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Politechniki 11, I-2, 90-924  Lódź, Poland
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DIFFERENCE PROPERTIES FOR SOME
CLASSES OF FUNCTIONS

Abstract

We show the difference property and the double difference property
for some classes of real-valued functions.

Introduction

The paper is continuation of [Ko] and is strictly connected with some results
and methods presented in the papers by Laczkovich [L1], [L2], [L3] and Keleti
[Ke].

Let G stand for the additive group equal to R or T where T is the circle
group R/Z (and Z denotes the additive group of all integers). Functions
defined on T can be treated as functions defined on R and being periodic with
period 1. For a fixed function f : G → R and any h ∈ G, the difference
function ∆hf : G→ R is defined by

∆hf(x) = f(x+ h)− f(x),

and the double difference function Df : G2 → R is defined by

Df(x, y) = f(x+ y)− f(x)− f(y).

Let F and F (2) be fixed families of functions from G to R and from G2

to R, respectively. We say that F (respectively, the pair (F ,F (2))) possesses
the difference property (respectively, the double difference property), if every
function f : G → R such that ∆hf ∈ F (respectively, Df ∈ F (2)) for each
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h ∈ G, is of the form f = g + A where g ∈ F and A is an additive function.
A class F is called translation invariant if, for any f ∈ F and a, b ∈ G, the
function g(x) := f(x + a) + b, x ∈ G, belongs to F . If A ⊂ G and x ∈ G, we
write A+ x = {a+ x : a ∈ A}.

We consider ideals of subsets of G (or G2). Throughout the paper, we
assume that every ideal I has the following properties:

• {x} ∈ I for each x ∈ G,

• each set in I has empty interior,

• I is translation invariant, i.e. A+ x ∈ I for any A ∈ I and x ∈ G.

If I is an ideal of subsets of G, we say that a property holds I-almost every-
where on G, or for I-almost all x ∈ G, if it holds for all points x ∈ G except
for some of them which form a set in I. A pair (F ,F (2)) is called hereditary
(respectively, I-hereditary) if all (respectively, I-almost all) sections fy are in
F for every f ∈ F (2) (where fy(x) = f(x, y), x ∈ G). (Note that the present
definition of a hereditary pair is different from that given in [Ko].) We shall
consider the following ideals of subsets of G:

• N = the family of Lebesgue null sets,

• M = the family of meager sets,

• M0 = the family of nowhere dense sets,

• I0 = the family of countable sets.

Let N (2) stand for the σ-ideal of Lebesgue null sets in G2. The symbolsM(2),
M(2)

0 and I(2)
0 have the analogous meanings. If I is an ideal, we denote

I? = {A : (∃B ∈ I, of type Fσ) A ⊂ B}.

Then I? forms an ideal contained in I.

1 I-essentially continuous functions and Sierpiński sets

Assuming CH Sierpiński [S] constructed a set E ⊂ R such that E /∈ N ,
R \ E /∈ N and (E + h) \ E ∈ N for each h ∈ R. Erdős (see [dB1, p. 195])
observed that the characteristic function χE of E witnesses the lack of the
difference property for the family L0 of all Lebesgue measurable functions on R.
Laczkovich [L3] proved that the nonexistence of a Sierpiński set is equivalent
to the difference property for L0. He studied the following condition for an
invariant ideal I of sets in an Abelian group X:
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there exists a set E ⊂ X such that E /∈ I, X \ E /∈ I and (E + h) \ E ∈ I
for every h ∈ X.

In our paper this condition will be used for X = R and it will be denoted by
(SI).

Let C stand for the space of all continuous functions from R to R. For a
fixed ideal I of subsets of R we denote

CI = {f ∈ RR : (∃g ∈ C){x : f(x) 6= g(x)} ∈ I}.

Functions in CI will be called I-essentially continuous. We are going to prove
that if I ⊂ N then ¬(SI) is equivalent to the difference property for CI .

We need some auxiliary facts.

Proposition 1.1. [Ke, Thm 2.9] If f ∈ L0 and ∆hf ∈ CN for each h ∈ R,
then f ∈ CN .

