$ and apply the Δ_{2} condition n times, yielding the desired result on the interval $\left[0, a / 2^{n-1}\right]$. A suitable δ in this condition is then the $n^{t h}$ power of the constant in the condition Δ_{2}.

Another equivalent formulation which we have found useful is given in the following result. After proving the equivalence of the two formulations, we will use the new one to prove the theorem of Musielak and Orlicz.

Theorem. A function φ satisfies the condition Δ_{2} iff

$$
\Delta_{\Sigma}: \quad \text { for any } k \in(0,1) \text { and } x_{n} \searrow 0, \quad \sum_{n=1}^{\infty} \frac{\varphi\left(k x_{n}\right)}{\varphi\left(x_{n}\right)}=\infty
$$

Proof. We first show that $\Delta_{2} \Longrightarrow \Delta_{\Sigma}$.
Choose $k \in(0,1)$ and an arbitrary sequence $\left\{x_{n}\right\}$ such that $x_{n} \searrow 0$. The Δ_{2}-equivalent condition above implies that there is a $\delta>0$ and an $\alpha>0$ such that $\frac{\varphi(x / k)}{\varphi(x)} \leq \delta$ for $x \in(0, \alpha]$ or $\frac{\varphi(k x)}{\varphi(x)} \geq \delta^{-1}$ for $x \in(0, \alpha]$. Thus there is an $N>0$ such that $\sum_{n=1}^{\infty} \frac{\varphi\left(k x_{n}\right)}{\varphi\left(x_{n}\right)} \geq \sum_{n=N}^{\infty} \delta^{-1}=\infty$, which is condition Δ_{Σ}.
We now show that $\Delta_{\Sigma} \Longrightarrow \Delta_{2}$.
If φ does not satisfy Δ_{2} then, for any $\delta>0$, we may choose $x>0$, arbitrarily small, such that $\frac{\varphi(x / 2)}{\varphi(x)}<\delta$.
Choose a sequence $\left\{\delta_{j}\right\}, \delta_{j} \searrow 0$ such that $\sum_{j=1}^{\infty} \delta_{j}<\infty$. We now choose a sequence $\left\{c_{n}\right\}$ in the following manner: For $j=1$ we choose c_{1} such that $\varphi\left(c_{1} / 2\right) / \varphi\left(c_{1}\right) \leq \delta_{1}$. For $j=2$ we choose $c_{2}<\min \left\{c_{1}, 1 / 2\right\}$ and such that $\varphi\left(c_{2} / 2\right) / \varphi\left(c_{2}\right) \leq \delta_{2}$. We proceed inductively so that at the $n^{t h}$ stage we choose $c_{n}<\min \left\{c_{n-1}, 1 / 2^{n-1}\right\}$ and such that $\varphi\left(c_{n} / 2\right) / \varphi\left(c_{n}\right) \leq \delta_{n}$. We then have $\sum_{j=1}^{\infty} \frac{\varphi\left(c_{j} / 2\right)}{\varphi\left(c_{j}\right)} \leq \sum_{j=1}^{\infty} \delta_{j}<\infty$.

Thus φ does not satisfy Δ_{Σ}, and we have shown the two conditions to be equivalent.

We now use this equivalent condition to give an alternative proof of the result of Musielak and Orlicz.
Proof. We shall show first that Δ_{Σ} implies that $\Phi B V^{*} \subseteq \Phi B V$. This will be accomplished if we show that for $c \in(0,1)$ and $\bar{\varphi}(x)=\varphi(c x)$, we have $\bar{\Phi} B V \subseteq \Phi B V$. Now Δ_{Σ} implies that $\sum \frac{\bar{\varphi}\left(x_{j}\right)}{\varphi\left(x_{j}\right)}=\infty$, for $x_{j} \searrow 0$. If