Proposition 1.2. Let I, J be ideals of subsets of R with I ⊂ J , and let A
be a σ-algebra of sets such that I ⊂ A. The following assertions hold:

(a) If f ∈ CI and {x : f(x) 6= g(x)} ∈ J for some g ∈ C, then {x : f(x) 6=
g(x)} ∈ I.

(b) Assume ¬(SI). If f ∈ CJ and ∆hf ∈ CI for each h ∈ R then f ∈ CI .

(c) Assume ¬(SI). If f : R→ R and {x : ∆hf(x) 6= 0} ∈ I for each h ∈ R
then f is A-measurable.

Proof. (a) This is a simple application of the fact that two continuous
functions coinciding on a dense set are equal.

(b) Let f ∈ CJ and ∆hf ∈ CI for each h ∈ R. Since f ∈ CJ there is
a g ∈ C such that Z := {x : f(x) 6= g(x)} ∈ J . If we put p = f − g, then
Z = {x : p(x) 6= 0}. In the case Z ∈ I we have f ∈ CI , so assume that Z /∈ I.
Since Z ∈ J , we get R \ Z /∈ I. Hence by ¬(SI) we have (Z − h0) \ Z /∈ I
for some h0 ∈ R. On the other hand, (Z − h0) \ Z ⊂ {x : ∆h0p(x) 6= 0},
so, to obtain a contradiction, let us prove that the last set is in I. By the
definition of Z we get {x : ∆h0p(x) 6= 0} ⊂ Z ∪ (Z − h0) ∈ J . Moreover
∆h0p = ∆h0f −∆h0g ∈ CI , so from (a) it follows that {x : ∆h0p(x) 6= 0} ∈ I.

(c) (See [L3, Thm 7].) Suppose that f is not A-measurable. Thus there is
a c ∈ R with E := {x : f(x) > c} /∈ A. From I ⊂ A it follows that E /∈ I and
R \ E /∈ I. Let h ∈ R. Observe that (E − h) \ E ⊂ {x : ∆hf(x) 6= 0} ∈ I.
Hence (SI) holds true, contrary to our assumption.

Theorem 1.3. Let I be an ideal of sets in R such that I ⊂ N . Then the
condition ¬(SI) is equivalent to the difference property for CI .
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Proof. (I) The demonstration that (SI) excludes the difference property for
CI goes back to the idea of Erdős. Namely, if (SI) holds true, pick an E /∈ I
with R\E /∈ I and (E+h)\E ∈ I for each h ∈ R. Hence for f = χE we have
f /∈ CI and ∆hf ∈ CI for each h ∈ R. Suppose that CI has the difference
property. Then f = g+A where g ∈ CI and A is additive. Hence A = f −g is
additive and bounded on a set of positive measure, so (by Ostrowski’s theorem
[Os]) A is continuous and consequently, f ∈ CI .

(II) Now assume ¬(SI). Let f : R → R be such that ∆hf ∈ CI for each
h ∈ R. By [Ke, Thm 2.13] the function f admits a decomposition f = g+A+ϕ
where g ∈ CN , A is additive and Zh := {x : ∆hϕ(x) 6= 0} ∈ N for each h ∈ R.
Since g ∈ CN , there exists an r ∈ C with B := {x : g(x) 6= r(x)} ∈ N . Let
p = g − r. Then p ∈ CN and B = {x : p(x) 6= 0}. Observe that ∆hp(x) = 0
for any x, h ∈ R with x /∈ B ∪ (B − h). Consequently,

(∀h, x ∈ R) (x /∈ B ∪ (B − h) ∪ Zh ⇒ ∆h(p+ ϕ)(x) = 0). (1)

On the other hand, p + ϕ = g − r + ϕ = f − A − r. Hence ∆h(p + ϕ) =
∆hf −A(h)−∆hr for each h ∈ R. Thus from the assumption that ∆hf ∈ CI
for each h ∈ R, and from the continuity of r, it follows that ∆h(p+ϕ) ∈ CI for
each h ∈ R. This together with (1) and Proposition 1.2(a) implies that {x :
∆h(p+ϕ)(x) 6= 0} ∈ I. Now, from Proposition 1.2(c) we infer that p+ϕ ∈ L0.
Consequently ϕ ∈ L0. Since ∆hϕ ∈ CN for each h ∈ R, by Proposition 1.1 we
get ϕ ∈ CN . Now g + ϕ ∈ CN and ∆h(g + ϕ) = ∆h(f − A) = ∆hf − A(h) is
in CI for each h ∈ R, which by Proposition 1.2(b) means that g+ϕ ∈ CI .

By the theorem of Trzeciakiewicz [T], we have (SI0) ⇐⇒ CH. (See also
[L3, Remark 2, p.668].) Thus we obtain

Corollary 1.4. ¬CH is equivalent to the difference property for CI0 .

Remarks. 1. For I = N , the condition (SI) is independent of ZFC [L3].
Hence, by Theorem 1.3, the difference property for CN is independent of
ZFC. We expect similar results for I = N ?, and for I equal to the σ-ideal of
σ-porous sets. To have this, one needs models of ZFC in which ¬(SI) is false.
From [L3, Thm 2] it follows that ¬(SI) is implied by cov(I) > non?(I), thus
it suffices to find models in which cov(I) > non?(I) holds. Note that models
with cov(I) > non(I) for I = N ? and I = σ-porous sets were found in [BJ,
2.6] and [R, Thms 1 and 6], respectively. However, this is not enuogh since
unfortunately non(I) ≤ non?(I) [L3, Thm 2]. For the definitions of cov(I),
non(I) and non?(I), see [L3].

2. Let us consider M instead of N in Theorem 1.3. Part (I) of the
proof still works since we can use Mehdi’s theorem [M] instead of Ostrowski’s
theorem. Part (II) works provided any f , with ∆hf ∈ CM for each h ∈ R,
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admits a decomposition f = g + A + ϕ where g ∈ CM, A is additive and
{x : ∆hϕ(x) 6= 0} ∈ M. However, we do not know whether the last property
holds true.

3. Assume CH. Observe that, if I is a σ-ideal such that I ⊂ N or I ⊂M,
then CI does not have the difference property. It suffices to use the Erdős
type argument based on the Sierpiński set [S] and its category analog. In fact,
the proofs for I = N and I =M are contained in [Ke, Thm 2.11] and [BKW,
Thm 2.2]. A general case is similar.

2 Some Classes of Functions With the Difference Prop-
erty

A real-valued function on R is called pointwise discontinuous if its set of conti-
nuity points is dense or, equivalently, its set of discontinuity points is meager.
Laczkovich in [L2] proved that the family of pointwise discontinuous functions
on R has the difference property. From the following lemma we shall derive
that some important subclasses of this family also possess the difference prop-
erty.

Lemma 2.1. Let F be equal to the family of all pointwise discontinuous func-
tions on R and let G be a subfamily of F invariant under addition of constants.
If

∀f ∈ F ( (∀h ∈ R ∆hf ∈ G) ⇒ f ∈ G ) (2)

then G has the difference property.

Proof. (Cf. [Ke, Lemma 1.1]). Assume that f : R → R and ∆hf ∈ G for
each h ∈ R. Since G ⊂ F and F has the difference property, we have f = g+A
where g ∈ F and A is additive. Thus ∆hf = ∆hg + A(h) which implies that
∆hg ∈ G (for each h ∈ R). Hence, by (2), we get g ∈ G.

First consider the family of functions continuous I-almost everywhere
where I is a given ideal. Since the set of discontinuity points of any function is
of type Fσ, the functions continuous I-almost everywhere coincide with those
continuous I?-almost everywhere. Since (by our preliminary claim) each set
in I has empty interior, we have I? ⊂ M. Thus it follows that each func-
tion continuous I-almost everywhere is continuous M-almost everywhere or,
in other words, it is pointwise discontinuous.