$$
\liminf _{x \searrow 0} \frac{\bar{\varphi}(x)}{\varphi(x)}=0
$$

then there exists a sequence $\left\{x_{j}\right\} \searrow 0$ such that $\sum \frac{\bar{\varphi}\left(x_{j}\right)}{\varphi\left(x_{j}\right)}<\infty$, which contradicts Δ_{Σ}. Thus $1 \geq \liminf _{x \searrow 0} \frac{\bar{\varphi}(x)}{\varphi(x)}=\delta>0$, implying that $(2 / \delta) \bar{\varphi}(x)>\varphi(x)$ for small x. Thus, for a bounded f, there is a finite M such that, for any interval $I, M \bar{\varphi}(|f(I)|) \geq \varphi(|f(I)|)$, implying that $M V_{\bar{\varphi}}(f) \geq V_{\varphi}(f)$ and so $\bar{\Phi} B V \subseteq \Phi B V$.

We have noted that $f \in \Phi B V$ if and only if, for every sequence of nonoverlapping intervals, $\left\{I_{n}\right\}, \sum \varphi\left(\left|f\left(I_{n}\right)\right|\right)$ converges. We shall use this fact to show that $\Phi B V^{*} \subseteq \Phi B V$ implies Δ_{Σ}. We show, in particular, that if, for any $C>1$, $\sum \varphi\left(x_{n}\right)<\infty$ implies $\sum \varphi\left(C x_{n}\right)<\infty$ for sequences $\left\{x_{n}\right\} \searrow 0$, then Δ_{Σ} holds.

Suppose Δ_{Σ} does not hold and let $\bar{\varphi}(x)$ denote $\varphi(C x)$. Then there is a $C>$ 1 and a sequence $\left\{x_{n}\right\} \searrow 0$ such that $\frac{\varphi\left(x_{n}\right)}{\bar{\varphi}\left(x_{n}\right)} \searrow 0$. By choosing subsequences, we may determine $\left\{x_{n}\right\}$ so that $\varphi\left(x_{n}\right)<\frac{1}{n^{2}}$ and $\frac{\varphi\left(x_{n}\right)}{\bar{\varphi}\left(x_{n}\right)}<\frac{1}{n}$. Choose an integer k_{n} so that $\frac{1}{n^{2}}<k_{n} \varphi\left(x_{n}\right) \leq \frac{2}{n^{2}}$. We define a sequence $\left\{y_{n}\right\}$ as follows: the first k_{1} terms are equal to x_{1}, the next k_{2} terms are equal to x_{2}, and so on. Then we have

$$
\sum \varphi\left(y_{n}\right)=\sum k_{n} \varphi\left(x_{n}\right)<\sum \frac{2}{n^{2}}<\infty
$$

and

$$
\sum \bar{\varphi}\left(y_{n}\right)=\sum k_{n} \bar{\varphi}\left(x_{n}\right) \geq \sum k_{n} n \varphi\left(x_{n}\right) \geq \sum n \frac{1}{n^{2}}=\infty
$$

which establishes the desired result.
We note that the argument we have just used is patterned after that of Birnbaum and Orlicz $[\mathrm{BO}]$, as was the argument of Musielak and Orlicz.

References

[BO] Z. W. Birnbaum and W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 3 (1931), 1-67.
[LY] E. R. Love and L. C. Young, Sur une classe des functionelles lineaires, Fund. Math., 28 (1937), 243-257.
[MO] J. Musielak and W. Orlicz, On generalized variations I, Studia Math., 18 (1959), 11-41.
[S] R. Salem, Sur un test général pour le convergence uniforme des séries de Fourier, Comptes. Rend. Acad. Sci. Paris, v. 207 (1938), 662-664
[Wi] N. Wiener, The quadratic variation of a function and its Fourier coefficients, J.M.I.T., 3 (1924), 73-94.
[Y] L. C. Young, Sur une généralisation de la notion de variation de puissance p-ième bornée au sense de M. Wiener, et sur la convergence des séries de Fourier, Comptes. Rend. Acad. Sci. Paris, 204 (1937), 470-472.

Pamela B. Pierce and Daniel Waterman

[^0]: Key Words: generalized bounded variation, Δ_{2} condition
 Mathematical Reviews subject classification: 26A45
 Received by the editors July 18, 2000