Lemma 2.2. For f : R→ R let ω(f, x) denote the oscillation of f at a point
x ∈ R. For an arbitrary h ∈ R, if ∆hf is continuous at a point x0 then
∆hω(f, x0) = 0.
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Proof. We have ω(f, x) = f(x)−f(x) where f(x) = max{f(x), lim supt→x f(t)},
f(x) = min{f(x), lim inft→x f(t)} for x ∈ R. Since f(x+ h) = ∆hf(x) + f(x)
for each x ∈ R and limx→x0 ∆hf(x) = ∆hf(x0), we have f(x0 + h) =
∆hf(x0) + f(x0) and f(x0 + h) = ∆hf(x0) + f(x0). Hence ω(f, x0 + h) =
f(x0 + h)− f(x0 + h) = f(x0)− f(x0) and thus ∆hω(f, x0) = 0.

Theorem 2.3. Let I be an ideal of subsets of R. If ¬(SI?) then the family of
all functions continuous I-almost everywhere on R has the difference property.

Proof. We shall use Lemma 2.1 with G equal to the family of functions
continuous I-almost everywhere. So, we shall check condition (2). Let f be
pointwise discontinuous, and let ∆hf be continuous I-almost everywhere, for
each h ∈ R. Fix an h ∈ R. By Lemma 2.2 we have ∆hω(f, x) = 0 at each point
x of continuity of ∆hf . Consequently, ∆hω(f, ·) is equal I?-almost everywhere
to a continuous (zero) function. On the other hand, {x ∈ R : ω(f, x) 6= 0} ∈ M
since f is pointwise discontinuous. From ¬(SI?), inclusion I? ⊂ M and
Proposition 1.2(b) it follows that ω(f, ·) ∈ CI? . Moreover, by Proposition
1.2(a) we have {x ∈ R : ω(f, x) 6= 0} ∈ I? which means that f is continuous
I-almost everywhere.

Corollary 2.4. The family of all functions continuousM0-almost everywhere
on R has the difference property.

Proof. We use the fact that ¬(SM0) is true. (See [L2, Remark 7].)
We shall show that, in some cases, the assumption ¬(SI∗) in Theorem 2.3

is superfluous.

Theorem 2.5. The family of all functions continuous I0-almost everywhere
on R has the difference property.

Proof. In a former version of the paper, the above statement was derived
under ¬CH from Theorem 2.3 and the equivalence (SI0) ⇐⇒ CH. Recently,
I. Rec law has communicated us the following ZFC proof. Apply Lemma 2.1
with G equal to the set of all functions continuous I0-almost everywhere. We
need to check condition (2), so suppose it is false. Thus there is an f ∈ F
such that ∆hf ∈ G for each h ∈ R and the set F of discontinuity points of f
is uncountable. Pick a perfect set P ⊂ F and a countable set D ⊂ P dense
in P . Since F is meager, there is an h ∈ R such that (F − h) ∩D = ∅. Then
(R\(F −h))∩P is uncountable (as a dense Gδ set in P ) and f(x+h)−f(x) is
discontinuous at each point of (R\ (F −h))∩P because f(x+h) is continuous
at each point of this set and f(x) is discontinuous. Contradiction.

Theorem 2.6. The family of all functions continuous N -almost everywhere
on R has the difference property.
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Proof. We check condition (2) of Lemma 2.1 where G stands for the set of
functions continuous N -almost everywhere. Let f be pointwise discontinuous,
and let ∆hf be continuous N -almost everywhere for each h ∈ R. As in the
proof of Theorem 2.3, we infer from Lemma 2.2 that ∆hω(f, ·) ∈ CN for each
h ∈ R. Since ω(f, ·) is upper-semicontinuous (hence measurable), therefore by
Proposition 1.1, it belongs to CN . Thus there is a continuous function g such
that {x ∈ R : ω(f, x) = g(x)} is of full measure. This set is dense of type Gδ,
so it is comeager. On the other hand, {x ∈ R : ω(f, x) = 0} is comeager since
f is pointwise discontinuous. It implies that g = 0 everywhere which means
that f is continuous N -almost everywhere.

Remark. It is well known that the functions continuousN -almost everywhere
bounded on a given compact interval are exactly the Riemann integrable func-
tions. Note that the difference property for the family of Riemann integrable
functions was shown by de Bruijn [dB2]. His method of proof is different. We
do not know how to derive Theorem 2.6 from de Bruijn’s result.

In [L1, Thm 8] it is proved that the family of all approximately continuous
functions on R has the difference property. A category analog of approxi-
mately continuous functions was introduced in [PWW], and those functions
will be called category approximately continuous. We are going to give two dif-
ferent proofs of the difference property for category approximately continuous
functions.

Proposition 2.7. Let H ⊂ R and H /∈ M (respectively, H /∈ N ). If a
function f : R→ R has the Baire property (is measurable) and ∆hf is category
approximately continuous (approximately continuous) for every h ∈ H then so
is f .

Proof. Let B stand for the set of category approximate continuity (respec-
tively, the approximate continuity) points of f . It is known that B is comeager
(respectively, of full measure). (See e.g. [CLO, Thms 1.3.2, 2.5.6].) Thus for
any x0 ∈ R we have B∩ (x0 +H) 6= ∅ and so, there exists an h0 ∈ H such that
x0 + h0 ∈ B. From f(x) = f(x+ h0)−∆h0f(x) and from the assumptions it
follows that x0 ∈ B.

Theorem 2.8. The family of all category approximately continuous functions
on R has the difference property.

Proof. (I) Consider the statement of Lemma 2.1 with G equal to the set
of all category approximately continuous functions (they are in Baire class
1 and consequently, they are pointwise discontinuous). Obviously pointwise
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discontinuous functions have the Baire property. Thus Proposition 2.7 yields
the condition (2) in Lemma 2.1.

(II) We give a category analogue of the argument in [L1, Thm 8]. Since ∆hf
is category approximately continuous for every h, therefore the function Df
is separately category approximately continuous and by [BLW] it is of Baire
class 2. Then by [L1, Thm 7] we have f = g+A where g is of Baire 2 and A is
additive. Pick a point x0 at which g is category approximately continuous (the
set of such points is comeager). Then g(x+h) = g(x)+∆hf(x)−A(x) implies
that g is category approximately continuous at x0 + h. Since h is arbitrary, g
is category approximately continuous everywhere.

Remark. The first of the above arguments can be used in the measure case,
too. Namely, the Baire class 1 has the difference property (that has been
derived by Laczkovich [L4] from his main result of [L2]). We use this class as
F in the statement of Lemma 2.1. The role of G is played by the approximately
continuous functions. (Obviously such a version of Lemma 2.1 works with the
same proof.)

Recall [Km] that a function f : R → R is said to be quasi-continuous at
a point x0 ∈ R if, for any open neighbourhoods U of x0, and V of f(x0),
there exists a nonempty open set G ⊂ U such that f [G] ⊂ V . A function
is called quasi-continuous on R if it is quasi-continuous at each point of R.
Quasi-continuous functions of two variables are defined analogously.

Theorem 2.9. The family of all quasi-continuous functions on R has the
difference property.

Proof. It is known that every quasi-continuous function is pointwise discon-
tinuous. To get the assertion we use Lemma 2.1. In fact, we shall prove that,
for an H ⊂ R with H /∈M, if a function f : R→ R is pointwise discontinuous
and ∆hf is quasi-continuous for each h ∈ H then f is quasi-continuous. Thus,
let H and f be as above. Denote by E the set of continuity points of f . Then
E is comeager. Let x0 ∈ R. There exists an h ∈ H such that x0 + h ∈ E.
Hence f(x) = f(x + h) − ∆hf(x) is quasi-continuous at x0 as a sum of a
function continuous at x0 and a function quasi-continuous at x0.

3 Some Classes of Functions With the Double Difference
Property

From the definitions given in Introduction we immediately derive the following
lemma
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Lemma 3.1. Let F and F (2) be fixed families of functions from G to R and
from G2 to R, respectively. If (F ,F (2)) is hereditary and F has the difference
property, then (F ,F (2)) has the double difference property.

Another variant of this lemma was proved in [Ko, Prop.1]:

Lemma 3.2. Let F and F (2) be fixed families of functions from G to R and
from G2 to R, respectively. Assume that F constitutes a translation invariant
additive group and I is a σ-ideal of subsets of G. If (F ,F (2)) is I-hereditary
and F has the difference property, then (F ,F (2)) has the double difference
property.

Remark. Lemma 3.2 remains true if I is an ideal (not necessarily a σ-ideal)
since the same proof given in [Ko] works.

Theorem 3.3. Let J ∈ {M,N ,M0, I0}. If F (respectively, F (2)) stands for
the family of all functions from G (respectively, G2) to R that are continuous
J -almost (respectively, J (2)-almost) everywhere, then (F ,F (2)) has the double
difference property.

Proof. For J = M, the theorem was proved in [Ko, Thm 1]. For J = N ,
we use Theorem 2.6, Lemma 3.2 and the Fubini theorem. For J = M0,
observe that the respective pair (F ,F (2)) isM-hereditary, by a version of the
Kuratowski-Ulam theorem [O, Thm 15.1]. So, Corollary 2.4 and Lemma 3.2
yield the assertion. Similarly, for J = I0 we use Theorem 2.5 and Lemma
3.2.

In the sequel, the family of category approximately continuous functions on
R will be denoted by CAC. Similarly as in the measure case (see [GNN]), there
are two standard variants of the notion of a category density point for plane
sets. They were introduced and described in [CW] and [BLW]. We call them
an ordinary category density point and a strong category density point. The
both notions generate, in a usual way, topologies that are named the ordinary
category density topology and the strong category density topology in the plane.
(See [CW].) In turn, if we consider any of these topologies in the domain, and
the natural topology on R – in the range, the respective continuous functions
from R2 to R are called ordinarily category approximately continuous and
strongly category approximately continuous functions of two variables. The
family of these last functions will be denoted by SCAC. From [BLW, Thm
1.4] it follows that the pair (CAC,SCAC) is hereditary.

The following notion of a function from [0, 1]2 to R with finite variation
was introduced by Idczak in [I]. Namely, f : [0, 1]2 → R is said to be of finite
variation if the functions f(·, 0), f(0, ·) are of finite variation and the associated
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interval function Ff defined by

Ff (P ) = f(x̄, ȳ)− f(x̄, y)− f(x, ȳ) + f(x, y)

for P = [x, x̄]×[y, ȳ] ⊂ [0, 1]2, has a finite variation. It was observed in [I] that,
for every function f : [0, 1]2 → R of finite variation and for any x, y ∈ [0, 1],
the functions f(x, ·), f(·, y) are of finite variation. The above notions and
properties can easily be adapted to the case when f : T2 → R. Thus, if
BV (T2) (respectively, BV (T)) denotes the family of real-valued functions with
finite variation on T2 (respectively, on T) then the pair (BV (T), BV (T2)) is
hereditary.

By Lemma 3.1, from the above facts, Theorem 2.8 and the result of de
Bruijn [dB1] that BV (T) has the difference property, we obtain:

Theorem 3.4. The pairs (CAC,SCAC) and (BV (T), BV (T2)) have the dou-
ble difference property.

Remark. Let QC and QC(2) denote the families of all quasi-continuous func-
tions on R and R2, respectively. The newest result of [KoM] states that the
pair (QC,QC(2)) is M-hereditary. Hence from Lemma 3.1 and Theorem 2.9
it follows that this pair has the double difference property.

In the sequel we shall use the following result from [Ko, Thm 2]:

Lemma 3.5. Let F and F (2) be families of functions from G to R and from G2

to R, respectively. Assume that F is an additive group of functions such that
every additive function from F is linear. Let G be a subgroup of F containing
all linear functions and let G(2) ⊂ F (2). If (F ,F (2)) has the double difference
property, then the following conditions are equivalent:

(a) ∀f ∈ F (Df ∈ G(2) ⇒ f ∈ G ),

(b) (G,G(2)) has the double difference property.

Let C(Gi), UC(Gi) and Lip(Gi) denote, respectively, the families of con-
tinuous, uniformly continuous and Lipschitz functions from Gi to R (where
i = 1, 2). It is known that for G = T the classes UC(G)(= C(G)) and Lip(G)
have the difference property. (See [dB1], [BBL] and [Ke].) In the case G = R,
the analogs of these results are false which can be easily shown by the use
of the function f(x) = x2, x ∈ R. We are going to prove that the pairs
(UC(R), UC(R2)) and (Lip(R), Lip(R2)) have the double difference property.
Our method of proof is based on Lemma 3.5.

Proposition 3.6. Assume that an f : R → R is continuous at 0. If Df ∈
UC(R2) then f ∈ UC(R).
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Proof. Let ε > 0. There exist δ1, δ2 > 0 such that |f(x) − f(0)| < ε/2 for
each x ∈ R with |x| < δ1, and |Df(p) −Df(q)| < ε/2 for any p, q ∈ R2 with
the Euclidean norm ||p − q|| < δ2. Put δ = min{δ1, δ2/

√
2}. Then, for any

x, y ∈ R with |x−y| < δ, we obtain |f(x)−f(y)| = |Df(x−y, y)−Df(0, x) +
f(x− y)− f(0)| ≤ |Df(x− y, y)−Df(0, x)|+ |f(x− y)− f(0)| < ε.

Proposition 3.7. If f ∈ UC(R) and Df ∈ Lip(R2) then f ∈ Lip(R).

Proof. The idea of the proof comes from [BBL, Thm 2, proof of (ii)⇒(i)]. By
assumption there exist L, δ > 0 such that |Df(x, h)−Df(y, h)| ≤ L|x− y| for
any x, y, h ∈ R, and |f(x)−f(y)| ≤ 1 whenever |x−y| < δ. Fix an h0 ∈ (0, δ).
Thus |∆h0f(x)| ≤ 1 for each x ∈ R. Let x, y ∈ R. Consider the integral

Ixy =
∫ h0

0

(f(y + h)− f(x+ h))dh.

One can easily check that we have Ixy =
∫ y
x

∆h0f(h)dh. Thus |Ixy| ≤ |x− y|.
Now we have |f(x)−f(y)| = |(1/h0)

∫ h0

0
(f(x)−f(y))dh| = |(1/h0)

∫ h0

0
(Df(x, h)−

Df(y, h) + f(y + h) − f(x + h))dh| ≤ (1/h0)
∫ h0

0
|Df(x, h) − Df(y, h)|dh +

(1/h0)|Ixy| < L|x− y|+ (1/h0)|x− y| = (L+ (1/h0))|x− y|.

Theorem 3.8. The pairs (UC(R), UC(R2)) and (Lip(R), Lip(R2)) have the
double difference property.

Proof. We know that the pair (C(R), C(R2)) has the double difference
property, by [dB1] and Lemma 3.1. Proposition 3.6 shows that condition
(a) in Lemma 3.5 is true with F = C(R),F (2) = C(R2),G = UC(R) and
G(2) = UC(R2). So, condition (b) of Lemma 3.5 yields the first assertion of
our theorem. Similarly we deduce the second assertion from Proposition 3.7
and from the first assertion.
Acknowledgements. We would like to thank the referee for several remarks
that have improved our paper. We also thank Irek Rec law who has permitted
us to include his ZFC proof of Theorem 2.5 to this article.
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variants of ideals, Real Anal. Exchange 24(2) (1998/9), 663–676.



Difference Properties for Some Classes of Functions 649

[L4] M. Laczkovich, Difference property of various classes of functions, Sum-
mer School on Real and Spectral Analysis, Wroc law, 1999 (unpublished
talk).

[M] M. R. Mehdi, On convex functions, J. London Math. Soc. 39 (1964),
321–326.
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19 (1932), 22–28.

[T] L. Trzeciakiewicz, Remarque sur les translations des ensembles linéaires,
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